inches. See any book upon leveting or geo-
detic surveying for the mathematics of this. detic surveying for the mathematics of this.
The fact that the surface of still water is a convex surface shows that the surface of the earth is convex, since water covers about three-
quarters of the earth's surface. It is said that quarters of the earth's surface. It is sald that
an Englishman a few years ago wagered that an Englishman a few years ago wagered that
no one could prove that the surface of the earth was convex, and put the money in the hands of the editor of a sporting paper. surveyor took up the wager and set stakes of the same height in a lake a mile apart, and ight inches the midale of three stakes was eight inches above the two on either side of it. over the money. 2. If so, who made the surveyty and when? A. Every survey which runs a level for any number of miles demonstrates
the convexity of the earth's surface. The survey to establish the length of the meter in
France about 1780 is such a survey. All the work of the United States Coast and Geodetic Survey is such work. The laying out of the great irrigation canals in the West and the surveying of public lands of the United States are also examples. The pendulum method is
also complete as a demonstration of the shape of the earth. 3. Are there any demonstrable proofs of the earth's rotation upon its axis? upon its axis are equally conclusive. upon its axis are equally conclusive. The prindropped from a great height, the Foucault experiment with a long pendulum, and the gyro scope. Besides these may be mentioned the deviation of projectiles to the height in the northern hemisphere, the trade winds, and the rotation of cyclones. All these are discussed at considerable length in the work of Young referred to above. If our correspondent is not convinced by these demonstrations he would hardly be convinced "though one rose from the that the earth moves around the sun? All the proofs given in Young's, Newcomb's, or Procfor their truth on something that is assumed and as a proof founded on an assumption is no
proof until the assumption is proven, I want a demonstrable proof that is not founded on an assumption, if there be such an one. A. From restrial proofs of the earth's revolution around the sun. This is an astronomical fact. The stars are explicable only by the earth's revolu tion around the sun. These: have satisfled astronomers for nearly a century and will still be deemed satiofactory. They may be-"foroded
on an assumption," but an ascumption"ta entirely legitimate, and proof for the assumptio will establish its truth as certainly as proof of
fact from which a law may be deduced, will fact from which a
(9184)
S.
our note No.
R. says: A. Weferring to June 6, and note your note No. 9036, A. W., June 6, and note
No. 9086, A. M. W., July 11, regarding the coloration of glass as observed at high altitudes, and your request that some reader might
throw some light on the subject, I have to say that at this place, which is an old mining camp ituated at an elevation above tide of 5,200 feet, it would be an impossibility anywhere in the: neighborhood to find a piece of what was originally white glass that is not now of a
violet tint, ranging according to length of ex violet tint, ranging according to length of ex
posure from a ligint amethystine tint to a vers deep purple, excepting only such fragments a have recently been thrown out. In your answer
to 9036 you say, "We should look for the cause of the discoloration" [it is rather
coloration. S. R.] "of the glass to some sub stance in the region rather than the altitude." In this you are no doubt correct. I have ington scientist, with the suggestion that as radium has the property of coloring glass a puror uranium in this section. He thought, now ever, that the coloration was due to something of glass, such as a mineral of some kind. As terest, I take the liberty of sending you by mail a small box of fragments of glass, 3how ing the various purple tints to which the glass further that there is but little soll, so little that there is only a very sparse grass to be seen
after heavy rains, which quickly dies out. It Is all :rock, rock, rock, principally porphyry There are found here gold, silver, copper, zinc, and I believe also bismuth, with some other
minerals. Bismuth is, I belleve, possessed af some properties similar to uranium. Io no ject, but I hope others may, as it has excite much curiosity here.
(9185) A. C. J. says: In SUPplement No. 1440, of August 8, 1903, in the article "The Size of Atoms," at the end is mentioned
Prof. Osborne Reynolds' Rede lecture on a new Prof. Osborne Reynolds' Rede lecture on a new
theory of gravity. Will you please tell where this lecture may be found published? A. The matter in question was quoted from the En-
gineer, London, to which we shall be obled refer our correspondent for information regard Ing Prof: Reynolds' Rede lecture, on a new theory of gravity.
(9186) P. E. J. asks: When the ele ments cesium and rubidium are placed in water
they decompose it with the liberation of \mathbf{H} :
Which takes fre, but does Cs give the flame a
on chemistry I find that the element erbium. has
never been isolated. On looking through never been isolated. On looking through
Merck's Index, 1896, a catalogue of nearly every chemical known, I find it thus: "Erblum (E) metal, dark gray powder." Also tell me
if this element is not like didymium, which has been split into different elements? A. Cæsium was named from the blue lines which its flame Gives in the spectrum, of which there are two.
The word cessium means sky blue. Rubidium a similar way gives two dark red lines. The word rubidium means dark red. Both are from the Latin. With reference to erblum, Remsen's "College Chemistry" says: "A final statement
cannot be made as yet. It is even questionable cannot be made as yet. It
whether it is an element."
(9187) L. F. B., Jr., says: Would you sindly tell me where I can get data and formulas for small plunger pumps for circulat lowance of efficiency, and what is good practice for relation of stroke to bore? A. A good
practice does not allow the speed of a plunger practice does not allow the speed of a plunger
pump to exceed 100 feet per minute. For very small pumps the speed should be considerably less than this if smooth action is
desired. The relation between the stroke and the bore of the pump is immaterial, provided the displacement of the plunger per stroke is kept constant. Ordinairily the stroke is degarding the speed, or the diameter is dete mined by the pressure requirements: For
a steam pump the diameter of the steam cylinder and the steam pressure control this. The efficiency of a small plunger pump is seldom over 50 per cent, and in case of a
very small pump would be considerably under this figure. Without knowing the exact aize and character of the pump, it is impossibi for us to give
on this point.
(9188) H. H. says: Can you furnish
me with formulas for both the solution and
the wax used by electrotypers? A. Gutta percha, or impermeable plaster, or one of the following mixtures may be used for the pur-
pose: White wax, 200 grammes; spermaceti, pose: White wax, 200 grammes; spermaceti,
30 grammes; stearite, 250 grammes; plumbic
(9189) B. W. R. says: I want to call your attention to a little matter here with wheels and irrigation canals. We have a
canal 16 feet wide with a fall of two feet to the mile. We run" 7,000 miner's inches of water thereln, which makes it about four
feet deep. We have undershot wheel in the feet deep. We hare undershot wheel in the
ditch. Any one of these. wheels, $16 . f$ eat long and 16 feet in diameter, is raising 25 inches,
250 gallons per minute, 25 feet high. place in the ditch we have four of these wheels working close together, that is, Just
barely working clear of each other. There is : no difference between the speed and power
of either of these four. The water in the either of these four. The water in the
ditch is not raised, that is, not booked up above the first wheel. Now, then, if we were to put 16-foot wheels all the way along the
ditch, and each one of them were to do as well as elther one of the four mentioned, and as not to diminish the quantity of water in the power ditch, we should have power enough to raise many times the water in this ditch. I know something about what theory claims all know what they are really, doing. How am I to account for the discrepancy? Figure this out before laying it aside. We could
put 300 of these wheels in the mile ditch. put 300 of these wheels in the mile ditch.
They would raise 7500 gallons of water 25 They would raise 7500 gallons of water 2
feet high, which would be 90,000 gallons feet high (or the fall of the ditch in the mile). This would be accomplished in one
minute, while it would take fifteen minutes for the same quantity of water to pass through for the same quantity of water to pass through
th other words, the ditch at the side which carries the water to be raised
would have to be many times larger than the power canal. I am telling you what is actu ally taking place here every day in the rrigation season and much attention. No matter what our books
may say about power generated by may say about power generated by water
in streams, there is a matter here worthy of discussion and observation. A. The ex-
and planation of the apparent paradox which ou give in your recent inquiry is very sim
ple; you have undershot wheels 16 feet long and 16 feet in diameter, ralising 250 gallons 25 feet high per minute. Four of these wheels do not, apparently, affect the level of the wa
ter in the ditch in which they are running ter in the ditch in which they are running.
These wheels get their power from the water because of its velocity as it dows to the ditch This velocity is gradually acquired as it falls,
locity, you may place in your ditch enough heels to absorb the power equivalent to th gergy of the water due to this velocity. It
you add more wheels than this, you will get no additional power, but will simply reduce the velocity of the water in the ditch. If you were to put in 300 wheels, as yon suggest, th
velocity of each wheel would be so much less velocity of each wheel would be so much
than the velocity of your present wheels that vou would not be able to generate anything ing now, and the sum of all the power gener

exceed the energy in your gtream.

(9190) E. O. L. says: Can you inform me what kind of a preparation to nse to cove
rust : from coming, through the white paint? I
want something to use in: boat work around salt water. A. If you were to cover your iron work, nail heads, bolts; etc., with the black asphaltum varnish that is ordinarily used for
iron work aboard ship, and cover this with white lead paint, we belleve that you would ave less trouble from the rust coming through ust will not so readily penetrate a pain lead in linseed oil paint. There is, however nothing that we know of that will
prevent the trouble you speak of.

NEW BOOKS, ETC.

 Pharmacien Licensié ès Sciences. Rennes-Paris: Imprimerie Oberthur 903.

Radium and Otherb Radio-Active Sub stances. Polonium, Actinium, and Thorium, with a Consideration of Phosphorescent and Fluorescent Sub tions of Selenium and and Applicaof Disease by the Ultraviolet Light Van Nostrand Company. 1903.
Readers of the Scientific American Supplement will doubtless recall the admirable he radio-active substance, and on selenium and the Finssen light. In this comprehensive paper Mr. Hammer presented all that is now posi-
tively known of radium, the practical utilizatively known of radium, the practical utiliza
tion which has thus far been made of selenium specially by Ruhmer, and the remarkable re sults obtained by Finssen of Copenhagen, with Mr. Hammer's book is noteworthy for its com pactness as well as for its comprehensive-

The Figiting Chance. By Gertrude lishing Company. 1903. 12mo. Pric \$1.25.
Just to prove that prefaces are sometimes addressed, but even by book-reviewers, let it be sald here that Miss Lynch's preface is
an admirably studied bit of irony that cleverly hits the average reader in his most vulnerable spot-hls carefui disregard of the introduc-
tions to the books he reads. Miss L nnch'snove itself tells in a sparkllng, epigrammatic style the story of a bomen all bent upan attaining a certain object. Starting with the ccitch-phrese that each one has a fighting chance in reaching the goal, the book tells how that fighting
chance is utilized. In the end a clever in genue, after having succeeded in accomplishing the very task which she had set for herself, what every woman eventually does-falls in ore with the m
The Warner Library of the World's Best Literature is at last within easy reach of effected by the "Public Opinion Club." The first edition, published a few years ago, was offered The New Memorial Edition contains many beautiful illustrations in color, a course of sys tematic reading, and other new features have
been added. The present Warner Library is a improvement in every respect over the earliest It is a splendid array of de luxe books, taking note of every author and every worthy interary
production from the earliest days of writing up to the present time. Nowhere else ca thought be obtained. It is impossible in a brief notice to indicate the remarkable scop
of the Warner Library. But, if the inquir coupon given with the advertisement in a pre-
vious issue is sent in, it will bring handsome vious issue is sent in, it will bring
specimen pages and full particulars.
Subject List of Works on Architect URE AND BuIlding in the Library of the Patent Office. London: The
Patent Office. 1903. 18mo. Pp. 164. Price 25 cents.
The twelfth in the Patent O@ice Library Serles-a comprehensive little series which we
had occasion to commend on other occasions. Electrical Influence Machines: By J.
Gray, B.Sc. New York: D. Van

Gray, B.Sc. New
Pp. 296. Price $\$ 2.00$.
Prof. Gray's book deals with the historica chines and also gives instructions for matin them. The illustrations are excellent, and there is almost a total absence of familiar no more interesting branch for experiment, and this: book, which we can
profitably used as a basis.
The Vulgarians. By Edgar Fawcett. Company. 1903. 12mo. Price \$1 Mr. Fawcett has succeeded admirably missing the best chance in the world of giving colorless, photographic accuracy' the stupidi adventures of three very foollsh young people,
left with fabulous wealth by their father left with fabulous wealth by thefr father, and mbued with the desire to shine in the world
of society. The characters are of the type with
famillar-Westerners, whose ignorance of the ways of the world in which they would inse
to live is exceeded only by their intense amto live is exceeded only by their intense amition. The situations suggested would have lent themselves admirably to satirical treat-
ment. Yet Mr. Fawcett has contented himself with telling his stors in a matter-oferact was that smacks more of some dull English weekly than of the "Smart Set" Practical Treatise of the Steel Square and Its Application in
Every Day Use. By Fred T. Hodg. son. 2 vols. Chicago: T. J. Drake \& Co. 1903.
$\$ 2.00$.
Mr. Hodgson's remarkable work is the outof the Carpenter's Steel. Square," These were among the first that were ever issued devoted ntirely to describing the uses and applications of the square, and so well did they meet with sted in the steel square, that the were interurged to put the papers, in book form and sevorged to put the papers in book form and sevIndeed it is doubtful if any other technical book ever had the same sale. Now nearly everything that is known about the steel square is embodied in the two handsome volumes. The most intricate problems are solved with the aid of the steel square. It is not too much to say
that a carpenter who does not possess these that a carpenter who does not possess these
volumes has one of the most valuable tools left volumes has one
out of his kit.
The New International Enctclopedia. Edited by Profs. Gilman, Peck, cind Colby. New York: Dodd, Mead \&
Co. 1903. Vols. VIII. and IX. 4to. Pp. 1955, 953. Published by subscription.
it is very gratifying to note that in this excellent compendium the treatment as well as
the authorship is almost purely American, which is rather essential in a work of this zind, which is intended for American of readers. The condensation of subjects is admirable, and typographically it is excellent. The maps and plates are excellent and the illustrations are numerous. Many subjects are treated for which we have looked in vain in other works of a similar nature. The inclusion of biogra-
phies of living persons is most helpful. The phies of living persons is most helpful. The
farmer will find authoritative articles on agriculture, and will learn of the interesting experiments that have been conducted during reent years by the Department of Agriculture, and every profession and walk of life is similarly treated. The two volumes before us
aeach down the alphabet as far as "Infant reach down the alphabet as far as. "Infant Phenomenon," which is interesting, showing
the remarkable scope of this encyclopedla, for is is unusual to include characters from works
it of fiction in a work of this kind. It will be emembered that the "Infant Phenomenon" as Ninetta Crummle
Kaleidoscope. Vol. XI. Published by the Students of Hampden-Sidney $\$ 2.00$.
A very well-gotten-up college annual. An appreciative notice of ex-Judge Roger A.

NDEX OF INVENTIONS

For which Letters Patent of the United States were Issued or the Week Ending
September 15, 1903, ND BACHEBARINGTHATDATE.

