

"Grasshopper" Elevator in Housed Condition.

The Derrick in Operation, Discharging Grain Into a Lighter.
A NEW DERRICT OR "Grasshopper" elevator for dnloading grain from vessels -[See page 75.]

SCIENTIEIC AMERICAN

ESTABLISHED 1845

MUNN \& CO., - - Editors and Proprietors

Published Weekly at
No. 361 Broadway, New York

terms to stbschibers

NEW YORK, SATURDAY, JANUARY 31, 1903.
The Editor is always glad to receive for examination illustrated
articles on subjects or timely interest. It the plotographs ine
 will receive special att

Weight and velocity in heavy guns.

Elsewhere in this issue we give illustrations of the successful tests recently carried out with the new army 16 -inch gun, tests which prove it to be the most powerful weapon in existence, exceeding greatly in energy the $161 / 2$-inch Armstrong gun built several years before. Whether, in comparison with modern ordnance, it is the most efficient piece relatively to its weight and cost is another question, to which even the gentlemen who designed and built it would probably return a negative answer. In defining the question of relative efficiency, however, it should be men tioned that the 16 -inch gun was designed several years ago, and therefore cannot be said to represent the very latest developments in ordnance. The tendency to-day is toward reduced weight of gun and projectile and increased muzzle velocity. As we have shown very clearly in the data of the Krupp gun of the 1901 pattern (included in the table shown on a nother page), although the weight of the Krupp piece is only about half that oi the $161 / 4$-inch Armstrong gun, and its projectile is about 40 per cent as heavy. its high muzzle velocity of 3,330 foot-seconds gives the shell muzzle energy of 59,280 tons or between 3.000 and 4,000 foot-tons greater than that of tiie Armstrong piece and 75 per cent of that of our own gun. The muzzle energy per ton-weight of gun. moreover, reaches the high figure of 1,029 foot-tons. It is interesting to notice that the increase which is made in the length of the bore as compared with the older guns, with a view to obtaining the full ballistic value of the relatively small powder charge, is so great that the smaller gun is actually the longest of the three, longer even by a few inches than the great 16 -inch gun now at Sandy Hook. This comparison is given, simply to illustrate the advance which has been made in heavy oirdnance since the plans of the English gun and, later, of our army 16 -inch gun were drawn up; for, as the tests on Saturday clearly demonstrated, the great gun is a most excellent piece of work, which reflects the greatest credit on Major Rogers Birnie, Major Charles Smith, and Col. J. P. Farley, who were responsible for its design and construction. At the time when it was planned, this piece was not only the most powerful, but the most advanced type of heavy gun in the world. As it was necessary, however, before work on the gun could be even commenced, to build a special and costly plant for its construction, the delay has been such that the 16 -inch gun to-day would be considered, even by those who were responsible for its construction, as in some respects out of date; and while the weapon in these tests has answered every demand made upon it, it is probable that it will be at once the first and last of its size to be built Apart from the convincing proofs offered by the tabular comparison, above referred to, we may mention that our Ordnance Board has made such rapid ad vance in the development of nitro-cellulose powders and the design of guns suited to these powders, that a muzzle velocity of 3,600 feet per second is con templated in future guns. To understand what in fluence velocity has in reducing the weight both of gun and projectile, we have but to remember that while the energy varies directly as the weight of the pro jectile, it varies as the square of its velocity; and, therefore, by reducing the diameter and weight of the projectile and increasing its velocity, it is possible to huild a gun that will have the same muzzle energy as the 16 -inch piece and yet weigh not more than half as much. We do not know just how far the plans of the Ordnance Boara for high-velocity guns have progressed but if they were called upon to produce a 12 -inch gun
of half the weight of the 16 -inch gim limi of oflual muz \%le energy, they could doubtless do so; that is. if the 3.600 foot-second velocity, which they claim to have secured, is applicable to a gun of this caliber. At the same time we must remember that comparisons of muzzle velocity and energies are misleading-at leas o the layman; for a heavy shell with a low velocity will hold its energy longer than a light shell with a high velocity. the velocity falling off less rapidly as the range increases than in the case of the lighter shell

THE AMERICAN AUTOMOBILE

The Automobile Exhibition which was held last week in Madison Square Garden, New York, proved, beyon everything eise, that both the American public and the American manufacturers have learned a certain fundamental lesson, without which any real progress toward the evolution of a satisfactory automobile and the development of a flourishing trade in the same would have been absolutely impossible. The lesson is this: that in the very nature of things, because of the inherently complicated nature of the machine itself and the particularly trying conditions inder which it is called upon to do its work, the designing and build ing of a satisfactory automobile is an extremely serious and difficult matter. Now it is for want of realizing this undamental truth that the development of the automo bile, mechanicaily, industrially, as a commercial prop csition, and as a great public utility and means of pas time, has been very materially delayed in this country "American inventiveness and ingenuity" and "Ameri can labor-saving machinery" have grown so accus tomed to taking hold of any new device of European origin, and quickly improving and cheapening it, that when the first serious automobite exhibit of four year ago was held, the press and the public alike (we plead guilty to the indictment ourselves) were prolific in promises anci prophecies as to the speedy "revolution," or whatever it may have been called, that we were going to make in the automobile industry now that we had set our hand to the task

The self-confidence that prompted this splendid op timism was not without justification, for we could point to unnumbered devices of European origin which in the hands of our inventors, machinists, and manu facturers, to say nothing of our business promoters had grown from somewhat crude objects of doubtful utility into nerfect appliances of a world-wide reputa tion and world-wide demand. .In the automobile industry.. however, we were, for once, mistaken. Overlook ing the fact that the automobile of some four or five years ago represented the combined efforts of some of the brightest engineers among that nation of bril liant engineers, the French; and that the successful machines of that day had been brought to their then stage of perfection by a long and costly process of experiment, invention, and design, cur makers, with a few rare exceptions, to which full credit must be given, rushed hastily into the business of automobile manufacture and met in the majority of instances, at the very outset, with most discouraging results. Many of them seemed determined to take up the problem cle novo; and instead of profiting, as they should have done, by the trials and failures of French and German makers, they began to go over the same old experi mental ground, and put themselves to the expense, loss of time, and inevitable disappointment, incident to the development of a satisfactory autcmobile. Hence it was that our first two exhibitions simply proved that except in the steam-driven vehicles, we were following leisurely in the trail of the European manufac turer; many of the forms and types shown bein from eighteen months to two years behind the best current practice of the day
No such charge, however, could be made against the excellent exhibit of machines that was gathered to gether last week in Madison Square Garden. It is evident that our manufacturers have decided to accept that which has proved to be best in the practice of foreign makers, incorporate it in their own designs improve upon it where possible, and make only such changes as had stood the test of trial under actua service conditions. Consequently, one noted an almost entire absence of the freak machine; and the exhibits conformed pretty closely to one or other of the ac cepted types, both in details of mechanism and in general structural appearance and finish It is too much to claim that we have left as yet any very dis tinctive national mark upon the automobile, unless it be in the production of moderate-priced runabouts of light weight and comparatively small power.
Evidently the automobile industry, as such, has now settled down to a working basis. We have learned that something more than a blacksmith's forge, a lathe, and more or less native ingenuity are necessary to the building of an automobile. The thousand-and-one individuals who rushed into the business with but few of the qualifications necessary for such difficult and arduous work, have learned their bitter lesson and gone back to their former or to other pursuits, leaving in th field only such makers as are duly qualified and
equipnol. Furthermare, if a visilor to the show had taken the trouble to select the American machines which have survived the period of trial to which we have just eferred, anc had asked the makers to what they par ticularly attributed their success, he would have found it to be due to the fact that no machine or part of a machine that was new was allowed to go upon the market, until its utility had been proved by a long period of very searching and exhaustive trial. It is mpossible to overestimate the harm that has been done to the automobile industry by the many mushroom companies that have rushed into the public market with nothing more to show than a set of blueprints, a machine shop, an office, and a soliciting agent. During the past year there was a notable case of a firm that had entered upon its books thousands of dollars worth of orders for automobiles, equipped with a new type of transmission that, at the time the orders were booked had never had a shop test, to say nothing of a trial on the road. The damaging effect of such practice in delay ing the growth of the automobile in public favor, it would be difficult to estimate. There is one respect.in which the American automobile has already won for tself golden opinions, and that is in regard to it general lines and finish. Alike in the light runabouts in the medium-powered touring cars, and in the high powered machines, there is evidence of a careful effor to produce the most harmonious and graceful outlines, and we believe that in this respect, among others, the American automobile will win for itself universal and unqualified favor
With regard to the future improvement of the auto mobile, we suggest that it may be looked for along the following lines:

1. Transmission Gear: It will be generally agreed among automobile users that the most important point demanding further experiment and improvement is the transmission gear. While there are some excellen gears in use, the best of them are exceedingly costly The endeavor of the American manufacturer has been to produce a transmission gear that will have the cer tainty of action and the durability of the best foreign makes, and that can also be produced at considerably less cost. Upon the solution of this problem depends very largely the future of the moderate-price automo bile, for which the great mass of the American people are asking. The endeavor to produce a cheaper gear is commendable; but unfortunately some of the new types have been rushed into service without adequate trial. This is a problem that will ricbly reward the inventor who can produce a gear that is cheap, reliable, and durable
2. Sparking Devices: The experience gained on the endurance runs of last year, proved that there is ye much to be done before the problem of an absolutely reliable sparking device has been solved. The dry battery and the independent dynamos have each troubles of their own; and while some of the systems shown at the exhibition are excellent, there are many makes that will require considerabie improvement, if they are to become popular with the public. The problem of adjusting the sparking device to the variable speed of the engine is one which will repay still further investigation, particularly in the matter of automatic governing
3. The Wiring: As in the case of transmission gears and the sparking devices there is notable improve ment in the wiring of automobiles as compared with those exhibited two years ago. In the past our machines have suffered from the use of too small cables and more or less imperfect insulation. This is a detail which has been responsible for many a half-hour o puzzled and fruitless search by the inexperienced auto mobilist for the cause of a breakdown. The cables are now of generous dimensicns, and the insulation ha been carefully carried out.
4. Engines: In general the engines, particularly in the higher-priced machines, are admirably made, both as regards the castings and the machine work. Caststeel has taken the place of cast-iron, and both in respect of mechanical operation of the valves and the greater care that is being taken in the seating of the valves and their general mechanism, there has been a very marked advance. The makers of the cheaper gasoline machines have been driven to the use of cheaper materials and less costly machine work in the endeavor to keep the price within reasonable limits; and in view of the limitations thus imposed, the greatest credit is due to two or three of the best-known makes. In some cases the contact-making devices are still very cruce, and this detail also will repay futur careful attention.

Taking a general view of present conditions, it may be said that the automobile industry is now established upon a thorcugh working basis. There is a consider able number of reliable firms that are prepared to take orders for machines that have stood the test of hard usage, and shown that they can be relied upon for continuous service without a visit to the repair shop. We are unquestionably feeling the first flood of a pros nerity in the automobile industry whose extent it is hard to predict.

abram stevens hewitt.

As we panse in our feverish struggle of life to mourn the loss of a great man, to recall his ambitions, to review his masterful career, we have the comforting satisfaction of knowing that there is gain as well as loss-we are inspired by the narrative of his achievements to resume our battle with renewed courage and a loftier purpose. The death of Abram Stevens Hewitt, on the morning of January 18, was a loss, not only to his native State, but to the entire country. His wonderful influence over men was felt throughout the land, and our hearts are all joined in profound sorrow at the departure of this grand and noble type of American citizen.
Mr. Hewitt's greatness is all the more marked by reason of his humble origin. He was born in a log cabin near Haverstraw, Rockland County, N. Y., July 31, 1822. His father was at the time a poor workman, having lost all his property by fire. The elder Hewitt came to the United States in 1790 as a representative. of the English firm of Boulton \& Watt, and assisted in setting up the first steam engine ever used in this country. He later took up the trade of cabinetmaker, and was also a dealer in cabinet lumbers. After the loss of his property he became a farmer, cultivating the tract of land in Rockland County which had been inherited by his wife. On this farm was the young Hewitt reared, imbibing there the sturdy principles which governed his entire career. At an early age the boy showed a great love for books. Although the father planned to have his son taught a trade, he wisely gave up this ambition as soon as he observed these academic tendencies, and gave the boy every opportunity to study, sending him to school in New York city during the winter months. Young Abram made the most of his advantages, and determined to prepare himself for college. Knowing full well that his father could not afford to pay the college expenses, he set to work in an effort to win one of the two prizes which some one had offered to the two students who passed the best entrance examination to Columbia College. Twenty thousand schoolboys entered this competition, but young Hewitt secured one of the prizes, which was enough money to pay his tuition fees through college. He paid his other expenses by tutor ing fellow students, also by winning several Greek prizes and all the prizes in mathe matics offered during his course. Such was his ambition and devotion to study, that when in 1842 he graduated at the head of his class, he was obliged to pause; for his general health, and particularly his eyes, had been greatly injured by the confining work.
In 1843 Mr . Hewitt was appointed acting professor of mathematics at Columbia, and saved enough from his salary to enable him to visit Europe in the following year. On this trip he was accompanied by his friend, Edward Cooper, son of Peter Cooper, the philanthropist, whose daughter he later married. The return voyage was marked by an incident which, as Mr. Hewitt himself says, had much to do with his future, and says, had much to do with his future, and
was, in fact, the turning point of his life. was, in fact, the turning point of his life.
The ship on which they embarked from Leg. horn was buffeted by a number of violent storms, and finally sprung a leak when about twenty miles off Cape May. The crew and passengers worked the pumps until it was evident that further efforts to save the ship were useless, when they took to the boats. Afte drifting about twelve hours and suffering greatly from wintry weather, they were picked up by a vessel bound for New York city. In speaking of this experience some years ago, Mr. Hewitt said, "It taught me for the first time that I could stand in the face of death without fear and without flinching. It taught me another thing-that my life, which had been miraculously rescued, belonged not to me, and from that hour I gave it to the work which from that time has been in my thoughts-the welfare of my fellow citizens. For thirty years I have never turned aside from that task. The task which I had set for myself was to contribute, as far as I could, to the employment of men, so that they could help themselves and not be made the subjects of pu',lic charity. Self-help is remedy for all the evils of which men complain."
In 1845 Mr . Hewitt completed the study of law which he began while professor at Columbia, and was admitted to the bar. Shortly afterward he was persuaded by Peter Cooper to give up his legal ambitions and go into business with Edward Cooper. Peter Cooper gave the young men charge of a small rolling mill in Trenton. With characteristic thoroughness Mr. Hewitt immediately made careful study of the iron market, and built up the financial success of the works. This firm was the first to manufacture iron girders and supports for bridges and for fireproof
buildings. Another fact which argued much for Mr. Hewitt's ability as a manager is that the firm never had any trouble with its employes, though at times they employed as many as five thousand men. There was occasional dissatisfaction among the workmen, but their grievances were immediately taken to Mr. Hewitt, who always dealt fairly with them. The works were never closed, and wages were regularly paid, even though the business was sometimes carried on at a loss.
Mr. Hewitt made a specialty of the making of steel, and, as in everything he undertook, soon became the foremost expert on this subject in the United States. During the civil war he went to England to study the manufacture of gun-barrel iron, which he supplied to the United States government at a loss to his firm. The Martin-Siemens, or open-hearth, process of making steel was introduced into this country largely through his efforts. At the Paris Exposition in 1867 he was one of the United States Commissioners, and made a special study of the iron and steel exhibits. In 1876 he was president of the American Institute of Mining Engineers, and won great prominence at home and abroad by an address on "A Century of Mining and abroad by an address on "A Century of Mining
and Metallurgy in the United States." In 1889 he was again elected president of the Institute, and in the following year they presented to him the Bessemer gold medal for his services in promoting metallurgical science.

Copyright 1.900 by liockwoor.
abram stevens hewitt.
Ex-Mayor of New York. Ex-President of the American Institute of Mining Engineers.

Appreciating the value of learning, his efforts in behalf of education were particularly marked. He took an active part in the management of Cooper Institute from the year of its establishment, and contributed largely to its support. As secretary of the Board of Trustees he devoted much valuable time to the regula tion of its educational and financial conditions. The United States Geological Survey also owes its exist ence largely to his efforts while in the House of Representatives.
Mr. Hewitt first became active in politics by assisting in the reorganization of Tammany Hall after the overthrow of the Tweed ring. He served in Congress from the year 1874 to 1878, and again from 1880 to 1886, when he was elected Mayor of New York city. In this office, as a fearless champion of justice he made enemies, as all strong men will, and was not chosen for a second term by Tammany, but polled a large vote at the next election on an independent ticket. His political career was characterized by a quickness of perception and a readiness of speech that always served him in good stead in public addresses. Whatever he had to say was said positively and decisively, carrying conviction to his hearers. He was never at a loss for a word. His extemporaneous speeches had the smoothness of written lectures. His keen insight enabled him to immediately grasp the details of the most complex subject, so that he could
deliver an impromptu address in which the facts were assembled logically and in order, leading up to a final conclusion which was as convincing as if the result of long study. While Mayor of New York city. Mr. Hewitt, in one of his annual messages, urged the improvement of the city's rapid transit system and recommended municipal ownership. Though his suggestions were not heeded at the time, he continued actively to promote the cause, and it was largely through his efforts that the present improvements were undertaken. In consideration of these services the New York Chamber of Commerce recently presented him with a gold medal.
Mr. Hewitt married Sarah A. Cooper, Peter Cooper's only daughter, in 1855 . Six children were born to them: Peter Cooper Hewitt, Edward R. Hewitt, Erskine Hewitt, Sarah Cooper Hewitt, Eleanor G. Hewitt, and Mrs. Amy B. Green. Peter Cooper Hewitt, the eldest son, is best known to our readers as the inventor of an electric mercury vapor lamp for which he obtained a large number of patents. He has also recently invented a static converter, which is very simple and economical.
Those who knew Mr. Hewitt in his private life were greatly attracted by his animated conversation and his sense of humor. He made a wonderful impression on everyone with whom he came in contact. His sterling qualities, personal and social, found fitting expression in Richard Watson Gilder's poem read at the funeral of Mr. Hewitt:
"Mourn for his death, but for his life rejoice,
Who was the city's heart, the city's voice. Dauntless in youth, impetuous in age, Keen in debate, in civic counsel sage. Talents and wealth to him were but a trust To lift his hapless brother from the dust. Because he followed truth, he led all men, Through years and virtues, the great citizen. By being great he made the city great; Serving the city he upheld the State. So shall the city win a purer fame,
Led by the living splendor of his name."

the recent berliner transmitter

 patent decision.The second Berliner telephone transmitter patent, No. 463,569 , dated November 17, 1891, which was held to be invalid some time ago by Judge Brown in the United States District Court, was on appeal to the United States Court of Appeals declared valid as to metallic electrodes by this court on January 16 last. The case was that of the American Bell Telephone Company against the National Telephone Manufacturing Company and others for the infringement of the patent.
The opinion was written by Judge Colt and was concurred in by Judges Putnam and Aldrich. It holds that Berliner was not entitled either to the credit of the advantages to be derived from the employment of a carbon electrode in telephone transmitters or to the discovery of microphonic action; that the former was discovered by Edison, and that Prof. Hughes is entitled to the credit of the latter discovery, which is the principle utilized in every practical battery transmitter, and that Prof. Hughes embodied his discovery in an instrument which he was the first to term a microphone
The Court further found that Edison's discovery of the carbon electrode and Hughes discovery of microphonic action solved the problem of a variable-resistance transmitter, whereby speech may be transmitted long distances; and that both these discoveries were embodied in the defendants' transmitters.
The Court further found that claims 1 and 2 of the Berliner patent in suit, although upon their face open to the objection of excessive breadth, may be sustained when read in connection with the specification, provided they are limited to metallic electrodes, but that when so limited the defendants' transmitters do not infringe

For these reasons the Court held that the decree of the Circuit Court must be affirmed on the ground of non-infringement.
Under this decision, as heretofore since Judge Brown's decision, the free use of variable-resistance carbon transmitters may be continued.

A series of experiments was recently carried out at the Altenburg colliery, near Saarbrucken, Germany, with lime, tar, and carbolineum to determine the re spective value thereof as preservatives of mine timber against rot. Lime was found to be of the least value, while coal tar, although insuring perfect preservation of the surface of the timber, failed to protect the interior, which in every instance was found to be seriously attacked by rot. Carbolineum, however, gave excellent results, provided the timber coated had been previously barked and well dried.

Loadug the Six 107-Pound Bags of Powder Into the Breech.

Twenty Men Ramming Home the $2,400-$ Pound Projectile.

Instantaneous Photograph of the Discharge.

Muzzle ot the 16 -Inch Gun, with Sergeant Inside.

The Breech Mechanism, Open.

TEST OF THE 16-INCH ARMY GUN AT SANDY HOOR.

TEST OF THE NEW 16-INCH GUN

Not since the Armstrongs made their nemorable test. with the 16.25 -inch gun, built by them for the British navy, has there been a trial of heavy ordnance to compare in spectacular interesí with the test of the new United States army 16 -inch gun, which was successfully carried out on Saturday, the 17 th inst., at the Sandy Hook proving ground. We use the word spec tacular advisedly; for, although the construction of modern ordnance is a matter of the coldest kind of calculation, and the gentlemen who design the guns have a wholesome horror of sensationalism, the achievements of these, the most potent engines of destruction known in modern life, will always in the public mind be estimated from the sensational stand point.
From the accompanying table it will be seen that the great Armstrong gun is of slightly greater caliber; yet the reader must beware ori making hasty deductions from this fact, and supposing that it is, there fore, a more powerful piece. Diameter of bore is but one of many elements that go to determine the energy of a gun. The strength of the gun steel, quality of powder, weight of projectile, muzzle velocity, each of them has its say in the matter of the ultimate power of the gun; and for these reasons the new army gun is a vastly more powerful weapon than its Armstrong prototype.

Comparing the two guns, then, we find that the new weapon is 6 feet longer over all, $191 /$ tons heavier; that its projectile is 600 pounds heavier; that because of the better quality of powder that has been developed during the inter vening fifteen years since the Arm strong gun was built, the 16 -inch gun requires only 640 as against 96 pounds of powde for a full charge but that with this smaller charge the heavier projectile is propelled with a velocity greater by 219 feet per second, giving a muzzle energy greater by 33,610 foot tons. The di rect test, however of the relative ef ficiency of the two guns is the amount of energy developed per ton-weight of the gun itself, and this for the Arm strong gun of 1887 is 492 foot-tons and for the United States 16 -inch gun 677 foot-tons. As the 16 -inch gun was designed sev eral years ago, we give for purposes of comparison the data of a 12 -inch modern high-velocity gun built by Krupp, with a velocity that brings the energy above that of the Armstrong gun of double the weight.

* In this comparison it must be remembered that the velocity falls off much more rapidly in the lighter shell; so that the ". remaining velocitites ",
will be proportionately greater in the 2400 -pound projectile than in the of the other two.
The test of Saturday served in every particular to establish the accuracy of the calcl'ations on which the construction of the gun was based. Army gun construction has been eminently successfu. from the very first; and while the ordnance experts had no doubt as to the behavior of the gun under trial, there was, as Gen. Crozier, Chief of the Ordnance Bureau, stated before the gun was fired, a certain measure of uncertainty introduced, because of the very size of the gun and the unprecedentedly large charge of powder that
was to be fired. Smokeless powder has shown at times in all countries a somewhat erratic action, and the General, with a characteristic candor, did not hesitate to state that chamber pressures might arise, when the gun was fired, greater than the piece could stand. Hence, at his suggestion, the guests retired to a distance commensurate with their sense of disastrous possibilities, even that war-worn veteran, Gen. Chaffee, not disdaining to take cover behind a neighboring heavy gun. In the process of loading, a 2,400 -pound shell was brought up to the breech on a truck and rammed home by the united efforts of some twenty men on the rammer, fetching up in the lands with a "chug" that made even the 130 -ton mass tremble. The powder was then loaded into the breech in six canvas bags, each carrying about 107 pounds, the last bag having in its center several pounds of fine-grained, quick-igniting powder, to make sure of the ignition of the charge. It should be mentioned here that a special bed of concrete 10 feet deep, 12 feet wide and 30 feet in length had been prepared for the reception of the gun, and the mount used in testing the 18 -inch Gathmann gun, which lay alongside, was bolted to this platform, and proved equal to its heavy duty. Although calculation has been made as a mere matter of interest of the maximum range of the gun at an elevation of over 40 degre ϵ s, no attempt was made to throw a shell to the estimated distance of 21 miles As a matter of fact, the elevation was only about $11 / 2$

THE "GRASSHOPPER" ELEVATOR READY FOR USE.

degrees for the first two, and 4 or 5 degrees for the third round. From the spectacular point of view, the discharge must have been disappointing to those who were looking for sensations. The report lacked the sharpness and angry snap of an 8 -inch or 10 -inch piece, and the concussion was of the mildest. The rush of flame extended perhaps for 100 feet in front of the gun, and the smoke of the ignition charge of black powder mushroomed out and drifted lazily away to the westward. The shell -struck a few thousand yards out to sea, throwing a vast column of spray heavenward and ricocheted, twice, sharply to the righ before sinking below the waves. The first charge con sisted of 550 pounds of powder, which gave a powder chamber pressure of 25,000 pounds to the square inch and a muzzle velocity of 2,003 feet per second. The second charge of 640 pounds raised the chamber pressure to 38,000 pounds and the muzzle velocity to 2,306 feet per second. The third shot, because of the elevation of the gun, passed clear of the velocity screens and no velocity was taken. In his address before the firing of the gun, Gen. Crozier stated that the calculated pressure of the maximum charge was 38,000 pounds, and the maximum velocity 2,300 feet per second; so that, considering the unprecedentedly large charge of powder employed, the results were remarkably close to the estimate.
In connection with the firing of the 16 -inch gun the party of visitors was treated to a display of high angle firing from a 7 -inch mortar. On account of the
low muzzle velocity, it was possible for the eye to follow the mortar shell in its skyward flight, and it could be heard singing its weird note long after it become invisible. The shots fired from this gun rose to a height of two miles before dropping into the sea. Owing to the low temperature of the atmosphere, the course of the shell was marked by a fine streak of what looked like mist, caused by the condensation of the moisture in the air by the rapid passage of the shell. The second shot fired from the mortar was one of the new torpedo shells containing 120 pounds of the deadly high explosive maximite. Although on test this explosive has proved to be insensitive to shock, the guests were recommended to drop behind the bomb-proofs, since accidental detonation within the gun would have thrown the scattered fragments with high velocity in every direction. As it was, the shell dropped about two miles away, but owing to the failure of the delayed-action fuse, it did not detonate. We take this opportunity of acknowledging the courtesy of Maj. Rogers Birnie, Maj. Charles S. Smith, and Col. J. P. Farley, extended on many occasions during the construction of the gun and in the recent Sandy Hook tests.

A NEW DERRICK OR "GRASSHOPPER" ELEVATOR FOR UNLOADING GRAIN FROM VESSELS.
The question of facilitating the transshipment of grain from the hold of a transat lantic freighter into lighters in the docks has resolved itself into one of the most im portant engineering problems of to-day, especially when the immensity of the traffic is recollected. There are several meth. ods for the ac complishment of this work in exist ence, but in nearly every instance the initial cost of the plant, together with the heavy expense involved in its mainte nance, militates against its wide spread use.
An important development has been made by the introduction of the "grasshopper," or as it is techni cally called, the derrick elevator now in use by the London Grain Elevator Company a the London docks This machine, although it possesses a somewhat com plex appearance as may be gathered by reference to our illustrations, is in reality in its working arrangements sim plicity itself. It has been specially designed for transshipping the corn from the holds of the larges types of American liners engaged in the grain trade such as the "Minnehaha" and her sister ships of the Atlantic Transport Line, into lighters, for conveyance to other coasting vessels or warehouses. It is the joint invention of Mr. A. S. Williams, of the Atlantic Transport Steamship Company, Capt. W. K. Browne (manager) and Mr. A. H. Mitchell (engineer) of the latter company, and the experimental elevator of this type, which has been submitted to prolonged and ex acting tests, was specially built by Messrs. Spencer \& Co., Ltd., the well-known English granary engineers of Melksham (Wilts), to whose courtesy we are in debted for permission to reproduce the illustrations to this article

This derrick elevator consists essentially of fou parts, viz.: (1) the pontoon; (2) the traveling car containing the engines of the various driving motions (3) the structure supports, shear legs, lattice girders and (4) the trunk which is lowered into the grain in the vessel's hold.

The pontoon is built of steel, and measures 75 feet in length by 24 feet beam and 8 feet draft. It is perfectly square at the iow, to enable it to be brough close up to a vessel's side and to remain there. The steel deck is specially constructed of braced steel girders, to afford a secure and rigid bed to the rails which
are laid upon it, extending from bow to stern, and upon which travels the trolley actuating the elevator itself. The rails are laid at a 7 -foot gage. In the stern are placed two boilers of the vertical type, one only being requisite to supply the steam for the en gines, the second boiler being held in reserve. The coal bunkers are placed amidships. If necessary, the pontoon with its elevator can be made to travel from one point to another under its own steam, the pontoon being provided for this purpose with a small marine engine driving twin propellers. The remaining space in the hold contains a quantity of ballast to insure stability.

The car or trolley is a massive construction of steel girders about 17 feet in length by 9 feet wide, sup ported upon six pairs of steel wheels. It has a travel along the deck of approximately 36 feet and is propelled backward and forward by means of a pair of steel wire ropes, which are fastened at each end of the pontoon and to barrels on the trolley. These drums are driven by steel worm gearing and friction clutches The engine, which is in the center of the trolley, is of the twin-cylinder vertical type, developing 30 horse power on the brake. Steam is supplied to the engine from the boiler placed in the stern of the pontoon through special flexible piping, the connection being made to the center of a large revolving drum, which has special steam glands and stuffing boxes so arranged that as the trolley moves in either direction, the piping is automatically coiled or uncoiled on the drum, which is driven by spur gearing from the crank shaft of the engine. Upon trunnions near the forepart of the trolley the large lattice girder is carried, and running through these trunnions is the main shaft for driving the conveyor and elevator gearing. In front of this is the gearing for raising and lowering the main jib and also the gearing for lifting the elevator trunk to vertical position. A foot plate is provided behind the engine, and all the various clutches and winding gears are worked by levers from here; and by means of an interlocking system the engineer in charge of the apparatus has complete control over each and every move ment, and any possible combination of the various mo tions can be worked instantaneously and with perfect safety. The trolley is protected from the weather by a steel covering which has been removed for the pur pose of our illustrations.
The structural supports consist of a lattice steel girder back leg, and two pitch pine shear legs in the bow, one on either side. The back leg is about 50 feet in height when raised, built up of steel angles and flats, and both this and the front shear legs are connected together at the top by a massive steel pin and collars. The back leg being hinged to the trolley and the fron legs on the deck of the pontoon, all these parts have an easy action and can be raised to any angle, while it also allows perfect freedom of movement of the trolley backward and forward along the deck.

Our first illustration shows the elevator "housed" or closed up ready for transit to any desired destination.

About a third of the way from the top of the back leg is hinged the main jib, which fulfills the purpos of supporting the trunk of the elevator at its outer end. Along the upper surface of the jib travels an endless band, upon which the grain after its extraction from the hold is carried on its way to the lighter lying beside the pontoon. Upon the other side of the main girder, and just below the main jib, is a steel canti lever, projecting over the stern of the pontoon, and at its other end are two long shoots at a declined angle. Along the upper surface on this cantilever an endless conveying belt is fixed, terminating at the spouts through which the corn is discharged into ighters moored on either side of the pontoon. At the fork of these spouts valves are fitted, so that the flow of the grain can be regulated and discharged through either, or both, of the spouts, as may be desired.
The elevator trunk, which is lowered into the ship's hold, is built up of steel angles braced together and covered with steel sheeting. There are double chain wheels in the head of the trunk, with specially con structed steel chains, each of about 28 tons strength to which are attached steel buckets. The latter are of a very ingenious design, being arranged upon the Spencer system. The feature of this equipment is that the buckets are fixed quite close together-not with short interval between each, as is the general prin ciple of such construction-and so built that the back of one bucket acts as the shoot for the grain in the next bucket. The advantage of this system is that when the buckets travel over the head, a steady, continuous flow of grain is obtained; the speed of the chains is moderate; and the vibration is reduced to a minimum. The grain as it is discharged out of the buckets at the head of the elevator trunk falls through a telescopic shoot connecting the latter with the traveling band conveyor supported by the main jib already described. The trunk has a vertical range of 18 feet, rising and falling in a vertical slot by means of wire ropes connected up to the winding gears on the trolley, the fulcrum being the crown of the back and front
shear legs, as may be seen from our illustration. When at the maximum height the head of the elevator is 90 feet above the water level. The total length of the elevator trunk being 53 feet, this gives a clear heigh of about 40 feet between the water and the bottom end of the elevator, thus allowing it to be carried over the coamings of any ship even when lightened.
very comprehensive idea of the range of action of the elevator in this connection may be gathere from the fact that in one test it was lifted over th hulwarks of a ship 30 feet 6 inches above the water lowered into the hold to a depth of 43 feet, and set to work in seven minutes, the grain actually being discharged into lighters alongside within that time.
Our first illustration will show how compactly th vessel is housed when not in use. The trunk is lying flat upon the deck, and the delivering shoots are folded in, so as not to project over the sides of the pontoon To raise the trunk, the wire ropes connecting the head of the trunk with the apex of the shear legs are hauled in, the trolley simultaneously moving toward the fron of the pontoon, the result of such combined action being that the head of the trunk is lifted off the deck and is raised until the bottom end swings freely through the front shear legs. The position of the latter when the elevator is housed is at an angle of approximately 35 elevator is housed is at an angle of approximately 35
degrees to the deck, but when raised as in our second illustration, they are nearly vertical. As the machin is swung into working position, the other parts of the apparatus open out slowly, and the shoots extend out ward, so that the open the barge to be loaded with grain
To bring the elevator into action, the main jib is hauled in, while at the same time the end of the jib moving in the slot in the side of the trunk travels to the lowest extremity of the slot, with the result tha the trunk is raised to a considerable height in the air, and rests in vertical position in front of the shea legs. The pontoon is then brought bow against th grain vessel's side-its square nose gives it a good purchase against the ship's hull, to supply rigidityand the trunk being above the deck is lowered, by letting down the main jib, into the hold of the vessel in the manner illustrated in the third photograph where, by the way, the elevator is shown in use, the wheat being delivered from one spout into a lighter lying alongside the pontoon.
The maximum capacity of the elevator at present in use at the London Docks is 150 tons per hour, and in actual work an average of 136 tons per hour over a period of six hours has been attained. This latter speed of course includes trimming in the ship's hold Naturally the rate of discharging decreases when the elevator has automatically descended to the bottom of the ship, owing to the hole that is caused by the with drawal of grain immediately below the trunk; but when the elevator is descending through the bulk of grain, a speed of 150 tons per hour is easily main tained. Hand trimming is not sufficiently rapid to enable the machine to continue working at its maximum capacity, but Messrs. Spencer have devised an electric plow, which feeds the trunk adequately to en able the fuilest delivery speed to be continued
From our illustration of the derrick elevator in position ready for use it might be presumed that it is both weighty and topheavy, but such is not the case. It total weight is only 30 tons, while it is so carefully balanced that even when the jib and trunk are lifted to their maximum height, the center of gravity is only 25 feet above the deck of the pontoon. Even when in the position shown in our second illustration it may be moved from one point to another without an apprehension being entertained as to.its safety. This careful balancing may be realized by comparing our first two photographs. In the "housed"'position the pontoon is a little down at the stern, while when the elevator is raised, the pontoon is down at the bow to pproximately the same extent. The derrick elevator which was only constructed for experimental purposes has proved so successful, and possesses so many advan tages over the other systems at present used for unoading grain, that additional elevators of this type and of larger capacity are to be constructed immed iately.

the heavens in february
 by henry norris russell, phd

There are many nights at this season of the year which, though perhaps the most brilliantly clear that we ever have, are practically useless for most astro nomical purposes. They are usually marked by a sudden fall in temperature and a high wind, and may always be distinguished at a glance by the conspicuous and violent twinkling of the stars. One look through a telescope on such a night shows what inter feres with observations. The image of a bright star i enlarged into a blurred and unsteady mass, which annot be brought to a sharp focus. With a larger object-the moon, for instance-the whole area is seen to be "boiling"-that is, trembling like a land cape seen across a broad stretch of hot ground on summer day-and all but the coarsest details are in
visible. In such weather few observations can be made with profit except those of comets and nebulæ which have no sharp outlines, but, being faint, are best seen on clear nights.

The explanation of this "bad seeing" is easy to understand. Every one knows that atmospheric air refracts the light which passes through it just as all other transparent bodies do, though in a relatively small degree. The refractive power of air depend upon its density, which is never quite uniform through any considerable region of our atmosphere, and is farthest from being so on just such nights as we have described, when different layers of air, unequally cooled, are mixed together by the wind.
The rays of light, proceeding from any given star, which reach different parts of the object-glass of a telescope, having passed through portions of air of somewhat different density, will be refracted in slightly different directions. Consequently they cannot all be brought to one sharp focus; and, as the wind carries new streaks of denser or rarer air across the line of sight, the blurred image will dance about and change its form.

The twinkling of the stars, as viewed by the naked eye, is due to the same cause
An interesting confirmation of this theory may be obtained by viewing a screen illuminated by the light of Sirius, in the way described in the last article of this series. When one's eyes are sufficiently accus tomed to the darkness, it is easy to see-at least on a night when there is much twinkling-that the star's light is not uniform, but that the screen is crossed by vague flickering alternations of light and shade, which are usually in rapid motion. These are "shadows" of the regions of varying density in the air. They move fastest on windy nights, and on calm nights when the air is steady they almost disappear.

It should be remarked that it was predicted by Prof. Young that a screen illuminated by a twinkling star would show such a phenomenon, many years be fore the writer succeeded in observing it.
Similar flickerings can be observed in the light of a few other stars, but with great difficulty on account of their faintness. It is highly probable that the "shadow bands" seen just before and after total eclipses of the sun are phenomena of the same character.
Another observation of some interest, that can be made while studying starlight in this way, is the comparison of a red and a white star. Alpha and Beta Orionis are well suited for the purpose. It will be found that the illumination of the screen produced by Alpha Orionis is very much fainter than that due to Beta, although the former is now the brighter of th two to direct vision. The reason for this is that, in the case of very faint light, the eye is sensitive to the green part of the spectrum alone.
We need not linger long over the description of the constellations. At 9 P. M. on February 15 Sirius is almost due south. Above him are Procyon and Castor and Pollux, the last near the zenith. Canopus can be seen on the horizon below Sirius from points south of Washington.
Orion, Taurus, and Auriga lie to the west of the meridian, Eridanus and Pisces in the southwestern sky, and Perseas, Aries, and Andromeda in the wes and northwest.
Leo is the only conspicuous group in the east, though most of Hydra and part of Virgo have risen. Ursa Major is high in the northeast, Cassiopeia on a level with the pole in the northwest, and Cepheus and Draco low in the north.
the planets.
Mercury is in conjunction with the sun on the 2 d and becomes a morning star, in which capacity he may be well seen toward the end of the month. On the 27 th he is at his greatest elongation, and rises about an hour earlier than the sun.

Venus is evening star in Aquarius, and is becoming increasingly conspicuous. At the end of the month she sets almost two hours after sunset.
Mars is in Virgo, and is rapidly brightening as he approaches opposition. He rises at about 10 o'clock on the 15 th .

Jupiter is in conjunction with the sun on the 19th, and is consequently invisible
Saturn is morning star, having passed conjunction last month. He rises two hours before the sun on the 28th.

Uranus is also morning star, and rises about $4 \mathrm{~A} . \mathrm{M}$. on the 15 th

Neptune is evening star in Gemini.

the moon.
First quarter occurs at 5 A. M. on the 5th, full moon at 8 P . M. on the 11 th , last quarter at $1 \mathrm{~A} . \mathrm{M}$. on the 19 th, and new moon at 5 A . M. on the 27 th . The moon is neares i us on the 10th, and most remote on the 22 d . She is in conjunction with Neptune on the 8 th Mars on the 15th, Uranus on the 21st, Saturn and Mer cury on the 24 th, Jupiter on the 26 th, and Venus on the morning of March 1. None of these conjunctions are close.

London, January 1, 1903.

daxxeaprondente.

To the Editor of the Scientific American:
In comparing the United States navy, ship for ship with those of other powers, I have been greatly im pressed with the superiority of the American design over that produced by foreign rivals, until coming to the semi-armored or heavy protected cruiser type; here, on a smaller displacement we have been far outdone by several foreign designers, notably the Arm strongs. To substantiate my argument, let us com pare, point for point, the cruisers "Charleston" o our own navy, and the "Esmeralda" of the Chilean navy. In the first place, the "Esmeralda" has been in conrrission for six years, while the "Charleston" has not as yet been launched; so one would naturally look for a marked improvement in the design of the latter. Such, however, is not the case.
In your issue of December 22, 1900, there appeared a tabular comparison of the "Charleston" and the English "Monmouth," which, when summed up, shows no marked superiority on either side. Instead of using the "Monmouth" as a basis of comparison (English ships being notably under-gunned) let us take the "Esmeralda," and we have the following results:

	"Charleston."	"Esmeralda."
Length on load waterine	424 feet	${ }_{4} 36$ feet
Bcam, extreme	66 feet	53 feet
Draft	23 feet 6 inches	21) feet 3 inches
Displacement	9, 0 03 tons	\%.000) tolus
Coal supply $\left\{\begin{array}{l}\text { nornal } \\ \text { maximum }\end{array}\right.$	6:5) 1,50 tons 10	5:50 tons 1,350 tons
Speed	22 knots	23.05 knots
Complement	564	500
Date of completion	1896	
photection.		
"Charkeston.		" Esmeralda."
4 -inch belt 197 feet long by $71 / \mathrm{fect}$ wide		
21/-inch deck protection to vitals:-iveh bulkheude		2 -inch deck
		(i-inch bulkheads
Upper and lower casemate armor 4 inches 4 -inch protection to 6 -inch guns		
Conning tower and shield	5 iuches	4142-incla shields
3 -inch hoiste		41/2-inch hoists
4 -inch signal tower		
Fourteen G-inch	armament.	Two 8-inch
Eighteen 3-inch		Sisteen 6-inch
Twelve 3-pounder		Eight 3-inch
Twelve 1-pounder		Nine 6-pounders
Two 3-inch field gume		Two 3-pounders
Two Catings		Eight Maxims
Eight Colts of 0.30		
Torpedo tubes, nii		2 submerged

From this table the immense superiority of the "Esmeralda" is at once apparent, for on a displacemert of 7,000 tons, which is 2,700 tons less than that of the "Charleston," the Armstrongs, of Newcastle-on-Tyne, England, have produced a vessel of greater speed, better protected, and far heavier armament. The same is true, as pointed out by the Scientific Ameri Can of September 2, 1899, in regard to the "Denver" and "New Orleans" classes.

Besides other considerations, the important fact must be borne in mind that several years after completion the "Esmeralda" made a sea speed of over 21 knots, and that easily; whereas, there is the possibility that the "Charleston" may not make her contract speed of 22 knots.
n addition to her regular armament, the "Esmer alda" carries three torpedo tubes, two of which are submerged, while the "Charleston" has none, and judging from the accounts of the German-American war game now being played in England and reported in your valuable Sipplemeit, the torpedo would play a very important part in a modern naval engagement.

While the coal supply of the "Charleston" is greater by 150 tons than that of the "Esmeralda," yet thi slight difference does not compensate for the 2,700 tons greater displacement of the former.
Apropos of the above discussion, an expression of opinion in your columns as to whether American designers are keeping pace with their foreign competitors would be greatly appreciated by several of your readers of my acquaintance.

Daniel M. Coffin, Jr.
New York city. January 5, 1903.
[At the time of her launch the "Esmeralda" was the most powerfully armored cruiser, for her displacement, afloat, and she undoubtedly shows up well in comparison with our own new "Charleston." But it must be remembered that the 6 -inch guns of the "Charleston" are about 20 per cent more powerful than the older type guns of the "Esmeralda;" and as a further offset against the more numerous battery of the "Esmeralda" the American boat carries most of her 6 -inch battery behind side armor, whereas, tue "Esmeralda" carries her guns in the open. Furthermore, her 4 -inch side armor is carried right up to the main deck. Beyond her waterline strip the "Esmeralda" is unarmored. An exact comparison cannot be made until the ammunition supply, the facilities for supplying it to the guns, the nature and protection
of the ammunition hoists, the accommodations for the crew, and many other elements of design, not given in the table above, are stated. We never considered that the "Charleston" type was very creditable to our naval designers-not at least in the degree that the "Connecticut" and "Tennessee, are. The omission o under-water torpedo tubes is to be regretted.-Ed.]

Shop Practice as viewed by an old subscriber

To the Editor of the Scientific American:
In reply to your inquiry in the Scientific American concerning "Our Oldest Subscriber:"
When I was about five years old, fifty-three years agc. I began to be interested in the pictures in your paper, which was taken by my uncle, Milton E. Worrell, of the machine company of Worrell \& Caldwell, of Quincy, Ill. I believe he informed me he sub scribed for it in 1847, soon after it was founded. don't know how long he continued to do so, but he still takes much pleasure in reading them, although eighty years of age
I commenced to read the Simentheic Amemosan at the age of eight, and became a subscriber foui years later in 1858, and continued until 1899-forty-one years; since which I have secured it either from the newsdealer of from our city library. I don't believe I have missed reading a single issue for fifty years

Besides being the most popular mechanical paper printed, I consider it the best educational journal; my wife, daughters, and son read it with nearly as much interest as I do.
I would like to call your attention to the fact that my uncle, mentioned above, is in some respects a re markable man. At the age of eighty, with hair and beard as white as snow, he is the oldest machinist in the employ of the great Chicago, Burlington \& Quincy Railroad system, and runs their big $\$ 10,000$ planer with four cutting tools at their shops in West Burlington, Iowa, and has not missed a day's work from sick ness in ten years.
About five years ago this machine cut off three fingers of his right hand, and he certainly supposed this seri ous accident would let him out of his job. While he was laid up for repairs the superintendent tried two younger men on his planer without satistaction, and put him back to work as soon as possible.

He has sufficient property to support him without manual labor, but he is discontented when idle, and proposes to hold his job as long as he is able to give the company satisfaction.

I would explain that he and his partner, William Caldwell, started a small machine shop in Quincy, Ill., about 1843, which gradually increased in size until the beginning of our civil svar. when they employed nearly 75 workmen and turned out flour mills com plete from the grate bars to hopper boy. They were bankrupted chiefly by their rebel debtors in Missouri.

How things have changed in iron works since then! Now it requires about fifty different establishments to fit out a complete mill; everything has run to specialties, one concern makes the boilers, anothe the engine, another the shafting, another the pulleys and so on-down to the pet cocks for draining the water pipes.

And what a revolution in tools and shop practice! In those days all our lathes had timber frames. We had no planers out here; all our flat surfaces, such as engine slides and steam valve faces, had to be chipped filed and scraped, requiring a terrible amount of skilled manual labor.
Nor had we screw cutters; all bolts up to one inch being cut by hand, and the larger sizes in the lathe. We had no apprentices, simply "cubs," who started at $\$ 1.50$ per week cutting screws, chipping castings smearing finished work with pitch paint and similar light and cleanly labor. At the end of a year he was proud to be advanced to the drill press and common bench work and fifty cents per week increased com pensation. Next year he was given plain lathe work at $\$ 4.50$, and in the fourth year, if he could skillfully run two lathes at once, he was considered to have served his time and was allowed from $\$ 7$ to $\$$: per week. Our foreman received $\$ 1.0 .50$, and he was a fine mechanic and a pusher. We had no additional allowance for overtime, and were only too glad to earn some extra money by working all night or Sunday But for all this we were a happy and contented crowd There was a meat shop next door, and we cubs would invest five cents (we had no nickels then) in a poun of rump steak and broil it on the end of a sharp stick at noon over the fire under the boiler; they were not so tender, but barring a few cinders when they dropped in the fire, their flavor seems finer to me now than porterhouse at home.

In those days a "jour" machinist was slilled in all the science and could capably fill almost any position in any shop; but how different now! I am of the opinion that this specialty and piece work is working the ruin of our trade.
We have a large new model railroad shop here, employing about two hundred men entirely on piece work.

This new style possibly cheapens the cost of common work, as the laborer, who can hardly be called a mechanic, rushes through his pieces simply with the view that they will pass inspection without regard to honest and careful finish, which should be the pride of a cap able journeyman.
Besides, this plan is but poor inducement for our sons to enter the trade, where they may be kept at the same job all their lives without any chance of promis ing advancement.

Hannibal, Mo., January 5, 1903.
S. E. Worrell

The Explosion of Stars.

To the Editor of the Scientific Americas
In my letter in the Sciextific Americas of July 12, 1902 , on the explosion of stars I stated that the phenomena such as hud been observed in Nova Persei and Nova Aurige and other stars had been anticipated more than a score of years ago by Professor Bickerton of Canterbury College. It may interest some of your readers who have not read the "Romance of the Heav ens " to know how a grazing impact of two stars must give rise to an explosion. In such an impact the parts standing in each other's way would be swept from the stars and would coalesce and produce an intensely heated mass, and as the temperature would not depend on the mass cut off, it would be exactly the same whether the tenth part or a third be cut from each body; if a small portion is cut off it would be too hot to be stable, and would continuously expand until it became a planetary nebula. A small body with a velocity of one and a half miles a second if shot from the moon. would leave it entirely, but it would take seven miles per second for such a body to leave the earth, and three hundred and seventy-eight miles a second to leave the sun.

Heat is the motion of a molecule, and the motion of the molecuies of such an impact will average a few hundred miles a second; but hydrogen at the same temperature would move about ten times as fast as the mean of other molecules. Clearly, it would move fast enough to escape the coalesced fragments of the two stars. It may readily average many thousand miles a second, and this should be the pace at which the nebula will expand.

This idea of the formation of a new body by the coalescence of the two grazed-off portions, while the two stars pass on in a scarred condition, is very full of power in the explanation of celestial phenomena. The two wounded suns would obviously rotate and produce a pair of variable stars, and it is a remark able fact that many variable stars are to be found in close pairs. As the graze of the stars becomes deeper and deeper new phenomena ensue, and there are very $\mathrm{f} \in \mathrm{W}$ celestial bodies whose genesis cannot be shown to have arisen in impact of some kind or other.

James R. Wheinsoy
Christchurch, New Zealand, Nc.vember 16, 1902.

German Substitute for Celluloid.

The extensive commercial use of celluloid has caused a great many people to try to find substitutes for, or im itations of, it. In Coburg, a popular imitation has been made by dissolving in 16 parts-by weight-of glacial acetic acid, 1.8 parts of nitro-cellulose, and add ing 5 parts of gelatin. Gentle heating and stirring are necessary. After the mass has swollen, it is mixed with 7.5 parts of alcohol (96 per cent), and stirring is continued. The resulting product is poured into molds, or, after further dilution, may be spread in thin layers on glass. As an underlay for sensitive photographic films, the material has important advantages, not the least being that it remains flat in developing.

James Edward Allen Gibbs, the inventor of the sewing machine which bears his name, died recently at his home in Raphine, Rockbridge County, Va. Paralysis was the cause of death. He was born on August 1, 1829. While a young man, the subject of the sewing machine was called to his attention while on a short business trip connected with the erection of some mill machinery which. his father had manufac tured, and on his return home he thought out the idea of the revolving hook which is the main feature of the Willcox \& Gibbs machine. In all he took out twelve patents covering the sewing machine. The village in which he resided was named by him when he returned to it in middle life. The name is from the Greek word which means "to sew."

The greatest and most modern armor plate press in the world has been received at the new works at Home stead. It was built at the Bethlehem Steel Works. The plate has a capacity of 60 tons: and is capable of pressing into shape the heaviest plates expected to be sperified by the Navy Department. Some of the bolls of the press weigh as much as 40 pounds each.

THE LANDING OF THE HONOLULU END OF THE PACIFIC CABLE.
With the salute of a hundred guns, the cheering of thousands of Hawaiians, and the reading of the President's message of congratulation and goodwill, the completion of the first section of the American Pacific cable was celebrated at Honolulu. The event was perhaps the most important in the com mercial history of the isllands, for with it they entered into the larger life of the outer world.

From a purely business point of view, it is only a very few years since the establishment of a cable between Honolulu and San Francisco has been re garded as worthy of consideration. Until the recent development of trade with China and Japan, any one who advocated a submarine telegraph cable in the Pacific Ocean had an opportunity of learning what a forlorn hope is like The Atlantic Ocean had its telegraph cables, which came into existence because there was husiness

Cable-Day Celebration at Honolulu. Firing a Hundred Guns While the President's Message Was Read.
in business interests with Hawaii that its public men were always ready to urge upon their delegation in Congress the passage of cable bills. But neither in Honolulu nor at the coast was capital ready to embark in the enterprise. Last winter, after fruitless efforts by the Commercial Pacific Cable Company to secure an enabling act from Congress for its able, authority was again sought to lay the cable. Then President Roosevelt vigorously cut the Gordian knot and gave the long sought permission under certain conditions
The company undertook to complete the line to Manila in 1904. In all probability it will be finished by the fourth of July next. But it is not the intention of the company to stop at Manila. Realizing the immense importance to Americans of cable connection with China in view of the "open door" and of the immense trade waiting in that coun try for the United States in general and for California in particular, arrangements have been made to

The Ceremonies When the Landing oi the Cable Was Celebrated.

Sending the President's Message

The House Where R. L. Stevenson Did Much of His Writing. Situated About 25 Feet From the Cable.

Celebrating the Landing of the Cable in the Palace Grounds of Honolulu.

The Frankiin Air-Cooled Ruadster.

The Franklin Four-Cylinder Motor.

Panhard Family Protected Touring car

The Pan-American 20-H. P. Touring Car.

Orient Buckboard Mutor Vehicle.

The Buckboard Motor and Fan Cooler.

The Centaur Electric Runabout.

A Mercedes Touring Car with Surrey Top.
extend the cable from Manila to Shanghai. Of the exent of this great work some opinion may be formed when it is considered that the length of the cable will be three and one-half times longer than the Atlantic be three and one-half times longer than the Atlantic
cable. The whole length of the line will be about 10,000 nautical miles.
Some account of the actual work of laying the cable should here find a place. The telegraph steamship "Silvertown," which laid the cable from San Francisco to Honolulu, is the first ship that was built expressly for cable work. When launched she was the largest merchant ship afloat with the exception of the "Great Eastern." Upon this trip she carried 2,413 nautical miles of cable, weighing 4,807 tons, her total weight being between 6,000 and 7,000 tons. She left Portland on the English coast September 23, 1902, steamed 1,720 miles to Teneriffe, and then 900 miles to St. Vincent Here she made a short stay to secure coal and fresh water. Then she made her longest run between coal ing ports, a distance of 6,180 miles, from Teneriffe to Coronel, Chile, and thereupon proceeded to San Francisco. The value of the vessel, her cargo, the loss which would have resulted from disasters, made her a tremendous commercial risk. Throughout the voy age constant tests of cable were made. A man sitting in the testing room of the vessel could send a mes sage to himself through over 2,000 miles of cable lying in the same vessel's hold. On September 4 the "Silver town" arrived at San Francisco. She took on coal and supplies, laid the shore end of the cable at that point, and left for Honolulu at 2 o'clock on the morning of the 15 th instant. She arrived off the islands on Christmas Day, and at about 2:30 o'clock on the morning of the 26 th of December, buoyed the cable during a heavy gale at a point about thirty-five miles from Honolulu.
On reaching the place selected for the landing of the cable, the ship approached as close to the shore as possible. A couple of spider-sheaves were sent ashore, and fixed by sand anchors some 60 yards apart. Hauling lines were payed out from the ship, reeved through the sheaves, and brought back on board again. One end of this continuous line was attached to the cable, and the other to the picking-up gear. The engines were then set in motion, and the cable was dragged slowly out of the ship toward the shore. As it went, large India rubber buoys inflated with air were lashed to it every 50 or 60 feet to keep it afloat and to prevent the damage which would result from its being dragged along the bottom.
When sufficient cable was landed, the piece on shore was laid in a trench which ran from low-water mark to the cable hut; the end was inserted through a hole in the floor, and testing and speaking instruments were set up in the hut, which was occupied night and day during the laying by the electrician in charge and is assistants.
The laying of this American Pacific cable may be attributed to the untiring energy of the late John Mackay, who turned his attention to the Pacific after his achievements in the Atlantic. He.foresaw an American cable must be laid sooner or later in the western waters. Still, he was not the first in the field. As far back as 1874, a Pacific cable from the States via Honolulu to Japan had been proposed, and in that year the "Tuscarora," U. S. N., under the command of Captain, now Admiral Belknap, surveyed the route. In. 1879 Cyrus Field, whose name figured prominently in connection with the first Atlantic cable, renewed the Pacific scheme, but nothing more was done till the "Albatross" and "Thetis," U. S. N., were commissioned in 1891-92 to survey the route between San Francisco and Honolulu. This survey resulted in the valuable report drawn up by Commander Richardson Glover, then hydrographer of the United States navy. Three more years passed before the Senate voted $\$ 500,000$ for the laying of this section, but the measure failed to pass in the House of Representatives. The steamer "Nero," U. S. N., surveyed the route between Honolulu and Manila in 1899. On the ratification of peace with Spain, President McKinley addressed a message to Congress, directing attention to the imperative necessity of speedy communication with the Philippines via Hawaii and Guam. "The present conditions," he said, "should not be allowed to continue a moment longer than is absolutely necessary.'
The project, however, hung fire, and might to-day have still been as far as ever from accomplishment, if Mr. Mackay had hot taken the bull by the horns, and offered to lay the cable without any subsidy whatever from Congress. T hius to the enterprise of a private individual, and not to their government, will Americans owe the enormous advantages of telegraphic communication across the Pacific.

New Comet Discovered.

Another new comet has been discovered by Prof. Giacobini of the Nice Observatory. Like the one he discovered at the end of 1902, the newcomer is a telescopic comet, but is of the tenth magnitude instead of the twelfth. It is now moving slowly through the constellation Pisces in a northeasterly direction.
the third annual automobile show.
The Automobile Show of 1903 may be said to be an unqualified success, most instructive as an exhibit of the many improvements made within the past year, and remarkable in showing the rapid growth of the automobile industry. The exhibition opened on the evening of January 17, at Madison Square Garden, in this city, and closed on the 24 th . The daily attendance was very large and exhibitors, as a rule, were fortunate in doing a good business.
The great hall of the building was crowded with magnificently finished vehicles, and at night the num erous electric illuminated signs produced a brillian effect. The prevailing type was the gasoline-propelled vehicle, modeled generally after the foreign tonneau form, though here and there were new shapes distinct ively American in their idea. With each group of vehicles it was usual to show an example of the run ning gear and machinery by itself, in order that the working parts could be readily understood and examined. In many cases aluminium bodies are substituted for wood, molded in graceful lines, rendering a vehicle more fireproof in case of accident. The ex pensive tonneaus are richly upholstered with high back seats, and a special drop-down seat is arranged on the rear entrance door. They arè very roomy and comfortable. Very long wheel bases also seem to be the rule. The upper illustrations show that this idea is taken from the American buckboard, for it is a gascline-propelled buckboard weighing but 350 . pounds, having the air cocled flanged 4 horse power motor on the rear axle, with a special rotary incased fan to project a current of air upon the valves and explosive chamber at the top of the cylinder. The speed is varied by a throttle and spark lever. It has a wheel base of 6 feet 8 inches. The Orient is made by the Waltham Manufacturing Company, of Waltham, Mass., and certainly presents a very simple and attractive appearance for practical work. A somewhat more substantial vehicle of the same type, called the "Buckmobile," was exhibited in the basement.
Another form of an air-cooled motor, and one that .went through the New York and Boston endurance test successfully, is the Franklin four cylinder roadster, of which we give two illustrations. In one a view of the cylinders and machinery is given. The interior size of each cylinder is $31 / \pm$ inches, and the ports and valves are readily accessible. All portions are well balanced and jarring is avoided, since there is an explosion at every fourth part of a revolution. At 1,000 revolutions the car travels at the rate of 20 miles per hour, and a rate of 30 miles can be attained.
The four cylinders, aided by a large flywheel, give a very constant torque, and allow of such effectual throttle control of the motor, that but two speeds ahead are needed. The ignition outfit consists of an Apple dynamo, driven from the flywheel by a bevel friction pulley, and two cells of storage battery. But one spark coil is used, the secondary current being switched to the proper spark-plugs by means of sectors on the two-to-one shaft that carries on its end the commutator for primary current. The advantage of an air-cooled motor of this kind without auxiliary cooling appliances is self-evident.
We illustrate two new styles of covered gasoline tonneau machines for touring purposes, one exhibited by the Locomobile Company of America after the French tonneau "Limosine" style of aluminium body, inclosed with glass windows and a glass front.
Another Mercedes gasoline Panhard pattern exhibited by Smith \& Mabley has a luggage space on top inclosed by a wire network. The front pane of glass ahead of the driver may be turned up and suspended from the underside of the top. In rainy weather the open sides may be closed with curtains. Of the closed variety of gasoline vehicles the most interesting was an Oldsmobile brougham which resembles a miniature cab and is manipulated from within. It has a bow glass front with side doors and room for one person in the rear and one in the front. It is intended as a closed carriage for stormy weather, a desirable vehicle for physicians and others. Another of our illustrations is of the Centaur lightweight electric runabout manufactured by the Centaur Motor Vehicle Company, of Buffalo, N. Y. It is a substantial vehicle of its character, supported on four springs and is propelled by 14 cells of "Exide" battery. The motor is hung under the center of the body, a sprocket chain conveying the power to the rear axle.
The different speeds are obtained by paralleling the fields of the motor as well as by the usual battery connections. The usual 40 -mile radius is obtained.
The lightest weight electric runabout exhibited was that shown by the Electric Vehicle Company, which weighed less than 1,000 pounds and has the batteries in a box suspended underneath the body. This machine has also a specially designed controller. The same company also showed a new physician's brougham operated from within, and a new model hansom, with large wheels and under-slung battery.

The National electric runabout with thirty-six $125-$ ampere-hour cells of Pumpeliy battery, is guaranteed to have a 75 -mile radius per charge on good, level roads. Several cells connected together of the improv. ed Edison storage battery were on exhibition, and presented a very neat and attractive appearance. The battery was not in operation, but assembled together to illustrate how it is to look. The statement was made that the six months' actual test of the battery had been most satisfactory and that certain additional trials were now being made in'this city on delivery wagons, after which it would be ready for the general public in May or June next. The workmanship and general makeup of the battery is very unique and its care will be of the utmost sim plicity. The bright aluminium-colored cell has horizontal corrugations on the exterior tc strengthen the metal sides, but the cover is the most interest ing feature. A spring-hinged rubber plug clamped in position closes the supply aperture and a special miniature poppet valve having a stationary perforated cover protected on the top by a fine Davy gauze wire operates in such a way as to allow the gas to escape during the charging and prevent the solution from coming out. It also prevents the gas in the cell from being accidentally ignited from the outside and there by avoids any possible explosions. The connections are very simple and rest upon the slightly-tapered end at the top of the plate terminal secured by a nut which is held in place by a cotter pin. This enables any one cell to be removed without difficulty. To care for the battery it is only necessary occasionally to fill the cells with distilled water, which is done by the aid of a special funnel having a float gage indicating when enough water has been added
lt was said the battery would take a charge as high as sixty amperes and could discharge readily two hundred amperes at one time. Each cell weighs seventeen pounds and has a voltage when charged of 1.3 volts.

A very handsome combination gasoline electric tonneau vehicle was the Neftel, exhibited by the Ranier Company, of this city. . The usual gasoline engine in front under the bonnet operates a generator hung under the center which supplies current to two motors under the rear and also charges a battery hung under neath. The engine is started automatically by the pressure of a button or lever, and the operation of the machine is controlled after that precisely as an electric vehicle. The complicated transmission gear of the regular gasoline machine is thus avoided.
Located in the northeast part of the hall was the latest type of the Stevens-Duryea gascline machine, equipped with a perfect working engine and appliances for starting and transmission gear. The venicle has a phaeton top and a special seat in front to accommo date two extra persons if needed. It is regarded a a powerful machine and won the hill-climbing contest at Eagle Rock, N. J. The Pan-American Company ex hibited a very high-powered tonneau machine.

The White steam tonneau exemplifies the latest model in steam cars. The engine that propels it is a double-cylinder compound, having 3 and 5 -inch cylinders, having its crank shaft directly connected to the bevel-gear driven differential by a shaft with uni versal joints. The flash boiler of the car is situated beneath the forward seat. The condenser gives the machine a radius of 100 miles without refilling the water tank. Now that the condenser has been demonstrated a success on the White cars, most of the other rogressive manufacturers of steam automobiles are fitting it on their cars also. The Grout steam ton neau is finished off in front with a miniature cow catcher, which serves to protect the condenser, and at the same time gives the car a locomotive-like appear ance.
In the line of clutches was an electro-magnetic clutch of simple construction exhibited by the Electro-Magnetic Speed Changing Gear Company, and a pneumatic clutch by the Country Club Car Company, of Boston, which for simplicity of operation was extremely inter esting. A small reservoir of compressed air in which the pressure is maintained by every movement of the engine piston at the time of explosion, enables the operator by the slight turn of a valve, the same as the engineer on a locomotive operates the air brake, to operatc one of three pistons and thereby to clutch the engine shaft for any speed desired, or for reversing. Lack of space forbids further mention of numerous other novelties on exhibition.

The Enno Sander prize of the Association of Military Surgeons of the United States for 1903 will be awarded to the author of the best essay on "The Differential Diagnosis of Typhoid Fever in its Earliest Stages." The Board of Award will consist of Dr. Austin Flint, of New York; Colonel Calvin DeWitt. of the Army, and Prof. Victor C. Vaughan, of Ann Arbor. Full information concerning the contest may be obtained from Major J. E. Pilcher, of Carlisle, Pa., secretary of the association.

THE PASSING OF THE HALL OF RECORDS.

New York's old Hall of Records, a relic of pre-Revolutionary days, evil in reputation, and yet dear to every New Yorker who knows anything at all of the colonial history of his native city, is to be torn down, not because of any lack of patriotic feeling, but because of modern necessities.

When erected in 1757 in the "Fields," as City Hall Park was then termed, the Hall of Records was known as the "New Gaol;" as such it took the place of the City Hall, the inadequacy of which for the detention of criminals had become apparent as early as 1724. Originally, the "New Gaol" was to have been two stories in height, and about 50 feet square; but during the process of construction a third story was added, with a cupcla which was used as a lookout for fires.
The jail seems to have opened its doors, or rather shut them, to criminals about 1763. In that year, Major Rogers was confined within its walls for debt. The British troops attacked the jail and liberated all the prisoners. But Rogers refused to be freed in what he considered a dishonorable manner, and so notified the authorities.
For companions, the jail had a cheerful group of old instruments of correc-tion-a whipping-post, stocks, a cage, and a pillory, brought from Wall Street and set up in the "Fields." To these, there was later added the Bridewell was later added the Bridewell
prison, which had a career even more lugubrious than that of the "New Gaol." Clearly, the "Fields" seems to have been architecturally adorned with the grimmest structures that could possibly have been hit upon.

For patriotic Americans, the interesting portion of the "New Gaol's" history may be considered to have been begun with 1770 . On January 16 of that year, the great Liberty Pole riot occurred, during which it is claimed by some historians, the first blood was shed in the Revolution. The immediate cause was a handbill circulated by a Scotchman, MacDougall, one of the leadman, MacDougal, one of the lead-
ing spirits of the Sons of Liberty. ing spirits of the Sons of Liberty.
After a long search he was arrested After a long search he was arrested
and cast into the "New Gaol." Public sympathy was expressed for him in a most remarkable manner. In Holt's Journal, February 15, 1770 , there may be found the following item: "Yesterday, the forty-fifth day of the year, fortyfive gentlemen, friends of a Capfive gentlemen, friends of a Cap-
tain MacDougall, and the glorious tain MacDougall, and the glorious
cause of American liberty, went in decent procession to the 'New Gaol' and dined with him on forty-five pounds of beefsteaks, cut from a bullock forty-five months old." The cabalistic number forty-five was selected because MacDougall's case was so similar to that of John Wilkes, who was imprisoned in England for a famous article on individual liberty, printed in vidual liberty, printed in
number forty-five of the number forty-f

In sight of the "New Gaol" Alexander Hamilton drilled his artillery company, and the Declaration of Independence was read of Independence was read
by the Commander to the by the Commander to the
Continental Army. It was Continental Army. It was
during the Revolution, under the infamous ProvostMarshal Cunningham, after whom the building came to be called the "Provost," that its unenviable reputation was acable red
quired.

All accounts agree with singular unanimity in awarding to Cunningham the palm for cold-blooded brutality. Under his regime the prison was reserved for the more notorious rebels, civil, naval,

THE HALL OF RECORDS FROM 1763 T0 1830. VARIOUSLY CALLED THE "NEW GAOL," THE "PROVOST,"AND THE "DEBTORS' PRISON." FROM A PRINT

the hall of records as it appeared from 1832 to 1903.

dUNGEON UNDER THE "NEW GAOL" IN WHICH THE AMERICAN SOLDIERS WERE IMPRISONED
seems to have been surpassed in cruelty only by Cun ningham himself. Sentinels were posted at the en trance door day and night; at the first and second bar racks, which were guarded, barred, and chained; at the rear door, on the platform; at the grated door; and at the foot of the second flight of steps leading to the rooms and cells in the second and third stories. Cunningham evidently had an eye for theatric effects. When a prisoner, guarded by soldiers, was led into the hall, the whole guard was paraded, and he was delivered over, with all formality, to Cunriingham, or his deputy, and questioned as to his name, rank, size, age, etc. The replies were entered in a record-book which has been discreetly destroyed, either by Cunningham himself, or by the British authorities. At the bristling of arms, placing of bolts and locks, and clanking of iron chains, the unfortunate captive entered his cell, often never to emerge alive.

The northeast chamber, turning to the left on the second floor, was reserved for officers, and characters of superior rank, and was sarcastically dubbed "Congress Hall." So closely were the prisoners packed, that when they lay down at night to rest (when their bones ached) on the hard oak planks, and they wished to turn, it was all together, by word of command: "rigit"-"left," being so packed as to form almost a solid mass of human bodies. In the daytime the blank ets of the prisoners were suspended around the walls, every precaution being used to keep the rooms fresh and the walls and floors clean, to prevent jail fever.
In this gloomy prison were incarcerated many persons of distinction. Among them may be mentioned the famous Ethan Allen. Proud to have so distinguished a prisoner Cunningham seems to have treat ed Allen with a barbarity exceptional even for him. The American patriot was placed in solitary con finement in a dungeon-it may be the very one which we illustrateand kept there without bread or water, for three days; then he was graciously allowed a piece of fat pork and a biscuit to satisfy his hunger. Besides Allen, Cunningham seems to have had Nathan Hale under his care on the night of September 21, 1776, before his exe cution. This, however, is a matter of conjecture, and not of record. Nevertheless, it is certain that Cunningham made all the preparations for Hale's execution, and would not give him the Bible and clergyman, or the pen, ink, and paper wherewith Hale wished to write to his friends.
Some historians say that Cunningham was executed for forgery, in London, on August 10, 1791; but a careful search of English prison records shows that neither in London nor any other prison was a forger of the name of Cunningham then executed. The supposed forger is said to have made "a dying confession" in which he stated:
"I was appointed ProvostMarshal to the Royal army, which placed me in a situa-
tion to wreak my vengeance on the Americans. I shudon the Americans. I shud-
der to think of the murders der to think of the murders
I have been accessory to. both with and without orders from the government; especially while in New York, during which time there were more than two thousand prisoners starved in the churches, by stopping their rations, which I sold. There were ty-five American prisoners ty-five American prisoners
and obnoxious persons exeand obnoxious persons exe
cuted, which were thus con ducted: a guard was dispatched from the Provost about $12: 30$ at night, to the Barrack street, to order the people to shut their window-
shutters shutters and put out theis
hights, iorbiding them at the same time to look out of their windows or doors, on pain of death, after which, the un-
fortunate prisoners were conducted, gagged, just behind the fortunate prisoners were conducted, gagged, just behind the upper barracks and hung without cer
by the black Pioneer of the Provost.'
This "dying confession" bears the marks of palpable fabrication, and has been branded as such by cautious writers. So far from having been executed as a forger, Cunningham is said to have died peacefully in a coun try home.
After the Revolution the "Provost" was promoted in dignity. All common criminals were sent to the Bridewell, and the "Provost," nc.w called the "Debtors' Prison," was reserved for genteel prisoners, who had forgotten to pay their debts
In 1830, at the urgent request of the Register for a fireproof building in which to house the city records, the 'Debtors' Prison" was remodeled. By New Yorkers of a half century ago the structure was considered an uncommonly good reproduction of the temple of Diana of Ephesus.
For the last sixty years the building has remained unchanged, at least so far as its exterior is concerned. The thousands of people that daily climb the stairs leading from City Hall Park to the Brooklyn Bridge probably never realize that the time-worn, insignificant structure which they pass was at one time considered an architectural masterpiece, a building which New York proudly regarded as its most beautiful public edifice.

The First Wireless Message fro

On the night of January 18, Marconi succeeded in outdcing himself when he transmitted a message of greeting from President Roosevelt to King Edward directly from the Cape Cod station to Poldhu, England. The distance covered is greater by 600 miles than that over which messages have previously been sent.
The performance is all the more remarkable when it is considered that the message was sent without any previous attempt to establish communication by preliminary signals.

It was on Sunday, January 18, that President Roosevelt sent to Marconi, by the ordinary telegraph, a message for King Edward. The message read as follows:
"His Majesty King Edward VII., London, by Marconi
Transatlantic Wireless Telegraphy.
"In taking advantage of the wonderful triumph of scientific research and ingenuity which has been
achieved in perfecting a system of wireless telegraphy, I extend, on behalf of the American people, most cordial greetings and good wishes to you and to all the people of the British Empire.
"Washington, D. C."
Marconi's success came unexpectedly. After having busied himself all day in preparing his sending apparatus, he began to practise sending President Roosevelt's message without calling either the Poldhu or the Glace Bay station, contrary to the arrangements which he had made. Thinking that he might not be able to get the English station for a day or two, he decided to send the President's message by way of the Glace Bay station. Calling up the operator there he gave him he message with instructions to forward it to England. To Marconi's astonishment he received a reply from Glace Bay that the operator had been informed by the station at Poldhu that the message had been received directly from Cape Cod. There was not the slightest hitch in the process of sending. About four minutes were required to transmit the entire messa.ge.
King Edward replied to the message which he received from the President by cable as follows
"Sandringham, January 19, 1903
"The President, White House, Washington, D. C., America:
"I thank you most sincerely for the kind message which I have just received from you through Marconi's transatlantic wireless telegraphy. I sincerely reciprocate in the name of the people of the British Empire the cordial greetings and friendly sentiment expressed by you on behalf of the American nation, and I heartily wish you and your country every possible prosperity. Ebward, R. and I."
The King sent his message by cable for the reason that Marconi was adjusting his instrument for sending tests to England and did not wish to upset his plans by making any attempt at receiving from the other side of the ocean.

Severe and successful tests were recently made by the Fire Department in New York city of the 6 -inch standpipe in the new "Flatiron"' building in New York. The purpose of the test was to determine if the 6 -inch pipe would stand the great pressure of twenty-three stories of water, and to find out how much force could be given to a stream from a hose attached to a standpipe at so great an altitude. Were there no standpipe, the upper stories of the building would be practically
unprotected from fire. Two tests were made: First a $11 / 8$-inch nozzle was attached to a 3 -inch hose on the roof, and the hose to the standpipe. The roof of the building is 304 feet above the street level. After the connections had been made, the full force of a fire engine in the street was turned on; in two seconds a strong stream spurted from the nozzle on the roof. A gage showed that there was a nozzle pressure of 120 pounds even at that great elevation. The second trial consisted in playing nine streams of water, one from each of the eight floors above the twelfth story and one from the roof; $3 / 4$-inch nozzles were used; a pressure of 200 pounds was obtained upon each. The Chief of the Fire Department of New York considers the test eminently satisfactory.

The Current Supplement

The current Supplement, No. 1413, contains a great variety of interesting articles. It opens with an account of the making of pins, illustrated by photo graphic views. Mr. John Joseph Flather continue his discussion of the modern tendencies in the utilizaion of power. In the present installment of the serie of the Naval War Game, by Mr. Fred. T. Jane, an ac count of an interesting battle off Manila between the German and American fleets is given. The American fleet is crushingly defeated. The present state of wire ess telegraphy is made the subject of a good article by Mr. Maurice Solomon. Not so long ago, there was published in the Supplement a full description of Prof S. P. Langley's aerodrome: Some account of the pterodactyl, the greatest of flying creatures, and therefore the greatest of flying machines, should not be without interest. Valuable comparisons are made between this reature and the modern flying machine and moder products. Mr. E. O. Hovey summarizes the proceedings of the American Geological Society at the convention of the American Association for the Advancement of Science. Mr. James Francis Le Baron discusses new method of dam construction. Oil as fuel in war ships is made the subject of an extensive article.

Ira F. Gilmore, of Bloomington, Ill., has perfected and patented a wireless piano which he has been work ing on for thirteen years. Being unable to get the reed made satisfactorily in this country, he set about this task himself, and from a piece of steel he fash ioned with drill and file a five-octave comb reed from which, it is said, combined with a bridge and sounding board, he secures a fine, sharp tone.

RECENTLY PATENTED INVENTIONS

Enginerring Improvements.

 NOZZLLE-TIP FOR LOCOMOTIVES,-D. Glisw.w. Anaconda, Mont. In its general con-struction Mr. (grattan's nozzle tip tapers instruction Mr. Grattan's nozzle tip tapers inwardly from the bottom and flares at the topThis is secured by means of the inwardly-taperng form of the bore of the nozzle tip and by
means of an inverted cone supported conmeans of an inverted cone supported con-
centrically with the tube at the top by v shaped bridge strips. The strips and cone both serve to spread the steam and provide a greater area than is secured by the ordinary tip. Consecuuently the stack is filled at all points with exhaust steam. thus removing the back pressure on the piston head. greatly reducing the onsumption of fuel and increasing the power and speed of locomotives by permitting the
steam to escape freely to the atmosphere the steam to escape freely to
instant release takes place.
rotary magine.-T. w. Neeld, Marshall. Ill. This is an improvement in that
lass of rotary engines which are supplied with abutments adapted to slide radially in the casing and with a cylindrical piston arranged concentrically in this casing. and having a series of radial wings between which and the abutments the steam acts expansively to
rotation of the piston. The invention consists
particularly in the construction and arrangeparticularly in the construction and arrange-
ment of the steam-induction valves and their onerating mechanism. the governor and cut off, and the relation of the piston-wings to the nd the relation of the piston-wings to the
butments for working steam expansively and obtaining regular rotation of the piston.
hotaify degine.- e. If. Wermbi, Somerset, Penn. This contrivance is useful as an engine, pump. or compressor. It involves the
combination. with an oral-shaped or elongated piston - hamber or casing. of a piston formed of jointed sections so dispocsed with resplect to the casing that as the piston turns. its parts move
relatively. Thus it is always in contact with relatively. Thus it is always in contart with of points. The motive force acting on this movement is thus transmitted to the shaft of the engine.
CITSOFFVALVE CONTROLLERR.-G. II. Chows. Chicago. Ill. This contri rance per-
tains to compound steam-engines: and the intention of the invemtor is to provide a new and improved cut-off-controller arranged to govern
the cot-off value of the low-pressure celinder aecording to the load so that the engine runs with great regularity and without shock or jar. The object of the invention is also to have thls
simply and durably constructed controller simply and durably constructed controller get out of order. Mr. Clover does not 11 mlt
his invention to the particular application of, multiple linked clain as an element, the chain improvement to the low-pressure cylinder of the
corliss engine. The device may be used for Corliss engine
other purposes
AITOMATIC IIORSEPOWER ANI PRES SIRE NDICATOR ANI RECORIER.- EDmatic fortier, Kankakee, Ill.. This autosure and horse-power indicators for use on steam engines. and has for an especial object to provide improvements upon the construction illustrated in a former patent. In the present in-
vention, the steam-mressure and horse-power indicators are combined to secure an accurate indication upon the same dial of both, and the horse-power indicator is arranged to operate the recording device and also to connect with the means for operating the horse-power-indcator devices. by which to show the different points at which steam is cut off in the cylinder.

Hardware.

Piz inkencil.-L. W. Johsion, Jerome, Ariz. Ty. The object of this invention is to
provide an improved pipe wrench which is ar ranged to permit of conveniently and accurately adjusting the movable jaw relative to the fixed jaw according to the diameter of the work
under treatment, and to securely grip the work for turning the same without danger of the ws slipping from the work.
Sheairing atpacinment for anvils. C. A. Christenson. Viroqua, Wis. Mr. attachable shearing device of novel construc tion for an oidinary anvil, thus affording convenient means for shearing plate or bar metal into form, as the case may require. An immoved gage is also employed as a co-acting detail for the slearing device that greatly facilitates subdividing the material int
coflual length when this is reguired.
PRRMETATION-PADLOCK. T. Kivi, Glenoe. Mich. This permutation-padlock relates
o a class of padocks having rotatable lockingto a class of padlocks having rotatable locking-
rings that by adjustment secure the inserted leg of a bowed shackle-bar within the lock-
body and by a proper change of adjustment reloase the sharkle-bar: permitting its withdrawal from the locking-rings. The objert of
the improvement is to provide nowe features the improvement, is to provite now features
that are simple, casy to manufacture, and conenient to manipulate
Wreacil-Mamtin Mahleng Osakis. Minn This tool belongs to a class of lever-wrenches minloyed to screw or miscrew pipes into or
ficom their" fittings or bolts and studs which need adjusiment by turning their bodies. The aim of the inventor is to produce a lever-
multiple linked chain as an element, the chain
having a roughened surface for engagement with a pipe or bolt body and also novel coacting forms of construction, which serve to bind the chain on the object to be turned when the lever is moved in one direction, and release

Heating and Lighting.

 Fond du Lac. Wis. The present invention re lates to a hydrocarbon burner analogous in Mr. lakerets to one previns in atented by Mr. Raker. In this burn the ollary attraction and is there heated by a rod protruding into a flame from an oil cup. Gas is thus generated and flows through a small orifice into the mixing chamber of the burner, where it is ignited. FIRNACE-II. E. Kiswt, Buffalo, This improved furnace is arranged to insure complete combustion of the fuel and the ex-
traction of all the heat units contained in the fuel. An extremely high heat is thereby produced for use in steam-generation, smelting operations. and for various other purposes
When the furnace is in action all the smoke and gases arising from the burning of solid or hard fitt 1 in the chamber are completely or hard filt in the chamber are completely tubes are dispensed with. At the same lime. great temperature is developed, which insures a quick generation of steam or s.melting of ores and other materials.

Electrical Apparat us.

RLECTRICAL RHGILATOR.-C. I. P'HIL mack, Wymore, Neb. The present invention chates to pressure-controlled electric me-
chism for regulating the flow of fuel to a furnace tocated beneath the boiler. The boiler is provided with a pressure motor consisting briefly of a diaphragm so held within a casing
as to buckle outwardly when the boiler becomes as to buckle outwardly when the boiler be
neated above its normal temperature.
motion is communicated by means of a movable plunger to a bell crank whiciliacts to close the circuit of a pair of electro-magnets. These in
turn. attract connected to the armature controlling the flow of fuel. Thee flow of fuel is thus cut off and the heat of the boiler is gradually checked. causing the pressure to drop to its normal degree. Trolley-harde-F. J. Caswelat and (C.
Wond. Weodville. Mass. The object of the Woons. Woodville. Mass. The olj.ject of the in-
ventors in this contrivance is to insure the proper engagement of the trolley with the wire.
not withending that the course may be devi nowithstanding that the course may be devi
ous, and the road irregular. The invention comprises certain novel forms involving a
pring-sustained trolley. An important feature is in the arms allowing the trolley-wheel to great enough movements on the pole. but not of the trolley-wheel with the wire. while a the same time permitting the freedom of move and other irregular the wheel in turning curve and other irregular portions of the road. 18y
this swivel motion a wheel is kept on in very sharp curves and on all curves. with proper tension on top of the car. Another valuable feature is that by means of the construction employed. the trolley-whee 1 is allowed to move
frealy within the necessary scope, while other fresly within the necessary scope, while other movements are effectively prevented. In these
movements the running of the trolley-wheel is movements the running of the trolley-wheel is
designed so as to avoid any marked wear in the groove or the hub. The arms also prevent the trolley-harp from catching against cross ing wires brackets and other obstructions, the device easily riding under.

Mechanical Devices.

Latile.-C. Sermour, Defiance, Ohio. The invention pertains to woodworking machinery, and more particularly to lathes for turning ir regular forms. The purpose of the mechanism
is to furnish a new and improved lathe especially designed for turning irregular forms such as handles used in brushes, tools, and other implements-the lathe being arranged to turn the rough blank from end to end to form the handle complete and oval in cross-section The design is also to finish the handle with
great and symmetrical accuracy, without the great and symmetrical accuracy, without the aid of skilled labor
Mill.-G. M. Kemp. Williamsport, Md. The mechanism designed by Mr. Kemp is an improvement in mills, having for its objects, among others, to furnish improvements in the grinding devices. in the means for feeding the
matertal to the grinding-surfaces, and in. the means for controlling the grinding by regulat ing the discharge of the ground material from ing the discharge of
the grinding surfaces.
Washing maciine.-S. hates, Ellens burg. Wash. The novel features of this apparatus were designed to provide a new and in construction. very effective in operalion easily matipulated. and arranged to insure a constant turning over of the clothes while the machine is in action to effect a thorough wash
ing of the articles to he cleaned. Very little phys of the articles on the part of the worker is physical exertion on the part of the worker is
called into play while operating this washer. mechanical mulement: h. Theissen, Mavechort. lowa. The improved mechanical movement developed by this invention,
through a novel construction, provides for the
conversion of continuous rotary movement int an oscillating or reciprocating rotary move ment. The invention is especially designed for
use in apparatus such as washing-machines, use in apparatus such as washing-machines,
where it is desired to give an oscillating move ment to a beater or the like for cleaning the clothes. The invention may be used in hurns or otherwise wherever desired.
PUMPING APPARATUS.-F. J. Donotghe, Gallitzin, Penn. An improved apparatus is
provided in this invention for pumping various liquids, and also gases, more especially to force oil to heavy bearings or to raise water or pump ating agent is a cam-wheel which acts cpe devices connected with reciprocating pistons working in cylinders, whereby the liquid tuid is taken in and ejected alternately. connection with the apparatus the inventor em ploys a rotary valve of peculiar construction DRILL-G. W. Hays, Birmingham, Ala. This contrivance invented by Mr. Hays is an hand-drill having its handle-lever provided with pawl-points for operating the drill head or or , antrolled operation in connection with for contro

Rallway Improvements.

RAILROAD-TRACK SECURER. - J. H. Crowley, Duluth, Minn. The design of this nvention is to furm a semp adiled ing apart or from turning or rolling. In adopting this securer, several advantages are found, namely, in locating spikes so as to minimize the breaking or splitting of ties and in preventing apid deterioration of the same due to the clustering of spikes: in avotding danger of spreading rails, especially around curves; in easily applying the tie-plates of the securer to a track already built; and in cases where it is can be placed under the tie-plates without disturbing the ties.
TIE-Plate.-J. H. Crowley, Duluth, Minn. Mr. Crowley's invention relates to improveobject being to supply a tie-plate of simple onstruction that may be manufactured at a comparatively low cost, and one that may be quickly placed in position, and when in place the rails.

miscellaneous inventions.

METHOD OF PRODUCING WATER Marked Paper.-E. R. and O. F. Behiend, Erie, I'a. By an improved method these inventors secure, first, a genuine and indelible by any test known to the trade, including the by any test known to the trade, including the ficient to obliterate the mark made by compression of the fibers on many grades of paper, and second, the rapid and economic production of such watermarked paper with perfectly and harply defined marks of any figure or pattern. BRAKE FOR BABY-CARRIAGES.-W. H. Ramscar, Cornwall-on-the-Hudson, N. Y. This device is a simple form of brake which is automatically applied and manc:ally released when the handle-bar is grasped, and, further, the
construction of the brake provides for its apconstruction of the brake provides for its aping the vehicle or impairing its appearance The device may be used equally as well on rocers' push-carts and like wheeled apparatus. MANUFACTURE OF PHOTOGRAPHIC FILMAS-L. M. J. Armandy, 3 Rue Brantôme, Asneres, Seine, France. In the manufacture ject of the inventor is to provide improved means whereby such films may be readily deached from their support or backing. The invention consists, essentially, in arranging betized film, a layer of suitable material capable of giving to the film a certain plasticity and of being readily dissolved out, during the ordinary operations of developing, fixing and washing. Garter-Supporter.-Mary L. Buckau, New York, N. Y. The aim of this invention is to rurnish a garter to or from which a support may be quickly and handily attached or ment to the side of a is adapted for attachmay be comfortably held up by means of hose ters and without the aid of clips, thus preventing laceration of the hose. From this position the garter is prevented from slipping and the wearer is assured of perfect safety even when the garter is worn comparatively loose. Ky. This invention relates to improvements in waistbands for trousers and other garments, and the object is to provide a band with belt straps formed directly thereon. One novel feature is, that the waistband has adjacent
parallel slits, between which, material is folded parallel slits, between what, worm a belt-strap to form a belt-strap; and another, is in the lining; the outer portion having parallel slits. the material betwern them being folded inward to form a box-plait, and the edges of the outer portion being turned against the lining and box-plaited inward of the straps.
necktie-fastener.-J. h. Frana, baltimore. Md. Mr. Franz's invention is an im
provement in fasteners for the shields of
neckties which are provided with a bow
some suitable fabric. The fastener is formed of spring wire and so constructed that it is
adapted to be held by attachment to the adjacent edges of turn-down collars.
FOOT-REST FOR CAR-SEATS.-L. JAN son, Brooklyn, N. Y. A simple form of footnvention which is provided by the presen ism for hanging the foot-rest between the side frames of the seat in such manner that the to the position of the back and seat through the movement of the back
CIGARETTE OR CIGAR BOX.-S. Gold structed that after being emptied or partly emptied cigarettes or cigars cannot be replaced therein, thus not only protecting the purchaser from buying inferior goods other than those the manufacturer from false representations f goods contained in the box
BrLSh.-H. F. Ebert, Brooklyn, N. y. The invention provides certain useful improvements in brushes whereby the bristles are securely liable to break when the brush is in use. At the same time the cord or flexible binder is prevented from becoming loose or broken, thus insuring long life to the brush.
SLIVER-CAN.-J. B. Crocch. Mayodan,
Mr. Crouch's invention relates to im-
ents in sliver-cans adapted for use in connection with various kinds of spinning ma chinery. It provides a novel construction by which waste of the mass in the receptacle is
overcome and the sliver remaining in the reovercome and the sliver remaining in the re-
ceptacle after the charge shall have been neary exhausted may be more readily spliced than

Folding box.-W. E. Burton, New York, N Y. The object of the invention is to provide an improved folding box made of paper or light material which is simple and durable in construction, very ornamental in ap pearance, and having its body or cover made rom a single piece of paper adapted to be shipped flat to take up little room, and ar-
ranged to allow of quick and convenient conversion into the box body or cover without the aid of skilled labor.
Latch.-J. W. Coxvollis. Toledo, Ohio Mr. Connolly's invention relates to door
latches, its object being more particulaly produce a simple and efficient latch which can normally be released from only one side of the door, but which can be so arranged that it me door.
device for removing snow.-J. Sullivan, New York, N. Y. The purpose of the invention is to provide a durable, economic
and portable device for removing snow, the device being used in connection with a stream of running water from any convenient source of supply and having its outlet end adapted o enter any opening communicating with a wer or like conduit
DESIGN FOR A STOVE-LEG.-(i. II. Droege, New York, N. Y. The design con-
sists of a main scroll extending from one side of the leg to the other near the top and en scroll panel. and intermediate scrolls. The main portion of the leg below the main scroll is decorated with a longitudinal box Huting. TOY.-H. V. Lough, North Plainfield N J This toy belongs to that class in which a disk is made to revolve alternately in opposite directions by alternately tightening and loosening a twisted cord. Means are provided for carrying two disks on the cord, one mounted o turn loosely upon the other, also means for checking the loosely mounted disk at each they will rotate spirally with relation to each ther, and each disk is differently colored to operated.
calculator.-t. Fregoso, Hermosillo, Mexico. This measuring instrument is more especialy designed for surveyors, and is ar calculation, rectangular coordinates to any dis tances with any angle in the sexagesimal or angles, and oblique angle triangles by giving immediately and accurately three required or unknown measurements, and when the othe three measurements are known to reduce stadia distances to the horizon and to find the differ ence of elevation between any two points. PENCIL-HOLLDER. - E. E. LONG. Los
Angeles. Cal. The improved holder will de Angeles, Cal. The improved holder will dethat it will always be accessible for use, a for example, the device may be used in connec-
tion with a writing pad or tablet. The holder may be easily attached or ${ }^{*}$ removed without injury to the device.
Starting-Gate.-P. McGinnis, London, starting gates for racetracks,. the object being to provide a gate of simple construction having a locking means so arranged as to be quickly and positively released to permit the ate to move to open position.
Note.-Copies of any of these patents will be
urnished by Munn \& Co. for ten cents each. Please state the name of the patentee, title of
the inventiun, and date of this paper.

Busimess and Personal Wants. INDEX OF INVENTIONS

Read this column carrfily.-Y. For which Letters Patent of the or which Letters Patent of the
United States were Issued United States were Issued
for the Week Ending

January 20, 1903,
AND EACH BEARINGTHAT DATE.
[See note at end of list about copies of these patents.)

Inguiry No. 3726.-For manutacturers of crib-

 Inquiry No. 3ycy. , Indianapoils. samples free. Coin-operated machines. Willard, 24 Inquiry No. 3728.-For makers of corn broom Dies, stampRacine, Wis.
Inquiry No. 3729.-For an automatic machine
for inserting aud looping wire thrugh several thicl-
nesses of paper. Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St. Inquiry No. 3730.- For parties engaged in manu
facturing cizaretie paper from tobacco plants. Sawmill machinery and outfts manufactured by the Inquiry
noveties. No. 3731.-For manufact urers of wire Metal working dies and novelties manufactured by luquiry No. 373\%.-For manufact Manuracturers ggriculturai inplements for export Hobson \& Co.., 1 Ṭ State Street, New York.
Inquiry No. 3733.-For gasoline or petroleum
notor about 2% horse power.
Let me sell your patent. I have buyers waiting.
Charles A. Scott, Granite Building, Rochester, N. Y. Inquiry No. 3734.-For power printing press and SAw Mills.-With variable friction feed. Send for Iuguiry No. 3735.-For n boiler and engine of 15
and 20 h . p., with a 10 kiowatt dynamo. Machine Work of every description. Jobbing and re-
pairing. The Garvin Machine Co.. 149 Varick, cor. Inquiry No. 3736.-For an engine from 50 to 60
horse power. For SALE.-Patent No. 718,750. trigger tongue for
game traps. BIg money saver on old styles. H. M. Inquiry No. 373\%.
Vorse power. tools. light machinery. Qaudrista Manuffacturing Comny, 18 South Canal Street, Cbicago.
Inquiry No. $\mathbf{3 7} 38$. .-For parties who put in gravity
pressure water works. Crude oil burners for heating and cooking. Simple, efficient and cueap. Fully guaranteed. C. F. Jenkins
Co., 1103 Harvard Street, Washington, D. C. Inquiry No. $\mathbf{~ 3 7 3 9 .}$
or linen paper iin rolls.

For Sale.- Broaching or drawing press at a bargain. Pratt \& Whitney make. Head 1 in. to 114 in. Samuel
Hall's Sons, $22 y$ West 10ch Street, New York Inal H W 3 .
Ing.
The larkest manufacturer in the world of merry-go rcunds; shooting kalleries and hand orkans. For prices
and teras write to C. W. Parker, Abilene, Kan. Inquiry No. 374.1.-For makers of "The Wonder
Water Consumption" macline. We manufacture anythink in metal. Patented arti-
cles, metal stamping, dies, screw mach. work, etc. cles, netal stamping, dies, screw mach. work, etc.
Metal Novelty Works, 43 Canal Street, Chicago. Inquiry No. 37, य2.-For parties to ma
patented stove pipe joint ou a large scale.
The celebrated "Hornsoy-Akrogd" Patent Safety Oi,
Engine is built by the De La Vergne Refrigerating Machine Company. Foot of East 138th Street, New York. Jnquiry No. 3843.-For the
oval and circle cutting machine.

Water Power for Sale.-Reliable 1,500 horse

 power located in State of New York. Owner wouldequip and rent power. Davidson, Box 7 T3, New York.
Huquiry No. 3744.-For makers of auger bits fit-
ted with diamond points.
For Sale. - Patent for insect trap, for the United States: or sell the rikht to manufacturer in single
States. August Kaiser, 428 S . California Ave. Chicago. ligniry No. $\mathbf{3 7} \mathbf{4 5}$.-For makers of gtreet are lamps
usiug mantle burners and which gene rate kerosene. Wishing to add a tew desirable lines to a well-estab
tisbed manufacturing business, 1 should like to hear trom inventors having good patents to sell.

Inquiry No. Main and Dock Sts., St. Louis, Mo. model steam enkines. - For malicers of finished

Gasoline Automobile Batteries. William Roche' Autogas" used properly will carry vehicle twice as
tar as any other battery of same weight. William Roche, inventor and manufacturer, 42 Vesey Street Inequiry No. 374\%.
aneen.
Wanted-Mevolutionary Doche chain netting Cers, Journals. Prints. Washington Purtraits, Early American Hlustrated Marazines. Early Patents signed
y Presidents of the United States. Valentine's

OR SALE.-Sure money maker About one-thir nterest is offered for sale to man possessing practical
experience, a desire to take active, angressive hold, and buut ten thousand dollars to invest in a brass and iron years, and which has very valuable pmtents, and is
never able to till orders promptly owing to heavy never able to tlll orders promptly owing to heav
demand by rairoads and power plants all over th
United States. Address Box 1754. Pittsbupg, Pi.
Inventors and parties desiring to have patented aricles manuffactured please take nutice:-An old estab-
ished New Fingland concern, with arge lished New Hagland concerı, with large experience in
manufacturing and marketing specialties of different manufacturing and marketing specialties of different
kinds, desires to obtain control of patented inventions
of merit, aud would euther purchase same outright or of merit, and would ether purchnse same outright or
nanufacture on royalty. All communications will be manufacture on royalty. All communications will be
considered strictly confldential, and we reserve the considered strictly confidentil, and we rese.
right to reject any or all inventions submitted. Address P. O. Box No. 3lti Bridgeport, Comn.

Wili tind inquiries for certain classes of articles

United States were Issued
for the Week Ending
January 20, 1903,

 $=4 y$

 718,839
718,933
718,869
718,888 78,888
$.718,8679$
7818

AW. PABER
LEAD PENCILS, COLORED PENCILS, SLATE
PENCILS, WRITING SLATES, INKS, STATIONERS PENCILS, WRITING SLATES, INKS, STATIONER
hUBBER GOODS, RULERS, ARTISTS COLORS. 78 Reade Street, New York, N. Y

Practical Electric Books. Bells, Gas Light.

 All Types. All Sizes. All Purposes Capacity from 1 to 200 tons. Over 900 Cranes
in service. Crane Book 11 on revt. PAWhive A HARNischifege

I PRINT MY OWN CARDS
 Type settink eass, rules sent. Write
for catalog., pressese, , type, paper, etc., to
factory, The Press Co.. Meriden, Conn.
GAS ENGINE

GASOLINE EnGines

NEW BOOKS, ETC.
DIAMOND MiNES OF SorTH AFRICA. Some
Account of Their Rise and Develop-
ment. By Gardner F. Williams, M. A.
New York and London. The Macmil-
lan Company. 1902. Pp. 681. Price
\$10.
Mr. Williams' position as General Manager
of the De Beers Consolidated Mines, Lt.,
has placed him in a position to gather the
most varied and most useful information on
the subject of diamond mining. Mr. Williams,
however, is something more than an engineer
who understands modern conditions in the
fields. He is a historian as well; for he
treats in a scholarly way the ancient mines of
Africa as well as the modern. The chapters
on the "Ancient Adamas" and "In Traditional
Ophir Land" are as entertaining as many a
novel. They have a distinct literary charm.
Considered purely as a book, from the pub-

Considered purely as a book, from the pub-
lishers' standpoint, we cannot help remarking that this is one of the handsomest volumes
that has ever come into our hands. The silk binding, the admirably executed photogravures, and the clear printing could hardly be excelled. $\begin{array}{cc}\text { Poor's ManUal of Railroads. } \\ \text { Thirty-fifth Annual Number. } & \\ \text { New }\end{array}$ York: H. V. \& H. W. Poor 1902 p. 1640.
sulted and none more firmly requently con andway officials than Poor's Manual. From completed in December 31, 1901, reaches the astounding figure of $198,787.30$ miles, and that
the net increase of mileage of all the railroads in the United States for the calendar year 1901 was $4,453.71$ miles. The earnings were
$\$., 29,294,727$. The operating expenses of this vast railway system a mounted to $\$ 1,092,154,-$ 099. The number of passengers carried was
$600,48 \overline{5}, 790$, and $1,084,066.451$ tons of freight were moved. Much of the information contained in the comparison of railway statistics
published in the special Transportation number of the Scievtific American was gathered from Poor's Manual
Galvanic Batteries. Their Theory, Conary, Single Use. Comprising PrimSecondary and Gas Batteries. By S. R. Bottone. Whittaker \& Co. 1902 .
16 mo . Pp. xvi, 376. Price $\$ 1.50$ 16 mo . Pp. xvi, 376. Price $\$ 1.50$. suitability of the many batteries which the been brought before the public since the original discoveries of Galvani and Volta. The
work contains a description of almost known battery of any practical use, together: with data as to E. M. F.. internal resistance
and adaptability to particular requirements. The theory of the battery is carefully treated; and formulx showing the reactions that take place in different types of cells are given. us a chr nological table for tobacco in Asia.
The table gives a history of tobacco from 149% to 1897. Its conciseness and apparent trustworthiness are its chief merits.
Opere di Galileo Ferraris. Vol. I. Ul-
rico Hoepli. American Animals. A Popular Guide North of Mexico With Antimate Biographies of the More Familiar Species. By Witmer Stone and William Everett Cram. New York: Doubleday, Page \& Co. 1902. 4to. Pp. xxiii, 318.
Mr. Stone has endeavored to produce a work
ufficiently free from technicalities to a sufficiently free from technicalities to appeal to the general reader, and at the same time to
include such scientific information relating include such scientific information relating
to our North American mammals as would be desired by one beginning the study. at the end of the volume will be found a key to identify unfamiliar animals. As a guide to study there has been appended a bibliography of the principal works on North American mammals. A. Radclyffe Dugmore has provided the illus-
trations. His brush and his camera have given us many a charming picture. We are glad to note that Mr. Carlin's admirable photographic work has also been drawn upon in illustratLe Forze Idrauliche. Dell'talia Continentale. Ed Il Loro Impiego Milano: Ulrico Hoepli. 1902. Pp. 205.

THE REEVES Compound Engines Save Coal Bills
Scientific Application of the simplest principles are
employe.f and produce most eocnotical results.
entiplat and ertical and Horizontal
nection to Generators. Marine Liqhting Se
Marine Engilies.
Automobile Engines

REEVES ENGINE CO. 87 Liberty St., New York

W. \mathbf{F} \& JNO. ABRNES CO.

FLY PAPERS. - FORMULAS FOR

Best Readinǵ for Lonǵ Evenings

$\$ 1.50$ BOOKS for 38 CENTS

From Our Presses to Your Library
 equipped with the largest and most perfect presses in the world. Our facil concern in the land. We have taxed our resources to the utmost to produce a set of books of Select Fiction that would delight any one to possess, and we are happy to
say that our object has been achieved. We are proud of this set of books in every
 respect-printing, paper, binding and design. Bound in a rich, dark library red ribbed silk cloth. The. cover designs
are stamped into the cloth in gold. The paper is specially
chosen forthis great is clear, round, rest

50 Volumes
DELIVERED ONCE \$1 A MONTH
FOR 19 FOR 19
MONTHS
This gives you a Sumptuous Library of the World's Famous Fiction in Beautiful Uniform Cloth Binding

The Entire Library Sent for Examination FREE NO MONEY DOWN

Engineering

Electrical	Ventliating
Mechanical	Plumbing
Stationary	Texille Manufacturing
Locomotive	Perspective Drawing
Navigation	Mechanical Drawing
Architecture	Sheet Metal Wo
Heating	Marine

Instruction under members of faculty of Armour Institute of Technology.

Your work will receive credit at Armour Institute should you desire to enter as a esident student.
In addition to their regular instruction papers, students in full engineering courses Library (in ten volumes) as a help in their studies.

Catalogue cescribing courses, methods
and terms may be had upon request.
American School of Correspondence

Armour Institute of
Technology CHICAGO, - ILL.

TYPEWRITERS ${ }_{\text {MALLLES }}^{\text {A }}$

HERE At HAL MAN MFACTURERS' PRRICE
pped with privilege of examination. Send orC.
Typewriter Emporium. 203 Lasalle St., Chicag

A Universal Rotary
Pocket Measure

fion, send for cirullar:

ЈUST READY

THiE CHEMISTRY INDIARUBBER

The Chemistry of India Rubber Examination and Valuation of Gutta
Perchanand India Rubber Examination of India Rubber Substitutes
Inorganic
Inorkanic Compounding Materials
India Rubber Solvents
Constructive Components of India Rub-
ber Articles
Coloring Matter
With Four Plates and Several in thestrations
8vo. Cloth $\$ 5.50$ net
J. B. LIPPINCOTT COMPANY PHILADELPHIA

(1) Notifes and Queries.

(8802) C. C. A. says: I have a gas engine cylinder that leaks water through fine holes in the cylinder wall near a boss, the holes
evidently being caused by the "draw" of the ron in cooling. ('an you suggest any method o dusing these pores solidiy enough to stand the heat and pressure of explosion: A. The appli-
cation of a saturated solution of sal ammonia ation of a saturated solution of sal ammonia
in water to the spongy surface will soon rust up the leaky places.
(8803) G. G. asks: 1. Is there a paper on the market which. when dampened, will be
discolored by the passage through it of a mil discolored by the passage through it of a mil
electric current, such, for instance, as would be generated by five dry cells: A. Perhaps a paper for determining the pole of a circuit
can be purchased. If not. it may be made as follows: Dissolve one part of phenolphthaleine in ten parts of alcohol, and add 100
parts of distilled water. Soak blotting paper in this and dry it. Then soak again in a 2 and dry again. To use this moisten a piece of the paper in water and apply the wires to it.
The space around the negative pole turns The space around the negative pole turns a
bright red. 2 . Is there any harmless chemica preparation which would cause paper dampene
in it to take a dark couce in it to take a dark color by the passage
through it of such a current? A. Dissolve some potassium iodide in water, add starch while damp apply the wires as before. A dark color is formed around the positive wire
By moistening the paper of No. 1 with the By moistening the paper of No. 1 with t
starch solution, two colors would be formed
(8804) W. M. B. gives the following in formation in reference to query 8726 : If
ammonia is applied to a nitric acid stain to the point of neutralization, even though a few minutes have elapsed, the color of the cloth if dark may be relieved; if not relieved, ap-
ply a saturated solution of ferrous sulphate, collowing with a saturated solution of pyr
gallic acid.
(8805) F. T. H. asks: Will you kindly
nform me what is the common practice in inform me what is the common practice in
writing the past participle of the verl) to arc, a term which I believe is common in electricity:
Is this spelled arerl or arcked? the practice regarding the spelling of the past participle of the verb shellac? Should this be
spelled shellacked or shellaced? A. The word "shellac" is spelled both with and without a spelled with the k, shellackell. If spelled shenacea. it must be pronounced with a sort
sound of the as in the word laced which verb shall find a place in the dictionaries, it would seem that it must be treated in a sim-
ilar manner, and have the k inserted in its ilar manner, and have the k inserted
past forms, and for a similar reason.
(8806) J. P. says: Please give a recipe for a cement that will fasten unglazed
porcelain to iron. A. 1. Melt carpenter's glue n wine vinegar. add a little Venice turpentine and boil up for half a day over a slow fire. Mix 15 parts copal varnish, 5 parts drying oil, F parts turpentine, and 5 parts liquefied glue. together. Then stir in 10 parts of slaked lime. Use immediately.
(8807) L. G. L. says: A contends that in telephone work. using the standard type
of transmitter. induction coil and batteries for of transmitter. induction coil and batteries for
primary circuit. the current induced in the secondary is an alternating current of given frequenc:y, with a reversal of polarity many times
a second. B contends that the induced current in a secondary is a fluctuating one, or intermittent current, and that it is not strictly an alternating current in the proper sense of the
term as it is known in the art: both agree that it is of high voltage. A. Miller ("American Telephone Practice." page 53. third edition) says: "The current in the primary cir-
cuit is an undulating one, and is always in the same direction. The current in the secondary, however, is alternating in character, changing its direction completely with every large fluctuation in the primary current." This was the question which lay at the basis of the suits, many years ago, in the tests of the patents upon which the immense industry of the tele phone was built
(Continued on page 87)

RESTFUL SLEEP In Camp, on the Yacht and at Home. "Perfection" Air Mattresses,

Style 61. Camp Mattress with Pillow attached. Clean and Odorless, will not absorb moisture. Can be packed in small space when not in tise. Send for Mlustrated Oatalogue MECHANICAL FABRIC CO., PROVIDENCE, R. I.

Charter Member Price (25 per cent. of par value) for the Prominent Stockhoiders \& Incorporators advanced to 50 per cent. February 10 , 1903. Twenty H. John Apry, Gen' Mgr. and Treas million dollars spent annually for street cleaning in the Mr. MAX Hirschback Genil Supt.Dr. United States alone.

ALL WHO ARE INTERESTED

 IN THINGS ELECTRICAL can obtain our illustrated catalogueby sending 2 -eent stamp for postage. LIBERTY ELECTRICAL SLPPLY (0 ., 13 , 36 Liberty St,, New York ${ }^{\text {WHAT}}$ Hechapirograph?

月ıI Che CJJorld's Fighting Sbips

By FRED T. JANE, Author of the Naval War Game (Kriesspiel).

394 Pages.
OVER 3,000 ILLUSTRATIONS.
oblong quarto. cloth. price, \$5.00, post free.
CONTAINS :-A photograph of every warship in the world; also a silbouette and a gun and armor dia-
CONTAINS: :-The length, beam, draught. horse power, speed. coal supply, number and size of guns,
thickness and disposition of armor of every warship in the world.
CONTAINS :-Tables of the size, weight, velocity, energy, penetration, etc.. of every gun of every navy
CONTAINS:-A series of chapters by noted Admirals, Naval Constructors and other experts of various
navies, on vital questions of the day in naval construetion, tactics, and strategy.
CONTAINS:-A comparative table (by the author of the strength of the navies of the world-the most ing streng

MUNN \& CO., Publishers, 361 Broadway, New York.
(8808) J. B. R. wants one or two good crmulas for making a strong and ahsolutely and other similar substances where a flexible joint is needed. A. Gutta-percha and rubber cements are practically the only ones that fully answer the requirement of absolutely Naterproof, and if carefully applied are very strong. Either of the following formulie is
serviceable: 1. Dissolve sufficient gutta-percha serviceable:. 1 . Dissolve sumcient gutta-perch
in 10 parts of carbon disulphide to form thick solution, then add one part of turpentine . Dissolve gutta-percha as in No. 1, but thin down with petroleum in place of turpentine. . Marine glue: Dissolve one part of India orber in crude benzine and then mix into this then 2 parts of shellac, heating on a wate bber and 2 parts ar insolve 1 part math o about the consistency of molasses. In mixing any of these formulæ all the heating must be done in a water bath, as it would be danger as to use a direct flame on account of the in flammable na
(8809) H. S. M. says: Kindly give me a good recipe for making rubber cement mething for putting rubber soles on rubber oots to stand hot water. I have the raw nower ($1 / 4$ pound) cut with benzine, but don on wan else to use with it. A. Your solullow it to stand onen in a is, rateo wa place until some of the benzine has evaported ; if too thick, add more benzine. Another ood solution can be made by dissolving $1 / 4$ pound of the raw rubber, cut into strips, in about 1 pound of carbon disulphide.
(8810) O. B. F. says: I wish to etch ecorded sound waves on polished zinc or copplates; these plates being first covere ith a film of wax, on which the record is Please give me the proper acid, combination of acids, strength of same, and hich is is the following: Water 880 parts, chlorate potash 20 parts. hydrochloric acid 100 parts. All chemicals should be chemically pure. Dissolve the chlorate of potash in the water an dd the acid. From three to six hours will be re ting.
(8811) M. H. H. asks: In what counwhat is magnetic iron ore mines located, and ountries? A. Magnetite is found in this coun try in the States of New York, New Jersey Pennsylvania. Michigan. Minnesota, Virginia Colorado, Utah. Wyoming, Arkansas, and Cali-
fornia. As to foreign deposits, they occur in various parts of Asia, in Siberia, in the Island of Elba, and in the Hartz Mountains. Figures on the production are not available, but migh obtained by consulting the "Mineral Indu ties," and by addressing the Department of the Interior, Washington, or the
(8812) D. H. M. says: 1. Please in form me of a way-if there is any-to dedorize fish or cod oil if possible without the use of chemicals, or at any rate without lea ing any trace behind. A. The deodorizing of with very little success. The odor can be kept down to a minimum by care in the manufacish . that is. to express the oil before the overheating. 2. Have you any books dealing with cod and fish oils? A. There are no books devoted exclusively to the fish oils. We can Fats and Oils", which is. Brans work from a technical point of view, and kowetscch's "Fats. Oils, and Waxes," which is the recognized standard for analytical work almost a complete vacuum, but with no preservative, keep, and if not what effect would the vacuum have upon the article? A. Preservation of food products in vacuo has been tried without previous sterilizing by heat or by ancommercially, it seems evident that it has not been successful.
(8813) E. H. says: Can you tell me what is the best preparation to use in clothe to prevent moths from injuring them when
packed away? A. Camphor is the best substance to use. On account of its high price naphthalene has largely superseded it ; but it is mech less efficient. The tar bags that are now on the market are very good because they can be tightiy closed and so prevent the access of moths from the outside; if the clothes are be no trouble from moths.
(8814) J. W. M. says: I would like to know how calcium chloride may be used for extracting moisture. A. Calcium chloride has stich a strong affinity for moisture that on
simple exposure of the dry substance for a simple exposure of the dry substance for a
minute, it will become quite wet. Exposed minute, it will become quite wet. Exposed
long enough, it will completely dissolve in the water it absorbs. The air is simply passed through tubes or chambers containing the loosely packed chloride. Zinc chloride acts similarly. Oil of vitriol will remove the moisture from air that is bubbled through it. When moisture from air, phosphorus pentoxide is used.

$\$ 100$ ONTII feb'ry 1st

 Your Last ChanceYou can have The Saturday Evening Post every week for a year for only $\$ \mathbf{I} .00$ if sent NOW. After February ist it will cost $\$ 2.00$.

The Post is a high-grade illustrated weekly magazine, equal in tone and character to the best monthlies. Handsomely printed - profusely illustrated by the best-known artists, and filled with the best editorial thought and fiction.
Established 1728 by Benjamin Franklin

Specially strong features in business stories, and business special articles for young men, by all the leading Bankers, Lawyers, Merchants and Journalists. Special contributors are Senator Beveridge, Hon. Grover Cleveland, William Allen White, Hon. Charles Emory Smith, former Postmaster-General,

Experimental \& Model Work
 PUZZLE "Mental) Nist", "Can you crack 'em?

 Scientific American.
 MUN \& CO. 38 Ef Roum. New York

 VOLNEY W. MASON \& CO Friction Pulleys, Clutches \& Elevators PROVIDENCE, R. I.

MODEL AND EXPERIMENTAL WORK. Electrical and Mechanical Instruments. small Mach's.
EDWARD KLEINSCHMIDT, 82 W. Broadway, New York. EXPERT MODEL MA ERSA. Mod A., Patiterne

MODELS FCHCAGO MODEL WORKS

MODEE

 TELEGRAPHY Giranaif Tree Mondertu) ant "'THIS BEATS NEW JERSEY.

 PUBLIC SALE OF Woolen and Worsted Mills With Machinery and Valuable water Power,
at TRENTON, N. J., on Wednesday, February at TRenton, N. J.., on Wednesday, February
11, 1903, at 1 ocelock P. M. For inspection, descriptive catalogue, maps or particulars re-
specting the manner in which the property specting the manner in
will be offered, apply to
cutors S. K. Wilson Estate, Trenton, N.
A SOUTHERN LOCATION SOUTHERN RAILWAY In Alabama, Georgia, Kentucky, Mississippi, North
 M. v RICHARDS Washington, i. c. INVENTIONS DEVELOPED.
 (Magical Apparatus. Tis. NOVELTIES \& PATENTED ARTICLES

Automobile Tires NOT THE CHEAPEST BUT THE BEST Our New Booklet Tells Why FISK RUBBER CO., - - Chicopee Falls, Mass. Orient Motor Car
 Writgeed to 3 miles per hour. 1.200
 Wonde. and derer Acend Actione Burners sonstate hine mpg. co.

TOOLS AS A TOPIC
$\xrightarrow[\substack{\text { r. THOL } \\ \text { cituocul }}]{ }$ must be interesting to every handi-
crantiman. There is a mine of infor-
mation in CATAOGUE Montgomery \& Co.'s Tool Catalogue

Che Thomas Tonneau
MODEL No. 18
PRICE *1,400.00
E. R. THOMAS MOTOR COMPANY, Buffalo, N. Y.

 Pressure Gauges, Vacuum Gauges. Volt-
meters, Amperemeters, Watatueters, and
IThermoteter, make continous records
 sent and Specimen Chatt. Send for Circu-
the Bristo Company. Waterbary Conn

 SHOE BLACKING.-FORMULAS FOR

A 115 MILE TRAIN

The Lehigh Portland Cement Co. have recently purchased 56 Griffin Mills; the American Cement Co., 20 Griffin Mills; the Associated Portland Cement Manufacturers of England, 18 Griffin Mills; which, when installed with the Griffin Mills now in use, will actually produce 50,000 barrels of Portland Cement a day, or
Over 15,000,000 Barrels Cement a Year
This Cement, when loaded into cars, would make a train over II5 miles in length, and is about the full amount of Portland Cement made in the United States in 190i. No other mill approaches such a record, because no other mill begins to do the work as cheaply and as satisfactorily.

Write us for references about its capacity for grinding Raw Materials, Coal, or Cement Clinker.
BRADLEY PULVERIZER CO., Boston 120 Liberty St., NEW YORK 1233 Monadnock Bldg., CHICACO

Zhe Best Thing on Wheels The OLDSMOBILE

RUNS EVERYWHERE
Nothing to Watch but the Road Ahead.

OLDS MOTOK WORKS, DETROIT. MICH.

WATERLESS

1903 Model now ready, with many new and desirable feature More Powerfllalir-Cooled Enine. Widerand MoreComportable

RECORD FOR 1902

Won two of the fnur cups in the New York-Poston Reliahility
Contest Perfect records in all the other contests. Three hundred sat isfed customers in all parts of the country, testifying
tother ereas suecesgof our air-corled motor and the many other
features used exclusively orithis car.

Will Exhibit at the New York and Chicago Shows. KNOX AUTOMOBILE CO., Springfield, Mass. New York Office, 152 West 38th St.
Western Agevcy, National Automobile 8 Manufacturers Co.,
26 Fremont St., San Francisco, Cal.

THE CELEBRATED
WILLARDSTEL RANGE 25.0
 $\begin{array}{ll}\text { descriptive circular a nd testimorials. GGENTS WANTED. } \\ \text { WM. G. WILLARD, Dept. 112, } & 619-21 \text { N. } 4 \text { th Street, } \text { St. Louls, Mo. }\end{array}$

GARDEERALITSUFFATS

THE MOST MODERN AUTO

Onfon All varieties at lowest prices. $\begin{aligned} & \text { Trest Railroad } \\ & \text { Arack and Waon or } \\ & \text { Stocik } \\ & \text { Scales made. }\end{aligned}$

JESSOPS STEELHETM

