distances. In order to communicate at a distance of about six miles, it requires, it would appear, no less than one horse power.
The problem is, moreover, much more difficult than might be thought at first sight. The distance of trans mission, in wireless telegraphy, as well known, depends before all else, upon the energy brought into play and upon the length of the antenne. In this latter factor resides the principal difficulty. Tunnels, stations, and bridges prevent the putting of vertical antennæ of more than six or ten feet upon trains. In default of antennæ of considerable height, no other means therefore remains but to increase the energy brought into play. It is to a solution of this problem that experimenters in general are applying themselves. The difficulty might be surmounted, nevertheless, if horizontal antennæ could be effectively employed. But here a new difficulty is confronted. Antenna placed one after another lose their efficiency. On the other hand, the displacements of the trains produce a respective displacement of each antenna.
As another method, it has been proposed to place along the track, and for its entire extent, a horizontal antenna, connected now with a transmitter and now with a receiver. Another horizontal antenna would be established upon the train and stretched, for example, over the roof of the cars. This system, it will be at once seen, has two disadvantages. In the first place, it necessitates a special wire and consequently involves a very great expense; and, in the second, it does not permit of a communication between trains. A truly simple solution, however, permits of conquering the difficulty, and this has been furnished by M. Guarini and his collaborators, M. Cesar and Lieutenant Poncelet. As may be learn ed from the Guarini and Cesar Belgian patent No. 167,023 of November 29, 1902, the system consists in employing an existing line of telegraph wires and using others as intermediate ones. For this purpose, there is produced at a point that may be fixed (station) or in motion (train), and that is situated near the said wires, an electro-magnetic dis turbance by employing an oscillator, for example. Such dis turbance is perceived, notably by means of a coberer, at an other - stationary or movable point placed near tbese same wires. These latter, in the first place, take up the waves and afterward radiate them. They therefore play the part of inter mediate antennæ.
Some experiments with the Guarini-Cesar system have been performed upon the Belgian State line, have been watched by one of the latter's engineers and have been crowned with en tire success. The energy of 40 watts and an antenna of 4 strands of 32.8 feet sufficed to communi cate between West-Saint-Georges and Ottignies, say a distance of 10.5 miles. With an energy of 15 watts, a spark of $1-10$ inch, àd a good coherer, signals were received at a distance of 2.5 miles, although the antenna of tbe movable station, arranged upon a small car, was one of but 6.5 feet. It consisted of an iron tube 4 inches in diameter. At the other station the antenna was 32.8 feet. Messages were received in both directions, from the car to the wire and vice versa, even when the car was at 100 or 130 feet from the tele graph wires. No disturbances of any sort were ob served in the numerous telegraph and telephone re ceivers placed along the line. This fact is not want ing in interest, and agrees with the numerous researches of such scientists as Slaby, Turpain, and others, who Lave studied the simultaneous transmis sion of ordinary and high-frequency currents by means of the same wire

ruins of piedras negras.-altar with hieroglyphic inscription.

piedras negras.- SCUlptured hintel fhom doorway of building
thinks, to assure by submarine cables, without interfering with their ordinary business, telegraphic communications between ships and with the coast. He does not favor, then, the bringing into play of the enormous amount of energy to which Marconi has recourse.

## PIEDRAS NEGRAS, A NEWLY DISCOVERED PREHIS

 TORIC CITY IN GUATEMALAby cearles c. willoughby, peabody mubidm, harvard university, The region comprising the greater part of Guatemala, the western portion of Honduras, and the south ern part of Mexico, including the peninsula of Yucatan, was the seat of an ancient American civilization highly developed and as interesting to the archæological student as any of the primitive civilizations of the Old World.
Throughout this region are ound numerous remains of ruined cities, or, more correctly, ruins of religious and governmental centers; for religion and government were inseparable among this people.
The Spaniards, upon their ar rival, found numerous books among the priesthood, each book consisting of many pages, the leaves being eight or ten inches in length and folded like screen. The pages were cov ered with numerals, glyphs, and explanatory drawings beautifully executed in colors, which are supposed to refer to the calendar, to astronomical matters, and to religious ceremonies. Thio Spanish priests collected and burned every book they could ob tain. Fortunately for students, three of the books found their way to European libraries Their value is now appreciated and they have been carefully reproduced by photo-lithography and are known under the titles of "Codex Dresdensis," "Codex Troano-Cortesianus," and "Co dex Peresianus." Copies are now accessible to all students. Upon the monuments and al tars, upon the lintels, walls, and stairways, and upon the altar slabs within the sanctuaries of the temples are sculptured with elaborate detail hieroglyphs- of the same character as those occurring in the codices. It is known that in many instances these hieroglyphs record certain dates by days, months, and longer time periods, but the sig. nificance of the great majority of the glyphs is as yet unknown When they are deciphered, as they are sure to be in time, a flood of light will be cast upon the religious history of one of the most remarkable primitive cultures hnown.
With the view of bringing together reproductions of all the inscriptions upon the monu ments of the Mayan peoples, the Peabody Museum of American Archæology and Ethnology of Harvard University has for sev eral years had expeditions in the field conducting explorations among the ruins and making paper molds of inscriptions from which plaster reproduc tions have been made. While engaged in work for the Pea body Museum, Toberto Maler long a resident of Mexico, heard
coherer, MM. Guarini, Cesar, and Poncelet were enabled to receive signals, but at much shorter distances. The system in which telegraph wires are employed might, M. Guarini thinks, prove an economical means of constituting a block system with signals upon the locomotive. The inventor, moreover, from these experiments, draws some interesting conclusions, from a different point of view, but one that seems to have been the motive that led him to perform them. Submarine cables, which are insulated from the aqueous medium that surrounds them, might, perhaps, in his opinion, perform the role, in certain cases at least, of intermediate antennæ in wireless telegraphy to a great distance. In such a case, it would be very easy, he
of the existence of certain ruins in western Guatemala known only to the native wood cutters. After a long journey through tropical. forests he reached the Usumacinta River, upon the banks of which the ruins lay The structures are built upon an irregular plateau or series of connected hills, artificially terraced. A transverse valley opens upon the river at the south of the plateau. At this point is a mass of blackish limestone rocks, visible for a long distance from the river in either direction, and called by the natives Piedras Negras. This name has been given to the ruins. Upon the flat surface of the largest of these rocks is sculptured a circle of hieroglyphs inclosing two seated figures. Eintering the transverse valley
and climbing the slope to the north，the ruins of two temples were discovered upon artificial pyramids placed side by side．In front of each temple and upon the upper terrace of the pyramids stands a monument or stela of limestone．Upon the front face of the best－ preserved of these has been sculptured with elaborate detail an inscription in Mayan characters．A gigantic stela broken in two pieces lies upon the lower terrace connecting the two pyramids．

Across the plaza to the northwest stands a third pyramid upon a natural elevation．The temple upon its summit is in ruins．A fight of stone steps leads from the plaza to a broad terrace in front of the pyra－ mid．Six large stele stood in a row upon the terrace． Hieroglyphs cover the sides of these monuments，and upon the face of one is an inscription，the first few characters of which form the initial series and record dates in the complicated Mayan calendar．

Elaborately carved human figures，with explanatory groups of glyphs，cover the fronts of the remaining stelæ upon this terrace．
The sculptured stone lintel of the doorway to this temple has an inscription of eighty－one characters upon the upper half of its face．Below this is a group of figures illustrating the return of successful war－ riors with prisoners and plunder．The priest wears an enormous headdress covered with short，stiff feath ers，from the back of which spring five plumes of the sacred quetzal．A short tunic with sleeves covers the upper part of the body，and below this fall the em broidered sash－like ends of the breech－cloth．He wears elaborate sandals with heel－bands coming well up upon the ankle．Beads encircle his wrists and neck． He holds in his hand a spear－like staff of nffice orna mented with feather work．Before him kneel two war－ riors with spears in hand presenting a pile of plunder， and a naked prisoner bound with ropes．

North of this temple the ruins lie for the distance of nearly a mile and a quarter，the terraces and the larger pyramids being fairly well preserved．Most of the temples are in ruins．
One of the most interesting of these is built upon the terraced side of a natural elevation upon the east ern side of the plaza at about the center of the ancient city．Ten stelæ and three great altars stand upon the upper terrace of the pyramid and upon the plaza below．
Of the ten stelæ belonging to this temple，the one standing at the southern end of the building and called ＂stela twelve＂by Mr．Maler is of the greatest interest This has unfortunately fallen and is broken into four pieces．Each piece was photographed，however，and the prints fitted together，making a perfect picture．
The great stone altars scattered here and there in the plaza and in front of the temples consist of oblong or circular blocks with hieroglyphs and occasiona groups of figures．The altars are raised upon stone pil lars，which are often sculptured upon their outer faces with inscriptions or are cut into the form of grotesque heads．
These ruins differ in many respects from the other ruins of Central America and of Yucatan．Piedras Negras was evidently the seat of a powerful military chieftain，as the sculptures everywhere indicate．The sculptured groups and figures of the ruins of Yucatan and of Quirigua and Copan are almost wholly of a peaceful，relig． fouscharac－ ter，indicating priestly power and a growth in cul－ ture and wealth by peaceful means．
M．Molesch，of Prague，recently read a paper be fore the Academy of Science of Vi enna concerning phosphorescent bacteria，upon which he made a number of re－ searches．He ob－ tains a strong light by a col－ lection of these bacteria and can even take photo－ graphs with it． When the bacteria are placed in a culture boullion contained in flasks of one or two liters capacity，they form a＂bacteric lamp＂which gives a strong enough Hight to read a thermometer or see the dial of a watch at a distance of one or two yards．The experimenter thinks that such a bacteric lamp，as it gives no per－ ceptible heat，will be of service in powder magazines and in scientific work．It can be alse used under wa－ ter to attract fish，as the flask can be hermetically sealed．When placed in suitable conditions，the bacteria possess the phosphorescent properties for eeveral weeks．


Illustration 3．－Callitype．Reduced From Original in Ordinary Typewriting Size．

## CALLITYPY－A NEW WAY OF USING THE

 TYPEWRITER．How the typewriter and photo－engraver can work hand in hand and perform all the work of the printer I have had occasion to set forth in two articles pub－ lished in the Scientific American Supplement．Brief－ ly described，the method of doing away with typeset－


Ilustration 1．－Callitype．Reduced From Original in Ordinary Typewriting Size．
ting consists in typewriting the matter to be printed， and in making line engravings therefrom which can be used as printing－plates．The possibilities of thus using typewriters were illustrated in the articles men－ tioned．It is the purpose of the present article to show the more recent improvements that have been made in＂callityping，＂as this new way of using the typewriter is called．

In the Scientific American Supplement for April

| 1 | SEPTEMPER |  |  | 190 |  | ？ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | Pa | ［0］ | W｜ | ［ ${ }^{\text {d }}$ | 国 | S0 |
| － | － | 1 | ［ | 3｜ | 4 | ［0］ |
| ［8］ | ［7］ | ［8］ | 回｜ | 匈1 | ［1］ | 四 |
| P13 | ｜ 14 | 15 | 16 | 17 | 18 | 19 |
| F20 | 21 | 22 | 23． | $24 \mid$ | 25 | 28 |
| 27 | ｜ 28 | 29 | 30 | ［1．tid | 蒜 | 理 |


| BROOKLYN |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Names | R | 18 | PO | 1 | E |
| Strang，3b | 1 |  |  |  |  |
| Sheckard，if |  | 0 | 0 | 0 | 0 |
| Dobbe，of． | 0 | 2 | 1 | 0 |  |
| Doy1e， 16. | 0 | 2 | 3 | 1 | 0 |
| Dahlen，sa |  | 1 | 3 | 4 | － |
| Kecreary ，r |  | 1 | $\frac{1}{2}$ | － | 0 |
|  | 0 | 1 | 5 | 0 | 0 |
| Garvin＇，p． | － |  |  |  |  |

mastration 2．－Callitype．Reduced From Original in Ordinary Typewriting Size ${ }_{\nu}$

4 last were published specimens of callitypic compo－ sition in different sizes of type，in describing which the direction was given to use pen，ink，and ruler in making vertical lines．But in the practical application of this print－typing method it has since been proved that two different vertical marks，added to the ma－ chine＇s type equipment，and adjusted so as to strike at two certain points，relatively to the position of ad－ joining or adjacent alphabetic or numeral characters，


1．Rock of A－ges，cleft for me，Let me hide my－self in Thee；
D．c． Be of sin the dou－ble cure，Save from wrath and make me pure．


Illustration 4．－Callitype Reduced From Original in Ordinary CALLITYPY－A NEW WAY OF USING THE TYPEWBITER．
give greater satisfaction and are more convenient an
expeditious to use than lines made with pen and ink．
The four illustrations herewith constitute the first publication of what can be done by the use of auch vertical liners in typewriting．These illustrations were callityped on one unchanged writing machine，and in no case was the paper touched with the hands，from the time it was inserted in the machine until the en－ graver＇s copy was finished，with the exception of cen－ ter matter in Illustration 3，which was callityped on a separate sheet and inpasted，as were also the treble
and bass clefs（clipped inpastings）in illustration 4. Illustration 1．－A．The type for the side vertical is so engraved and positioned that it will strike at the left of the following character，and midway between that character and the one immediately preceding．$B$ ． The center vertical is centrally engraved and posi－ tioned，so as to strike between two characters，one space distant from each other．C．This is self－explan－ atory．D．Where letters or columns are an even num－ ber of spaces apart，a side vertical liner is used to secure midway position of perpendicular line；and where letters or columns are positioned an odd num ber of spaces apart，the center vertical is used．
In Illustration 4，$f$ stands for flat；1，whole note； 2，half note；4，quarter note；8，eighth note．As mu sic notation recognizes no third or sixth notes，the agure 6 could be used as an abbreviation for a six－ teenth，and 3 for a thirty－second，note．Symbolic cor－ ollaries are：$s$ for $\operatorname{sharp}, n$ for natural，$r$ for rest，etc． using small letters to show key，pitch，and time，and capitals for expression．
Side and center－verticals should begin and end on two consecutively typed underscores，and each ver tical should be just long enough to type an unbroken vertical column when struck under each other．It is important that the paper feed of the machine be as ex－ act as possible，so that the horizontal rulings made by the underscore can be depended on to be equidistant on all parts of the sheet．To test a machine for this， operators make vertical rows of close－lined parenthe ses，thus：
（（（

## $c(c)$ $C(1)$ <br> （ $(1$

（ $(1$
at the middle and extremet margins of the sheet．Thes rows should have a longer perpendicular length than the circumference of the roller．All parts of the sheet should be closely examined for deviation from perpendicular equidistances between the ends of the parentheses．
In ink pad machines squares，rectangles，etc．，are made by typing the left vertical from the upper left hand corner down；then across；then up；then the carriage is shifted to first position，and a horizontal underscore left to right finishes．In making perpen－ dicular lines the thumb of the left hand continuously holds down the space bar；another finger of same hand strikes the vertical－liner key；and right－hand fingers turn the roller by the knob for successive line changes of striking point．For ribbon machines this manip－ ulation secures little or none of the necessary ribbon movement，therefore columnar lines are made down－ ward only，governing the striking points of the ver－ tical liner by proper settings of margin stop and or dinary use of the line－spacing lever．
The illustrations show the possibilities of the ver－ tical liners in type composition．The original type－ writings were photographically reduced to different sizes of characters，and any effect in any size can，of course，be as easily obtained in any other size．Am bitious tabulators，music composers，and draftsmen who use or have access to the writing machine should note that there is room for still further development and improvement．
What to printers is known as bordered，panele and rule－and－ilgure work－classes oi expensive and ex－ acting type－com position either outside the range r only condition ally within range in the operation f type－setting o line－casting ma－ chines－b e comes，through the callitpyic op eration of $t h e$ writing machine as facile and economical as or dinary composi tion．
The compara－ tively difficult and expensive kind of type－composition known as inter secting－rule and rule－and－figure work，which has always been a stumb ling block to line－casting and type－setting machines seems to be the destined particular field of callitypy as in it such typing proceeds almost as rapidly as ＂straight＂matter，could easily be done by the prof－ cient operators of all writing machines，and type－high ready－for－press callitypes（blocks）could be made from typewritten copy at 5 cents per square inch，in any size of type．In book and news work，nonpareil is the most favored size for the class of composition referred to and it now costs 14 cents per square inch．

