
NEW YORK, JUNE 6, 1903.

Poe Lock. Sault Ste. Marie Canal.

General view of the Locks
fiftieth anniversary of the opening of the sault ste. marie canal.-[See page 427.]

SCIENTIFIC AMERICAN

 ESTABLISHED 1845MUNN \& CO.,
Editors and Proprietors

Published Weekly at

No. 361 Broadway, New York

terms to SUBSCRIBERS

 the SCIENTIFIC american PUBLICATIONS

NEW YORK, SATURDAY, JUNE 6, 1903.

THE TWO HUNDRED AND FIFTIETH ANNIVERSARY OF

 NEW YORE CITY.Although it might have been possible to find a more sentimental event than the incorporation of the city on which to base the recent 250 th anniversary of New York, such, for instance, as the landing of the first settlers, or the purchase of Manhattan Island by the Dutch for sixty guilders, it cannot be denied that the incorporation marks the actual birth of the city and is the logical landmark from which to meas ure its life and progress among the great cities o the world. There is, of course, an unavoidable sameness in all such celebrations, but in this particular case there were circumstances which gave to the celebration a special interest, and served to draw the attention of the civilized world. In all the world's history there is no parallel to the extraordinary rapidity of the growth of New York city in wealth, extent and population. In 1653 we find a little settlement of 1,500 souls, housed in a few modest homes in a clearing at the southerly end of forest covered and rocky Manhattan Island. Two hundred and fifty years later, New Amsterdam is represented by splendid New York, with a population of close upon four millions of souls. The forests of Manhattan have been swept away, the swamps filled in, the rocky hills laid low, and the island covered from end to end and from river to river with majestic buildings devoted to commerce and industry, with the magniticent homes of its successful merchants and financiers and the lofty apartment and tenement homes of its busy toilers, while its streets and avenues are seamed and undermined with a veritable network of railways for the quick transit of its inhabitants.

It would be a distinction for any city to have grown in two and a half centuries from a mere village to be the second greatest metropolis of the world. But New York city has been favored by holding a com manding geographical position which in itself has undoubtedly given it a prestige unique among the cities of the world. Most fitly has it been named the gateway of the western hemisphere, for into its harbor and outward through its radiating network of railways, has poured and been distributed that marvelous stream of cosmopolitan humanity which has contributed so largely to our growth in population, and to the development of that national versatility to which our commercial success is largely due. New York city has increased by a steady influx from every quarter of the compass; from the East by the immigration of foreign races, a large percentage of which has made New York its home, while from the West, North, and South it has grown by the steady inflow of the more energetic among its own native population, whose ambition has drawn them to a city that holds out promises of wealth and fame, promises, by the way, that it frequently redeems with a most lavish hand.
Although the municipal history of New York city has been extremely turbulent and much of it discreditable, allowance must be made for the fact that the city is so largely cosmopolitan, and that it has ever been the favorite hunting ground of the political adventurer. When we remember how many thousands of immigrants settle each year within its boundaries, and that these people, many of whom cannot even speak the language of the country, are early invested with the privileges of the franchise, the marvel is not that the city should have had so much, but rather that it should have had so little, that is disastrous and humiliating written in its records. Moreover, there is much promise for the future in the fact that whenever the best elements mong the citizens of New York city have set. themselves to reform municipal abuses, they have been casily able to obtain full control and have proved, as
at present they are proving, that the city can conduct its affairs righteously and justly and in the best in terests of the individual citizen.
It is pardonable at a time like the present to make a forecast of the future; and it may safely be said that if the city continues to grow at the present astonishing rate, it will hold, sooner than many of us expect, the proud position of being the leading metropolis of the world, pre-eminent not merely for its numbers, extent, and wealth, but also, let us hope, for the purity of its government and the high ideals and political integrity of its citizens

remariable efficiency of elevated railway

 ELECTRIC SERviceThat electric traction is more economical and in every way more efficient than steam traction for rapid transit on a road of the great traffic and very frequent stops of the Manhattan Elevated Railroad in this city, needs no demonstration at this stage of electrical development. Yet, the economical results shown in the operation of this system since the in stallation of electric traction have more than borne out the predictions made at the time that the change was determined upon. The average speed of the trains has been accelerated about twenty-five per cent, which, of course, means that the capacity of the road has been increased to that extent. The total time for any given trip over the line being twenty-five per cent less, it is possible to run, under the same headway, just twenty-five per cent more trains than formerly. The gain in speed is chiefly in the rapid acceleration at starting, and quicker stopping due to the introduction of the Westinghouse air brake. The speed of the train when under way is also higher than it was when steam locomotives were in use. There is a further gain due to the fact that in the busy hours the trains are six cars instead of five cars in length, there being a further increase in capacity of twenty per cent from this cause alone. The total number of persons carried daily by the elevated system has now reached the great aver age of 800,000 . To work this service requires the exercise of 45,000 electrical horse power. No such results as these could be accomplished by the old steam engines, whose greatest tractive effort was equal to about 7,000 pounds pull on the drawbar The maximum tractive effort exerted under the present system, in which the motors are distributed throughout the train and a much greater load is therefore available for adhesion, is about 20,000 pounds. The remarkable increase in the starting power and in the brake power is not secured, however, without some expense of personal convenience, many of the motormen seeming to be rather slow in learning to handle the greater power which they have at command with proper discretion. The starting and stopping is more jerky and irregular than it need be; although with every added month of operation there is a marked improvement as the incapable mo tormen are being weeded out.
cost of high-speed steamship travel.
In connection with negotiations between the British Admiralty and the Cunard Company for two new vessels of 25 knots average sea speed, an investigation was made of the comparative size, horse power and cost of first-class Atlantic passenger steamers designed to steam at speeds that increased in each vessel by one knot per hour. Estimates were made of the size, cost of con struction and cost of operation of steamers of from 20 to 26 knots per hour, and the investigation was based upon a 20 -knot steamer 600 feet in length, with en gines of 19,000 horse power and consuming in a single trip across the Atlantic 2,228 tons of coal. Such a vessel would cost $\$ 1,750,000$ and it would receive from the government an annual subsidy of $\$ 45,000$. A 23 knot steamer, built under the same government conditions as to subsidy, would be 690 feet long, wouid require 30,000 horse power; would cost $\$ 2,875,000$ and would require an annual subsidy of $\$ 337,500$. A 25 knot steamer would be 750 feet long, would require 52,000 horse power; would cost $\$ 5,000,000$, and would require an annual subsidy of $\$ 750.000$, while a 26 -knot steamer would have to be 780 feet long, would require 68,000 horse power, would cost $\$ 6,250,000$, and an an nua subsidy would have to be paid by the government of $\$ 1,020,000$.
In the machinery department of a 20 -knot vessel 10 J men would be required; in a 23 -knot vessel, 150 men ; in a 25 -knot vessel 260 men, while for a 26 -knot ship there would have to be 340 engineers, oilers, etc. It will thus be seen at what an increasing rate the first cos and the operating expenses of these high-speed steam ers run up. For the increase in speed of a single knot an hour, or 24 knots per day, it is necessary to add 30 feet to the length of a 25 -knot ship, 16,000 horse power to the motive nower and 1,255 extra tons of coal must be put into the bunkers. The displacement must be increased by 3,100 tons; 80 more men must be added to the engine and boller room staff, and the total cost will be increased by $\$ 1,250,000$.

the abuse of a noble sport.

It required only a series of shocking fatalities such as happened in the recent Paris-Madrid automobile race to bring the governments concerned and the general public to their senses, and demonstrate to what criminally absurd lengths the sport of automobile racing has been carried. On the other hand it is well to remember that in the presence of a great disaster there is always a risk of panic legislation, and it is to be hoped that, while the ParisMadrid horror will result in the abolition of road racing under the extremely dangerous conditions that have hitherto been allowed, it will not lead to the prohibition of such racing when it is governed by reasonable restrictions as to the contestants, and surrounded by absolute safeguards for the general public.
The French government has sanctioned and, in deed, officially promoted these contests on the ground that it was automobile racing that was largely responsible for the rapid development of the automobile industry in France. This is probably true; for it necessarily follows that in endeavoring to produce cars that will stand the enormous strain and the tax upon the endurance, of these long-distance road races, there is a stimulus both upon the inventor and builder such as could be afforded by no other means. The miserable mistake and folly of the whole business is in permitting the races to extend over such great distances that it has become impossible to adequately police the course and surround the contestants with adequate safe guards. In the present system there was absolutely no tax upon the weight or power of the cars. Any amateur who possessed sufficient money and foolhardiness was at liberty to have built for him and to run a veritable locomotive over the course. This, in itself, was an invitation to disaster; but when he was allowed to send this machine crashing along the public highways between lines of densely packed peasantry at speeds of from 50 to 80 miles an hour the conditions were ripe for slaughter.
If automobile races are to be conducted in the future-and seeing that these races are a direct stimulus and benefit to the industry, it is certainly desirable that they should continue to be heldthey must take place either on specially constructed and carefully guarded courses, or on stretches of public highway from which the public is absolutely ex cluded. Moreover, the contestants should be limited to successful candidates who have been selected after a series of trial races. This is the plan that is to be followed in the forthcoming races in Ireland, where instead of several hundreds there will be but a dozen competitors and where the course, which is of limited length, will be kept guarded by some 7,000 or 8,000 of the constabulary.
But even in the case of the Irish race it will be impossible to eliminate one inevitable cause of disaster, namely, the unevenness and curvature of a public highway. When a machine is traveling at a speed of 60 to 80 miles an hour, slight inequalities in the surface, which would not be noticeable at 30 or 40 miles an hour, become, by virtue of the terrific jar imparted to the machine, a positive source of danger; while in rounding curves which have no banking on the outer side a heavy cross strain is thrown on the tires, and should the speed exceed a certain rate, either the tires will skid or the machine will be cverturned by the great centrifugal force set up.

Perhaps it nay prove that these difficulties (which are inherent, if the public highways are to be used by high speed vehicles) are not unmixed disadvantager; for they may lead to the recognition of the fact that if we are to utilize the high speed possibilities of the automobile, we must solve the problem alnng the lines upon which we have so successfully solved it in railway travel, and build special roadbeds for high speed automobiles. The indications are that the time is not far distant when the in crease in automobiling will le such as to guarantee the construction of special roads with perfectly true srirface, with small curvatures properly banked on the outside, and with ample protectín, by the exclusion of all grade level crossings, against collisions with passenger and vehicular traffic.
We close with a brief summary of the race and the times made by the leading cars.
The first stage of the ill-fated race, from Paris to Bordeaux, a distance of 300 miles, was covered by the racers early on Sunday morning, May 24 , with so many fatalities and serious accidents to the partici pants and onlookers that the running of the two remaining stages was forbidden by the French and Spanisћ governments. Seven were killed and three others critically-injured as a result of the terrific speed and the failure of the authorities to keep the road clear. Marcel Renault, the winner of the ParisVienna race last year, and two chauffeurs on two other racers, were killed by their cars upsetting when their drivers tried to avold obstacles in the road, while two
women and two soldiers who got in the way were run down and killed instantly.

The best time from Paris to Bordeaux was made by Gabriel on a Mors racer. His running time was 5 hours 13 minutes $311-5$ seconds, which made his average speed about 66 miles an hour. Louis Renault on a Renault car, was second in 5 hours 22 minutes 59 seconds; and J. Salleron on a Mors, third, in 5 hours 46 minutes $14-5$ seconds. Jarrott, the Englishman, on a De Dietrich, arrived fourth about five minutes later

PROF. GOODSPEED ON SECONDARY RADIATION

 INDUCED BY X-RAYS.The first printed statement issued over his own signature by Prof. Arthur W. Goodspeed of the University of Pennsylvania concerning secondary radiation induced by X-rays since his announcement of important discoveries in this direction is published in the university's official organ, The Pennsylvanian The article reads:
Having occasion last winter to examine critically some radiographic records, I was surprised to find the clear outlines of some metallic bodies that had been behind the plate during exposure. This recalled that I had been consulted once by somebody who had found similar anomalies, and that I had been unable to throw any light upon the subject. For obvious reasons, I determined now to spare no trouble to hunt down the cause of the effect which I had observed, and after a series of upward of one hundred progressive experiments I was convinced that when an X-ray tube is in operation not only is every particle of matter which is impinged by the X-rays seccle of matter which is impinged by the X-rays sec-
ondarily radiant, but that also in some cases this secondary radiation had in all probability imparted ondary radiation had in all probability imparted
activity of some sort to air particles and to portions activity of some sort to air particles and to portions
of the wall which had not been impinged directly by of the wall which had not been impinged directly by the primary rays.
The cause, then, of the impressions on the plate of articles behind it was established. All of the later experiments leading up to this conclusion had been made with the Crookes tube completely inclosed in a dark box, eliminating thereby every trace of fluorescent emanations which one usually does not take the trouble to cut off and which are always emitted by the glass with which the bulb is made.
Next, from a portion of the space outside the box the X-rays, which, of course, passed freely through the wood, were completely cut off by heavy lead plates, properly placed on the top of the box, and it was on these plates, screened thereby from the X-rays, that the radiographic films employed for receiving the records were placed. Above this, and to one side, freely accessible to the X-rays, the various bodies to be tested for secondary activity were arranged, including zinc, brass, wood, my hand, and a variety of articles too numerous to mention. In every case unmistakable evidonce of secondary action appeared upon the plate.
Presuming, of course, that others besides myself may have been working along similar lines, I pro ceeded to look up carefully the literature on the sub ject in order, if possible, to determine what parts of the investigation, if any, might claim priority as well as originality. Two Frenchmen, Perrin and Sagnac I found had demonstrated the property of secondary activity induced by the X-rays, and along some lines of investigation had given some interesting quantita tive values; and still a thirdc Frenchman, Guillox, had demonstrated the possibility of using the hand as a secondary source
None of these three, however, seems to have ex cluded the optical fluorescence which always accompanies the X-rays, unless special care, is taken to cut it off, as already explained. Inasmuch as I found that an Englishman of the name of Townsend had demonstrated that some differences in the numerical values given by Perrin and by Sagnac must have deen due to a difference in the primary rays they employed, it seemed to me that putting everything in absolute darkness, from an optical point of view, and then ex perimenting in the night, thereby cutting off every trace of optical light, was a distinct step in advance of the work of the men referred to.
In brief, then, it has been shown possible to pro duce secondary radiograms on a sensitized film, inclosed in a perfectly dark receptacle, by means of absolutely invisible emanations from various articles, including the human body, which have been excited by X-rays generated within a black box in a perfectly dark room.
This apparently startling conclusion loses much of its mystery when we contemplate that it is entirely proved at the present time that only about 2 per cent of the radiant energy that comes to us from the sun is capable of affecting the human eye. That bodies on the earth, therefore, while bathed in a portion of the other 98 per cent may be capable of diffusing some of it is what any thoughtful person will admit.
A piece of white paper in a beam of sunlight, or even in a space diffusely illuminated, as is the room
of a house, receives a small portion of the 2 per cent of the total energy incident upon its path, and diffuses again a small portion of what it receives, thereby making it visible to the eye. Why, then, might we not expect that a piece of zinc or copper favorably posed to receive a portion of the other 98 per cent, i. e., of the dark energy, should be capable of diffusing some part of that in such a way as to be objectively visible to some appropriately devised apparatus for observing it?

It is to be noted in passing that the most favorable location for getting some of the 98 per cent without some of the visible 2 per cent is in a dark room. We have been using the word dark, of course, as applied to the human eye. It is quite possible, to my mindentirely probable-that a mouse, and very likely a cat, could, if it had the proper intelligence, give us valuable assistance in rooms to us totally dark which are doubtless to them comfortably illuminated.
In connection with the work just referred to, a somewhat painful personal experience seems to me to be suggestive as to the possible cause of the wellknown inflammation which sometimes follows prolonged exposure to the X-rays. A year ago I had occasion to sleep in the same room in which experiments had been conducted during the day. At the end of that time I left town, but developed at once an aggravated attack of inflammation of the eyes and throat, which yielded to treatment after a few days. During the first week of this month again I found it convenient to sleep in the same room where I had been conducting experiments during the day and evening. At the end of about the same time all the symptoms reappeared with which I had suffered a year ago, with same result-on changing sleeping rooms the difficulty at once disappeared.
In drawing conclusions from these experiences, it must be noted that no trouble has been experienced in the meantime nor before, although I have fre quently, during the last six weeks, spent several hours each day for a week or two at a time around the X-ray apparatus. In the night the room had been nearly or quite closed, preventing free air circu lation, and the potent protection of eyeglasses was wanting.

I am forced, under the circumstances, to believe strongly that the immediate cause of the troublesome inflammations was the secondary emanations from the air or bodies in the room, or the human body itself, rather than the primary X-rays. This theory would, of course, necessitate the assumption that the activity lasts for an appreciable time after the excit ing cause has ceased.

To prove this by objective experiment would in deed be difficult, since the ions developed by the pas sage of the X-rays through the air are, of course present for a considerable time after the cessation of the rays, and the electroscope, which would be expected to indicate the activity sought, would be dis charged by these ions, and we would still be in the charg

ALKALI MANUFACTURE BY ELECTRICITY FROM NATURAL SALTS.

The first six months' working of the electrolytic process of manufacturing alkali from natural salts in England has proved so successful that a wider adoption of the process is to be carried out. The general system of manufacturing the alkali from the natural product is by the decomposition of the two funda mental constituents-chlorine and soda-by compli cated and not expensive chemical processes, in which sulphur plays an important part. The methods in vented by M. Leblanc, a French chemist, more than 120 years ago have been generally followed ever since that time. During the past few years, however, Mr James Hargreaves and Mr. Thomas Bird have beei conducting an elaborate series of experiments, with the object of devising some simpler and more econom ical method of bringing about the decomposition of the salt with the aid of electricity.

For the purposes of these experiments a small plant was laid down at Middlewich, Cheshire, the center of the salt industry of England. The salt abounds in the form of brine in large subterranean lakes. In the electrolytic process, the brine after being pumped to the surface is conducted into rectangular cells, through which is passed a strong current of electricity. The effect of this is to release the chlorine, which escapes ir_{i} the form of gas into pipes, and is conducted into other chambers, where it is brought into contact with lime, and produces chloride of lime. The solution of sodium which is left in the cells passes out through a diaphragm, and is converted by a bath of steam into soda solution. By a very simple arrangement in the construction of the chambers, carbonic acid gas, from the furnaces which supply the power, meets this soda solution and its properties are absorbed, with the result that a strong solution of carbonate of soda is formed. Then it flows away into vats, where the soda gradually hardens into crystals, and the processes are complete. It is then only necessary for the great
blocks of soda carbonate to be broken up to a suitable size for saie.
A battery of only 56 cells has been at work, but the profit upon six months' experimental work is $\$ 37,500$. The main features of this new process are economical production, with very little waste, and the reduction in price to the consumer of the finished products.

SCIENCE NOTES

The anti-diphtheria serum discovered by Prof. Roux, of the Pasteur Institute, is now being made in the form of lozenges for use during convalescence. The professor had observed that bacilli found in the mouths of patients several weeks after recovery were liable to convey the disease to others. The lozenges overcome this and also render preventive inoculation unnecessary.
The Greeks and Romans paid special attention to the physical culture of their youth, to public water supplies and baths, and Athens and Rome were provided with sewers early in their history. During the middle ages, sanitation received a decided check. Ignorance and brutal prejudice prevailed and this was the most unsanitary period in history. Most European towns were built compactly and surrounded by walls. The streets were narrow and winding, and light and air were excluded. The accumulation of filth was frightful. Stables and houses were close neighbors. The dead were buried within the churchyards or in the churches. Wells were fed with polluted water. All conditions were favorable for the spread of infectious diseases, and in the fourteenth century alone the Oriental or bubonic plague-the Black Death of recent historians-carried off a fourth of the population of Europe. The birth-rate was much less than the deathrate normally. The cities had to be continually repopulated from the country. These sentences from a review in Science of new works on sanitation in our own times illustrate, by provoking a comparison, the improvement in our day.
H. D. Richmond points out that it is quite fallacious to endeavor to test the acidity of milk with litmuspaper, since it is possible to condemn all fresh milk as the result of applying that test. Litmus-paper may be either red containing only the acid, or blue containing the acid with such an amount of alkali that no red ions are formed, or at some intermediate stage. If those papers be used to test a partially neutralized mixture of acids of various strength, contradictory results may be obtained. Phosphoric acid is a good example of three different acidities in one molecule; the first acidity is strong, the third is very weak, a nd the second is intermediate between the two, and about equal in strength to the acid of litmus. It has been shown that milk contains phosphates with the third acidity completely neutralized and the second only partly so, and therefore milk is an excellent substance to show the peculiar behavior of litmus. If blue litmus-paper be dipped into milk, the blue litmus, having the acid completely neutralized, is more alkaline than the milk, and the two tend to come into a condition of equilibrium by a portion of the alkali of the litmus passing to the milk; the consequence is that the litmus becomes less alkaline and turns slightly red. If red litmus-paper, which is more acid than the milk, be used, alkali will tend to pass from the milk to the litmus, and turn it slightly blue. This is the so-called amphoteric reaction. A litmus-paper of some intermediate stage would be unaffected.-Chemical News.

A German chemist, Herr Gerold, has discovered a means of preventing the ill-effects which sometimes arise from the excessive use of tobacco, which is liable to produce attacks of vertigo, a particular form of dyspepsia, palpitation, and diseases of the chest. His procedure consists in steeping the leaves of tobacco, before being made up, in a solution of tannic acid, which combines with the nicotine and forms a substance quite inactive and harmless. In order to increase the flavor of the tobacco, it is then treated with a decoction of marjoram. The flavor of the tobacco prepared as above described differs in no way from that of ordinary tobacco; and experiments made with it on weasels, frogs, and even human beings, have demonstrated that its use produces no toxic effects on the organism. The pressure of the blood remains normal, the heart beats regularly, and the paralysis which overtakes animals who have been poisoned with nicotine is entirely obviated. Our contemporary adds that all smokers will hail with satisfaction the dis covery of Herr Gerold. We fear that, as a smoker we can scarcely agree with this optimistic statement Supposing that Herr Gerold succeeds in removing all the nicotine, what is left? We doubt that the vast proportion of tobacco smokers suffer from consequent dyspepsia, palpitation, and diseases of the chest, and believe that they will prefer to continue the use of tabacco than to adopt Herr Gerold's substitute. If, on the other hand, a smoker does suffer as our contem porary suggests, he would do well to refrain from the "noxious weed" altogether.

THE OSTERGREN FUEL OIL ENGINE

Mr. Oscar P. Ostergren, well known to the readers of this journai as the inventor of a successful process of liquefying air, and as a mechanical engineer who has made some notable improvements in steam engine design, now comes forth with an invention in which he claims to have solved the problem of utilizing kero sene, heavy oil, or crude oil in an engine without any danger, without the attendant objectionable odors and deposits, and with but a tithe of the operative cost of present types of internal combustion engines. The inven tion in question so far from being on un tried mechanical device has been succes fully introduced by the Fuel Oil Power Com pany, 50 Wall Street, New York. There are in progress of construction a 25 horse power reversible marine engine and also a 30 horse power four-cylinder reversible self-starting automobile engine, the designs of which at present are not for publication. The accompanying illustrations, however, represent a 50 horse power stationary engine in perspective and in section. In order that a statement of the general merits of the invention may be appreciated at its true worth, some explanation of the operation becomes necessary.
Broadly considered, the apparatus comprises three elements-the engine itself, a pressure device for feeding oil to the engine, and a compressed air reservoir for starting the engine automatically. The engine pictured is of the single-cylinder, two-cycle type. Its hollowed trunk-piston A is finished off with a conical cap conforming in shape with the cylinder-head, on which a spring-pressed poppet valve B is mounted for the injection of the oil. As the piston A of the engine moves down, the air within its hollowed or recessed portion A^{1} is compressed, driven into the air-jacket C, then through the annular port C^{1}, and into the cylinder. The blast of air thus forced into the cylinder discharges the previously burnt gases through the annular port C^{2}, and leaves in their stead fresh, pure air, which, after compression, and simultaneous eleva tion of temperature, is ready to receive the fuel at the proper period. The evacuated gases are not discharged into the atmosphere directly but are allowed to flow from the annular conduit surrounding the exhaust port into a fuel preheater in which a worm-shaped fuel conduit is contained.
On its upstroke the piston A closes both ports C^{1} and C^{2}. The suction valve D is now opened, whereby air is admitted into the cylinder. The valve is kept open during the upstroke, but the pressure in the cylinder of the air thus admitted is such that on the downstroke of the engine it does not register more than seven pounds above the atmospheric pressure. By the proper adjustment of the suction valve parts considerable latitude in the amount of this pressure can be obtained in order to vary the rapidity of the discharge of the burnt gases.
As the piston continues on its upstroke, a part of the air is driven through the duct I into the compression chamber E of the auxiliary pressure device, and thence into the chamber of the valve B. When the piston has completed about threefourths of its upstroke, a cam on the engine-shaft L will move the rod F so as to close the inlet from the main cylinder. Both pistons A and E^{1} have up to this point been moved at such a rate that the pressure in the chamber of the poppet valve B and the pressure in the main cylinder are equal. Such is the shape of the cam on the engine shaft that the $\operatorname{rod} F$ and piston E will move very rapidly while the motion of piston A is retarding to ward upper dead center. This condition, assisted by means of the large difference in proportion of final clearance volumes in the two compressors, soon causes the pres sure in the chamber E and the poppet-valve chamber to exceed that in the main cylinder. Consequently when the piston A has completed its upstroke and the piston E^{1} is about half way up, the pressure in the poppet-valve chamber is such that the valve B is opened. The charge of oil contained within the valve chamber is now forced into the main cylinder head, under the constantly increasing pressure of the
piston E^{1} as it completes its upstroke. Combustion now takes place continually until the charge is con sumed. Such is the shape of the cam controlling the movements of the piston rod F, that the piston E^{1} does not complete its upstroke until the engine-piston A has finished one-quarter of its downstroke. During this interval, fuel is forced into the combustion-chamber
check valves, L^{1}, L^{2}, L^{3}, by which the oil is prevented from flowing back under the pressure of the upstroke of the piston A. A walve in the pipe leading from the pre-heater coil is connected with the centrifugal governor of the engine, so that the feeding of the fuel is controlled in accordance with the requirements of speed and load at any particular moment.

The pressure within the compressed-air reservoir H is such that the main piston in one of the cylinders of a two-cylinder engine is easily driven down; and the piston in the other cylinder raised in order to produce a sufficient compression to insure ignition even with cold fuel oil. With a single cylinder, the air from the reservoir drives the piston down, the momentum of the flywheel forcing the piston up again in order to obtain sufficient compression. If the engine shaft be cranked and a relief cock at the top of the cylinder left open until the air from the reservoir is allowed to enter, the starting of the engine is facilitated. Starting is thus effected by lifting the valve K by a cam on which the foot of the rod K^{1} rests.
The compressed air of the reservoir can not be admitted to the cylinder through the ducts J and I when the piston is at dead center, because at that moment the ontlet duct I is closed. Not until the piston is car ried past the dead center can air be allowed to enter.
Summing up ihe meitorious features of this engine, it becomes apparent that the quick though gradual combustion of the fuel renders it possible to subject the cylin der charge to great pressure. As soon as the engine has been started by electric spark, the ignition is effected by reason of the high compression in connection with the raised

OSTERGREN 50 HORSE POWER FUEL-OIL ENGINE.

A has completed its downstroke, the auxiliary piston has returned to its initial position, that is, the position shown in our sectional view. As it falls, the piston E sucks a charge of oil into the poppet-valve chamber B. The oil is fed by gravity or by pressure from a tank into the worm of the previously mentioned pre-heater, and raised to about the height of the three
and is cut off only when the increasing pressure therein closes the valve. B. When the piston A has completed the second quarter of its downstroks, the piston E^{1} will still be held up by its cam. Part of the gases escape through the duct J, passing the valve K, into the com-pressed-air reservoir H, but only when the pressure in the reservoir is less than that of the gases and the spring K
(he last quarter of the downstroke does the piston E^{1} begin to drop. When the engine-piston
re of the atomized oil. By flushing the cyl inder with atmospheric air before injecting the fuel, the well-known impediments of the two-cycle system, chiefly waste of fuel in scavenging and premature igni tion are avoided.

An impulse at every downstroke of the piston is ob tained, thereby increasing the power development and efficiency even above the considerable increase ob tained by high compression alone. The peculiar conical shape of the piston and the cylinder head increase the capacity for heat absorption and radiation, and renders it possible to divide the space containing the charge into a central portion favor able for immediate ignition. From this central portion compartments ramify into which the flame can en ter only as the mixing of the vapo and atmospheric air progresses. The oil, spread in a fine mist, is consumed because of ignition by compression, without harmful consequences if it should be too liberally supplied. The ignition does not start in any one particular spot, as when an electri cal spark is employed, but at any point within the combustion-cham ber where the conditions are most favorable.

A "Mob" Cartridge for Use in

The many strikes of late years have led army officers to direct their inventive skill to the devis ing of a bullet that will be not more deadly to armed mobs, but much less dangerous than the one now in use. A bullet from the present rifle will pierce 18 inches of pine at 500 yards; the human body has only a resistance of 3 inches of this wood. The Ordnance Department has therefore devised what is now popularly called the "mob cart ridge," but which the Departmen euphemistically terms "multi-ball cartridge, caliber 30 ."
The cartridge is composed of a service case charged with a full charge, about 34 grains of smoke less powder, and two round balls held in the neck of the case by a cannulure at the lower end and a crimp at the upper. The balls are made of a mixture of lead and tin in the proportion of 16 to 1 , and are slightly coated with paraffine. The diameter of the ball is 0.308 inch, and the weight is 42 grains. The cartridges have sufficient accuracy for effective use at 200 yards, at which range a slight ele vation is required. At one hundred yards it is neces sary to fire point blank.

AN IMPROVED TYPE OF SWAGE BLOCR

We show in the accompanying engraving an improved type of swage block invented by Mr. Horace B. Blood, of 89 Webster Avenue, Rochester, N. Y. For the benefit of those of our readers who are not acquainted with the term, we would define a "swage block" as a heavy iron block or anvil provided with notches and perforations which may be used by blacksmiths in shaping metal. The swage block illustrated

an improved type of swage block.

is so arranged that it may be readily clamped in any desired position and may as readily be released whenever it is necessary to adjust the anvil to a different position. The block it will be observed has trunnions or journals which engage open bearings formed on the top of the standards of the frame. The standards are connected with each other at their lower ends by bolts. Midway of their height they are connected by a clamping device which consists of a rod revolubly secured to one standard and threaded into a nut in the other standard. By operating a crank on this rod the upper ends of the standards may be drawn together to bind against the ends of the swage block and hold it from turning. Inwardly-directed flanges are formed on the standards just below the trunnion bearings, and these on being drawn inward form firm supports for the swage block when in horizontal posi tion. The recesses lying between these flanges receive and securely hold the swage block when turned to vertical position. When the swage block is held at other angles the flanges sink into grooves formed in the ends of the block around the journals. The usual variety of notches, recesses, perforations, etc., are provided for assisting in upsetting bolts, shaping horseshoes, and forming all other devices which a blacksmith may be called upon to make. The construction of this swageblock is the extreme of simplicity, and the operator will find the tool useful because it may be so easily released from one angle, so readily adjusted to any other angle, and then so quickly and firmly clamped in the required position.

the Rapids Of sault ste marie.
ness; being constructed as an endless band charged with carborundum and running at great speed.
An excellent representation of ore in place in the An excellent representation of oremplished by filling the saw cutting with a semi-transparent colored substance mottled to show the structure of the vein.
In assembling the various plates the horizontal planes are coated with a transparent substance adjusted to the same refractive index as the glass, there-

A GLASS MODEL OFA MINE SHOWING UNDERGROUND WORKINGS.
by making the entire model optically homogeneous and avoiding the annoying reflections caused by a series of horizontal polished planes.

THE "SOO" SHIP CANAL SYSTEM--THE FIFTIETH ANNIVERSARY OF ITS COMMENCEMENT.

by day allen willey.
This month marks the fiftieth anniversary of the digging of the Sault Ste. Marie Canal system. On June 4 a celebration, international in its character, commemorated the work begun a half century ago. Representatives of the United States and Can adian governments, in addition to prominent officials of Michigan and other States bordering on the Great Lakes, participated. Their presence was appropriate; for the importance of the canals both to this country and the Dominion is indicated by the traffic which passes through them Since the gates of the canal locks were first opened, the commerce of the upper lakes has developed to such an extent that during the past year nearly $36,000,000$ tons of freight passed into Lakes Huron and Superior. This is an increase of $7,500,000$ tons over any previous year in the history of the canals, and, as is well known, is far greater than that of any other artificial waterway in the world. In fact. the "Soo" has been con trasted with such passages as the Suez, which, furnishing a short route between two continents, is perhaps the next in commercial importance. This canal, although it cost $\$ 140$, 000,000 in round numbers represents an average yearly traffic of less than $10,000,000$

S. S. "NORTHLAND" AT SAULT STE. MARIE.

GATE-OPERATING MECHANISM AT SAULT STE. MARIE.
tons, so that tho business done by the "Soo" is more than three times as great
The history of the American enterprise is of interest, since it may be called the pioneer engineering work of the Northwest. In 1852 Congress made a land grant of 750,000 acres to the State of Michigan, which enabled the commonwealth to begin work. Excavation was begun on June 4, 1853, and, considering the crude facilities for construction, the canal was completed in a remarkably short period, being opened in June, 1855. The Canadian system or the St. Mary's Falls Canal parallels the north shore of St. Mary's River. It is but $11-3$ miles in length, and is a comparatively new project, having been completed less than a decade ago. With the completion of these systems began a new era in lake commerce. As the vast natural resources of the country tributary to Lake Superior were afforded an outlet to market by this means, the number of vessels passing through the American canal increased to such an extent that the necessity of enlarging the waterway was made imperative. The passage was widened and deepened to such an extent that it was practically rebuilt. With the greater depth of water, vessel builders on the lakes availed themselves of the opportunity to construct larger craft. It may be said that marine architecture has developed in proportion to the improvements made. Then came the development of the great ore beds in the Mesabi range and vicinity, from which about 220,000,000 tons have thus far been taken. This was a most important factor in further expanding the commerce of the upper lakes passing through the canals, until in 1895 no less than 17,956 vessels were locked through, carrying $16,807,000$ tons of freight. It is to be noted, however, that in less than ten years the traffic has more than doubled. This is why the further enlargement of tive Michigan canal is under considera tion, and it is not unlikely that the government will decide upon plans to be carried out within the next few years. As it is, the famous Poe lock was not opened to navigation until 1896, but in spite of its great capacity blockades are quite frequent.

A comparison with other notable waterways in addi tion to the Suez gives a clearer idea of the importance of the American Sault. While one of the shortest of canals (its length is only three miles), from 75 to 125 steamships, barges and other craft pass through it every 24 hours, despite of the fact that lake carriers have been so greatly enlarged. The Suez, including the lakes which form a portion of its channel, is 100 miles long, and its torls annually amount to about $\$ 15,000,000$. The Kaiser-Wilhelm Canal, which is $611-3$ miles in length, cost $\$ 40,000,000$, yet its annual traffic represents only about $2,500,000$ tons, while its yearly receipts range from $\$ 275,000$ to $\$ 300,000$. The Man chester Canal, which has given the city of this name in Great Britain the advantages of a seaport, is $351 / 2$ miles in length and cost in round numbers $\$ 75,000,000$ including its wharf system. The freight tonnage passing through it annually has increased to about 2,500 , 000 , while its tolls aggregate between $\$ 1,000,000$ and $\$ 1,250,000$. Next to the Sault, its locks are among the most extensive in the world, being 600 feet in length. Of the smaller European canals, the North Sea is probably the most important, being 16 miles in length and having a traffic of about $5,000,000$ tons of freight yearly Its cost was $\$ 40,000,000$. The Elbe and Trave Canal in northern Europe is 41 miles in length, but navigable only by small vessels, as it is but 10 feet in depth. The Cronstadt in Russia, 16 miles in length, has a depth of $201 / 2$ feet and cost $\$ 10,000,000$, the former costing $\$ 6,000,000$. The waterway which will connect Berlin with the ocean will be one of the most important when completed, as it will have an average depth of 25 feet and will represent an outlay of about $\$ 50,000,000$ accord ing to the calculations of the engineers. Considering the difficulties involved in its construction, the cost o the Sault canal in its enlarged form is not considered excessive, being less than $\$ 10,000,000$. It is the deepest fresh-water canal, with one exception, in the world, craft drawing 18 feet of water being able to go through its locks without difficulty.
As already stated, the building of the Sault Canal has proved a stimulus to the development of shipbuilding on the lakes, allowing ore barges and steamships capable of carrying as high as 7,500 tons of cargo to be constructed for the service between the Lake Superior deposits and the receiving ports on Lake Erie. It also led to the building of the Northern Steamship Com pany's fleet of vessels for passengers exclusively which are notable for their proportions. Incidentally it might be added that yearly 60,000 passengers go through the Canadian and American canals. In addi tion to iron ore, lumber and grain constitute a large proportion of the tonnage, although the bulk of the $27,000,000$ tons mined in the Mesabi region and vicinity during 1902 was shipped to the smelters by vessel. In fact, the construction of the canals has led to considerable railroad building in Pennsylvania. It is perhaps unnecessary to refer to the Pittsburg, Bessemer \& Lake Erie, completed principally to carry this ore from it lake terminus at Conneaut to the Pittsburg district
epresenting 233 miles of trark and a cost of $\$ 10,009,000$. One factor which aided in the construction of the American canal was the comparatively small difference between the level of Lake Superior and that of Lake Huron-20 feet; but it contains the most capacious lock of any waterway in the world-the famous Poe lock, named after the engineer who planned it. This is 800 feet in length, 100 feet in width, and 21 feet in depth. The entire length of its side walls is 1,100 feet, ranging in thickness from 20 feet at the bottom to 10 at the top. The flow of water is controlled by five gates of steel, the upper ones having a height of $261 / 2$ feet, the intermediate 43 , and the lower 25 feet. Each leaf of the smaller gates weighs 100 tons, the larger representing 190 tons. Two plants are utilized, that for operation being entirely independent of the pumping machinery. The latter consists of twelve engines, of which three are of 350 horse power each, which are held in reserve for emptying the lock in case of accident. They are connected with three 30 -inch centrifugal pumps, and it is an actual fact that the lock chamber can be filled and emptied in seven minutes. It is filled by means of lateral sluices. This lock represents more than half of the cost of the canal, as the total outlay for it was $\$ 5,000,000$. The other lock on the American waterway is but 500 feet in length and 80 feet in width. This is termed the Weitzel, and with its companion furnishes the necessary canal levels.
Reference might be made to the somewhat curious combination of power and ship canals in this locality. Not only are vessels afforded passageways on the American and Canadian sides of the river, but, as is well known, two of the most extensive power canals in the world have been constructed as well, both by the same company. The American canal represents a cost of about $\$ 4,000,000$, being two miles in length, 30 feet in depth, and having the remarkable width of 200 feet. It supplies power for a series of 320 turbine waterwheels, and is calculated to develop at least 57,000 horse power for generating electrical current and other purposes.

Motor Racing and Motor Records-A Retrospect.

In view of the very great interest that is being aroused in the forthcoming race for the Gordon Bennett Cup in the United States, France, Germany, and England, a few notes on the past history of motor-car racing may not be unacceptable. In 1890 Gottlieb Daimler introduced the petrol gas-motor, and in 1894 M. Pierre Giffard, an editor of the Petit Journal, organized a motor race, or rather a trial race, from Paris to Rouen. Handsome prizes were offered, and the competitors started, some using steam, others petrol cars. The winning car (a Panhard-Levassor with a $31 / 2$ horse power Daimler engine) reached a trial speed of 13 miles an hour
In 1895 a race from Paris to Bordeaux and back again to Paris took place. M. Serpollet, who in 1889 had produced a steam-driven tricycle fitted with his own type of boiler; Comte de Bion and M. Bollée entered steam cars. An electric car, the Jeantaud, also took part, but the petrol cars proved their superiority and carried off the prizes, which amounted to $£ 2,500$.

The winner was Mr. Levassor, who đrove a 3.5 horse power carriage (driven by a Daimler motor) weighing about 12 hundredweight. The total distance was 732 miles, and this was accomplished in just under 48 hours 47 minutes, or at an average speed of nearly 15 miles an hour.
"Prior to this race," said M. Charles Jarrott in a recent paper read before the Automobile Club, "sev eral racing events had been held which had aroused some little interest, but it was not until this really great race that any of us realized the future of th automoblle. As a physical feat it was marvelous.

The great point, however, which was forced home on our mind was the fact that the possibilities of the motor had been proved. Both the distance that was covered and the average speed of nearly 15 miles an hour which was maintained, seemed to us marvelous."

It was after the Paris-Bordeaux race of 1895 that the Automobile Club of France was formed, the pionee of the many great motor clubs to be found all over the civilized world.

In 1896 a Paris-Marseilles-Paris race, a distance of 1,061 miles, was organized by the new club. It was won by M. Majade on the first four-cylinder, four horse power Panhard-Levassor car built by the now worldfamous firm, in 67 hours 43 minutes, at an average speed of over 16 miles an hour. Of twenty-two starters, only nine finished, as the weather was very unfavorable.

The second car-a Panhard-was driven by the Chevalier René de Knyff-one of the most famous of modern chauffeurs-who can boast the proud dis tinction of having attained the fastest speed on a car during a contest.

At one stage of the Paris-Vienna race the chevalier was timed to be traveling on a down grade at no less
than 98 miles an hour. The thirid car-also a Renhard -was driven by Mr. Levassor, who experienced a very bad smash-up in trying to avoid a dog and died shortly afterward. His mechanic, however, drove it into third place. Among other competing cars were some made by Delahaye, Peugeot and De Dion-Bouton.

In the Paris-Bordeaux race of 1897 the Chevalier de Knyff came off victor. The distance (573 kilometers $=$ 356 miles) was done in 15 hours, an average of 38 kilometers (24 miles) per hour. In the Paris-Dieppe and Paris-Trouville races of this year an average of 26 miles an hour was maintained.
In July, 1898, the Paris-Amsterdam race, the first or the big inter-country races organized by the Paris Automobile Club, took place. The winner was M. Charron, who did the 152 kilometers on an 8 horse power Panhard in 33 hours 4 minutes-or at an average of 27 miles an hour. In this contest some of the fourcylinder, 8 horse power Panhard cars were seen for the first time.
The two big events of 1899 were the Paris-Bordeaux race and the "Tour de France." The former- 351 miles -was won by M. Charron on a 12 horse power Panhard, who came out with an average of 34 miles an hour, the distance being accomplished in 11 hours 43 minutes without a stop. In the Tour de France, the longest motor race ever held, the Chevalier de Knyff, on a 16 horse power Panhard, did the 1,440 miles in 43 hours 33 minutes.
Other races of 1899 were the Paris-St. Malo (200 miles), won by M. Antony on a 16 horse power Mors in 7 hours 32 minutes; the Paris-Ostend (204 miles), in which M. Giradot on a Panhard and M. Levegh on a Mors tied for first place; Paris-Boulogne (143 miles), won by M. Giradot on a Panhard, and the BordeauxBiarritz, won by M. Levegh on a 16 horse power Mors. In June, 1900, came the first Gordon Bennett race. In 1899 Mr . James Gordon Bennett presented the Automobile Club de France with a work of art to be raced for by motor cars and to be held as an international trophy. It is generally known as the "Gordon Bennett Cup," but it is in reality no cup, but a piece of plate in the form of a model of a motor car carrying two figures, "in anything but motor-car costume," as some one has remarked. The "cup" is now to be seen in the drawing-room of the club house of the Automobile Club in Piccadilly
The rules for the cup include the following: Any recognized club may enter three cars to represent its own country; every car competing must have been constructed entirely in the country it represents; the race must be held in the country holding the cup, or failing that, in France.
The first Gordon Bennett race was from Paris to Lyons, a distance of 556 kilometers. It was won by M. Charron, who drove a Panhard-Levassor car; his average worked out at 61 kilometers.
In July, 1900, a Paris-Toulouse-Paris contest took place. The winner was M. Levegh on a 24 horse power Mors, who covered the distance of 836 miles in 26 hours 43 minutes, or at an average of 42.7 miles an hour.
It was in this race that the really big racing car made its appearance for the first time. The 24 horse power Mors beat the Panhard cars, and the fierce rivalry between the two great firms then had its origin. In the Paris-Bayonne race De Knyff attained a mean speed of 43.4 miles an hour; the distance being 208 miles. He drove a 20 horse power Panhard, and during one part of the race he is said to have done $341 / 2$ miles in $331 / 2$ minutes. The other interesting races of 1900 were the Bordeaux-Perigueux (252 kilometers), won by M. Levegh in 2 hours 40 minutes, or at an
average of 51 miles an hour, and the Paris-Rouenaverage of 51 miles an hour, a
the first alcohol race ever held.

Motor-car racing now became exceedingly popular on the Continent, and space forbids anything but the briefest mention of the most famous contests.

On May 29, 1901, the Paris-Bordeaux race (328 miles not counting the neutralized sections), was held and was won by M. Fournier on a 60 horse power Mors in 6 hours 11 minutes, at an average of $533 / 4$ miles an hour. His fastest timed piece was $171 / 2$ miles in 15 minutes. In this race the 50 horse power Napier made its apnearance for the first time.
The Gordon Bennett cup race was run simultaneously over the same course. The only three competitors were a'll Frenchmen, viz., MM. Charron, Levegh and Giradot. Only the last-named finished
In June, 1901, came the Paris-Berlin race, when M. Fournier again proved victorious, covering 686 miles in 16 hours 33 minutes, or at a mean velocity of over 44 miles per hour, excluding 63 miles of "con trolled" district, through which each competitor had to follow a cyclist at 6 or 8 miles an hour in order to insure the safety of the public and effectually pre vent an attempt at racing through crowded places.

The Paris-Vienna and the Gordon Bennett cup races were the most important racing fixtures of 1902. The latter was run over part of the same course (Paris Innsbrück, 379 miles) as the former, and at the same time. It was won by Mr. S. F. Edge, A. C. G. B. I., the
only English representative; France-the only other nation represented- intered three chauffeurs.
"Personally, I shall never forget," writes Mr. Jarrott, "my elation when I saw the great hope of France -Fournier-out of the race on the first day, Giradot having already finished his effort soon after the start, leaving De Knyff the sole champion for France. With Edge in slight trouble, but still going well, England's hopes at the end of the first day were much brighter than at the beginning."
The Paris-Vienna contest was won by M. Marcel Renault on a 16 horse power voiturette. The distance was 615 miles (after deducting the Swiss or neutralized portion of the route), and it was done in 15 hours 47 minutes 43 seconds, or at 40 miles an hour. It is noteworthy that 75 per cent of the starters arrived at Vienna. M. Henri Farmar was second (16 hours 0 minutes 30 seconds), M. Edmond was third (16 hours 10 minutes 16 seconds), and Count Zborowski was fourth (16 hours 13 minutes 29 seconds).
The other most important contests of 1902 were the Circuit du Nord Alcohol race, $5711 / 2$ miles (865 kilometers), won by M. Farmar on a 40 horse power Panhard in 11 hours 55 minutes, or at an average of 47.69 miles an hour, and the Circuit des Ardennes (318 miles, 512 kilometers), won by Mr. Charles Jarrott in 5 hours 53 minutes 39 seconds, giving an average speed of 54 miles an hour. M. Gabriel was second, and Mr. W. K. Vanderbilt, Jr., third.
The superiority of the petrol car over the steam or electric for racing purposes has been abundantly proved. According to the Hon. C. S. Rolls, steam cars have only gained first place on two occasions, viz., the "Concours du Petit Journal" in 1894, and the Marseilles-Nice-Turbie race in January, 1897, when a De Dion brake covered the rough and billy route of 145 miles in $73 / \pm$ hours.

Year.	Course.	Mean Speed of Winning Car.	$\xrightarrow[\text { Winning }]{\text { H. P. of }}$ Car.
July, 1894	Paris-Rouen (128 km.)	$\underset{13}{\text { Miles an }}$ hour.	31/2
$\begin{aligned} & \text { June } 11, \\ & 1895 \end{aligned}$	$\underset{\text { Paris-Bordeaux-Paris (1,200 }}{\text { (Winner M. Levassor) }}$)	15	3.5
$\begin{aligned} & \text { Sept. } 24, \\ & 1896 \end{aligned}$	Paris-Marseilles-Paris (1.700 km.) (Winner M. Mayade.)	16	4
1897	Paris-Bordeaux (Winner Chevalier Rene de Knyff.)	24	.
July 24, 1897	Paris-Dieppe (170 km .)	25	3
July 7, 1898	$\underset{\text { Paris-Amsterdam-Paris (} 1520 \mathrm{~km} \text {.) }}{\text { (Winner M. Gharron) }}$	27	8
May 24, 1899	Paris-Bordeaux (565 km .) (Winner M. Charron)	34	12
July 16, 1899	(Winner Chevalier R. $\begin{gathered}\text { The } 219 \mathrm{~km} \text {.) } \\ \text { Knyff.) }\end{gathered}$	29	16
July, 1900	Paris-Toulouse-Paris (Winner M. Levegh)	4;	24
May 29, 1901	Paris Bordeaux ($52 \%^{7} \mathrm{~km}$.) (Winner M. Fournier)	5334	60
$\text { June } 27-30$ 1901	Paris-Berlin (1,198 km.) (Winner M. Fournier)	44	28
1902	$\begin{gathered} \text { Parıs-Vienna } \\ \text { (Wimner M. Renault) } \end{gathered}$	40	16

	THE GORDON	BENNETT CUP.
Year.	Course.	Wiuner.
June. 1900	Paris-Lyons	M. Charron on a P Panhard-Levass
1901	Paris-Bordeaux	M. Giradot on a Panhard
1902	Paris-Innsbruck	Mr. F. S. Edge on a Napier

A Remarkable Surgical Operation by Which Sigh
Was Restored to a Congenitally Blind Man.
Readers of the Scientific American have doubtles noticed in the daily press brief accounts of the remarkable case of a man whose sight has been restored after thirty years of blindness. In the current number of the Lancet, Dr. A. Maitland Ramsay, the surgeon by whose skill the unfortunate was enabled to see the world which had been shrouded in blackness to him since his birth, publishes a very complete ac count of the case.
The patient, aged thirty years, blind from birth, was brought to the Glasgow Ophthalmic Institution on Feiruary 24,1903 . He had been allowed to run about as he pleased, no attempt to educate him having ever been made. He became, however, so familiar with the country district (a few miles from Glasgow) in which he resided that he could go about without the slightest fear; and his hearing was so acute that he knew at once if there was anything unusual on a road along which he was walking, and thus he never had any difficulty in keeping himself out of danger. As he passed along a road he could tell a wall from a hedge by the sound of the air coming through the leaves and branches of the latter. He could easily go on an errand to any house in his native village, for the resonance of his footfall-quite different in sound when he was passing a building from what it was when he was opposite an open space-enabled him, perfectly familiar as he was with his surroundings, to count the houses as he passed, and thus to turn cor-
ners and finally to stop at the one which he wanted. He distinguished different blossoms partly by touch but chiefly by smell, and by dint of asking questions he got at last to know so much about their form and color that he could arrange them in a bouquet. Occasionally he worked in the harvest field and he could bind the corn and arrange the stooks as well as any of the other laborers
The patient was quite unable to distinguish objects, although he could tell day from night and could easily perceive a light and locate it accurately; he seemed to have had no perception of bright colors.
As a cataract seemed to be the only obstacle to vision Dr. Ramsay resolved to operate and extracted the lens from the right eye on Miarch 11, and that from the left eye a week later. Both lenses were small and shriveled and the nucleus of the right was calcareous. For about ten days after the operation on the left eye the patient appeared to be quite dazed and could not realize that he was seeing. The first thing ne actually perceived was the face of the house surgeon He said that at first he did not know what it was that he saw, but that when Dr. Stewart asked him to look down, the sense of hearing guided his eye straight to the point whence the sound came, and then, recall ing what he knew from having felt his own face, he realized that this must be a mouth, and that he must be looking at a face. Once he properly understood what vision meant he made very rapid progress and his extraordinarily retentive memory enabled him. to take full advantage of everything that he was told. He was quite ignorant of color, but learned to distinguish hues very quickly. The first tint that he saw was red. A red blanket lay across the foot of his bed He asked what it was and was told, and never after ward did he have the slightest hesitation in discriminating red again. He was shown a narcissus, and on being asked to describe it he immediately recognized the flower and knew from his old bouquet-making ex perience that it was white and yellow, but he now for the first time also became aware of the little red band in the center and at once called attention to it. When he was shown a bunch of daffodils he recognized them by their smell and immediately said that they must be yellow. The color that took him longest to master was green, but he can now name all ordinary tints readily and correctly. His difficulty with green is hard to explain unless it be that with green he has no smell-association such as he had with colored flowers. Unlike Locke's blind man, who imagined that "scarlet was like the sound of a trumpet," he does not seem to connect any distinct ideas with particular colors except that he said that red gave him a feeling of pleasure and that the first time he saw yellow he became so sick that he thought he would vomit. The latter feeling, however, has never recurred.

He rapidly learned the letters of the alphabet and figures and he will soon be able to read and to reckon From the very first he saw everything in its actual position, showing that the retinal inversion of a picture is interpreted psychically without any education

He could count accurately after he had looked a objects one by one and seemed to derive much help in his calculations by pointing with his finger. Here again he seemed to translate touch into vision and to arrive at a perception of the whole through the perception of the individual parts. He cannot take things in at a glance. He does not see the passers-by on the opposite side of the street quickly. He looks most intently and moves his head backward and for ward and from side to side as if trying to get a view of them all round before he can make up his mind what he is seeing; in a room, however, he can dis tinguish things much more quickly. With any complex outline, however, or group of outlines, he still has considerable difficuilty, though pictures are no longer to him, as they were at first, mere masses of confused color
He was able to estimate size and distance more readily that might have been anticipated, although he said that he felt that if he were out of doors by himself he would be "wandered." From the time he got out of bed after the operation he could guide himself with ease through a dcorway and walk about on the level but he had considerable difficulty in ascending a stair, because the steps seemed so high that to begin with he raised his foot much farther than was necessary and without meaning to do so went up two steps a a time. Whenever he discovered his mistake he began to pay attention to the rise of each and he has now no difficulty in estimating their height. This, of course, was part of his difficulty in judging distance, though when he first looked out of a window on to the street and saw the pavement below he said that he felt that if he had a stick he should be able to touch it. Before the operation he could guide himself fear lessly through a ward without coming in contact with the beds or any other obstacle that might be in the way, but since he has been able to see he says that he has lost all that feeling of confidence and when his eyes are shut he is afraid to move and is impelled to
open them to ascertain where he is going-so much so that he does not know what he would do if he again became blind.

When he is requested to look in any particular di rection he is unable to cause the ocular muscles to do what he wishes, and the balls oscillate and one or other turns inward to such an extent that a portion of the cornea is hidden by the inner canthus. 'fhis want of control renders it very difficult to make a satisfactory ophthalmoscopic examination, but as far as can be made out the fundus oculi is normal; indeed, the functional activity of the optic nerve since the cataracts were removed is very remarkable and is in striking contrast to the purposeless muscular movements. Disuse has crippled the function of the latter, but seems to have had but little effect on the activity of the former. The eye is a receptive organ and the light that gained access to the retina through the opaque lens proved stimulus sufficient to maintain the optic nerve in health, while the want of visual power deprived the co-ordinating center in the brain of all stimulus to develop and hence the ocular muscles are not trained to obey the dictates of the will.

New Motor Cycle Records.

On the Empire City track new records were made for motor cycles on May 27, 1903. B. Oldfield made a three-mile trial with the following result: One mile, 1 minute $63 / 4$ seconds; two miles, 2 minutes 1 seconds; three miles, 3 minutes 19 seconds. The second mile was made in 1 minute $51 / 4$ seconds. The record for the track was 1 minute $64-5$ seconds, made by Fournier on October 9, 1901.

Albert Champion made a five-mile trial with his four-cylinder motor cycle. His times were: One minute 14 seconds, 2 minutes 24 seconds, 3 minutes 57 seconds, 5 minutes 9 seconds, 6 minutes $161 / 2 \mathrm{sec}$ onds. Then he went for a mile with a flying start He made the half in $351 / 2$ seconds and the mile in 1 minute $61 / 2$ seconds.
This time for the mile is lower than the new record established by Fred Chase, the English motor cyclist Chase made the mile with a flying start in 1 minute 6 3-5 seconds at Canning Town. The previous Ameri can record was 1 minute $102-5$ seconds, made on the Vailsburg track by Champion last year. The timing was done by three competent horsemen, but the fig ures cannot be accepted as a record.

The Current supplement.

The Paris correspondent of the Scievtifle AmeriCan opens the current Supplement, No. 1431, with an article on the Paris-Versailles road, illustrated by many striking pictures. Sir Oliver Lodge continues his admirable discussion of electrons. Count Arco who in conjunction with Prof. Slaby invented the Slaby-Arco system of wireless telegraphy, contributes a paper on a new process for tuning spark telegraph stations. Something about the preparation and use of decalcomania papers will doubtless be welcomed. "Restorations and 'Fakes"" is the title of an enter taining archæological article which deals with the skill of the modern craftsman in repairing and remodeling ancient statuary. John D. Rees tells much of interest about domestic life in India. Mr. A. F Yarrow has made some instructive experiments to ascertain the best design of screw propulsion for shallow-draft boats. His conclusions are published in the current Supplenent. Mr. William J. Hammer discusses the treatment of diseases by ultra-violet rays.

Third rail troubles from sleet adhering to the rail have been overcome on the line of the Aurora, Elgin \& Chicago Railway. A solution of brine, stored in a tank on the front platform of the car, is fed upon the rail through a $1 / 4$-inch rubber tube. It is applied 5 feet to 10 feet in front of the first contact shoe, and acts so quickly that the first shoe, it is said, will get current, this treatment apparently rendering the ice a good conductor Eight gallons of brine suffices, so it is reported, for a run of 24 miles.

Harvey T. Woodman, of Mount Vernon, N. Y., died on M'ay 25. For more than forty years he was en gaged in the collection of shells, corals, and prehistoric relics and fossils for museums, colleges, and private collectors. It was he who remodeled Castle Gar den into its present Aquarium. He likewise helped to build college museums of natural history for Harvard, Princeton, Columbia, Cornell, and other universities.

Thomas A. Edison has been appointed one of the Board of Technical Directors of the Marconi Wireless Telegraph Company. He has formally transferred to the Marconi Wireless Telegraph Company several patents having a bearing on the transmission of wire less messages. It is rumored that Prof. Michael I P.upin, of Columbia University, will likewise join the company as a technical adviser.

A NEW APPARATUS FOR DETERMINING THE RESISTANCE OF ROAD VEHICLES TO TRACTION.
by the english correspondent of the scientific american
Some interesting experiments have been carried out for some time past in Great Britain by Prof. HeleShaw and a committee of engineering experts, to de-

GENERAL VIEW OF THE RECORDER.
termine the resistance of road vehicles to traction Although the scope of these investigations has been conducted upon an extensive basis, they will be of value chiefly to chauffeurs
For the purpose of his investigation Prof. HeleShaw devised a new dynamometer specially made for these experiments concerning the resistance of road vehicles to traction. The apparatus comprises a castor frame $A A$ shown in the diagram, in which frame is

TOP PLAN OF THE RECORDER.
mounted the wheel B; a system of levers $C C$ for transmitting to a small plunger E the pull exerted on the wheel; and a recording gage for registering the same, as well as a recording tachometer. The castor frame is rectangular in shape and is constructed of wrought iron. The frame is 6 feet in length. The end plates are drilled with three sets of holes, thereby enabling the sides to be adjust ed to 10 inches, 14 inches or 16 inches apart to accommodate wheels of various widths. The axle of the wheel to be used for the experiments is mounted on springs one on either side of the castor frame. These springs can be regulated to any desired strength when a light wheel is inserted in the frame, or when a light load is used, by simply removing some of the plates; while if so desired, the axle can be mounted without the springs. The frame is loaded by bolting a number of 28 -pound weights of cast iron to the channel sides of the frame. These weights are made only two inches in thickness, so that when the iron scrolls of the springs do not interfere, 52 or thereabout can be attached, thus giving an aggregate load of 13 hundredweight in addition to
the weight of the frame and wheel. This gives a weight corresponding to $31 / 4$ tons on a four-wheeled vehicle. By this system of loading, the weights can be varied by steps of 56 pounds, the weight being always placed equidistant on either side of the frame, so that perfect equilibrium is constantly maintained.
The castor frame is attached to the car by fixture to the levers, which transmit the force to the water by means of a swivel joint D so that freedom is given to vibration or vertical bouncing, such as is encountered when traveling over rough, uneven ground, while furthermore it enables the car to follow freely round any curve without disrupting, the records being so held that the experimental wheel is always vertical.
The system of levers is arranged in such a manner that the frame can be raised or lowered to accommodate a wheel of any diameter or any angle of draft without disturbing or altering the leverage of the mechanism. The arrangement of these levers may be described as follows: There is a fulcrum which may be raised or lowered in a vertical slot in a steel casting firmly fixed on the back of the car, upon which is fixed a pair of bell-crank levers. The lengths of these levers from the fulcrum are respectively 14 inches and 28 inches. The longer arm is vertical, and the other smaller lever is horizontal. Two parallel vertical rods of steel, which may be adjusted as desired, are attached to the shorter arm. These rods transmit the pull on the frame to the end of a small horizontal lever. to the other end of which the hydraulic plunger is attached. The fulcrum of this lever is provided with four positions, so that the pressure on the plunger may be made equal to one, two, four, or eight, times the pull exerted on the castor frame. By this arrangement the apparatus may be employed over a wide range of experiments for tractive efforts from 5 to 500 pounds. The hydraulic plunger E, which is 2.6 inches in diameter, exerts pressure upon a rubber diaphragm inclos ing a space filled with water, and it is the pressure of this plunger upon the water that is recorded. Two pipes are connected to this water space, the objects of which are to transmit the recorded pressure to the gage, and the other to fill the space with the requisite water. A rubber ball or bulb filled with water is fixed to one end of this latter pipe, and when the ball is squeezed the water is forced through the system and out of a small hole in the Bourdon tube All air is thus excluded, and the system is then closed and the water retained.

The recording apparatus consists of a combined pressure gage and tachometer mounted on a common base and recording upon an identical horizontal drum carry ing a band of paper $81 / 2$ inches wide. On one side of this paper is the graph of tractive effort space, and on the other the velocity space. The drum is revolved off the tachometer spindle, so that its motion is identical with the motion of the car, a length of 10.3 on the paper corresponding to a mile of road. This instrument is mounted in a glass case upon a pneumatic cushion with a flexible shaft driving to the drum and tachometer. By this arrangement steady records may be ob tained when driving at a high speed over a rough road. Undue shocks on the gage are prevented, by means of stops, which obviate too excessive a movement on the levers. The revolutions of the experimental wheel are also independently obtained by a revolution counter and this register serves as a check on the record of the apparatus
The dynamometer was calibrated in the following manner: The car and dynamometer were brought into position on a smooth horizontal floor, and a 40 inch lorry wheel was placed in the castor frame. The car was fixed so as to prevent its moving back ward, and a predetermined load was fixed to a wire

THE DYNAMOMETER ON THE ROAD.
connected to the top of the wheel and passed over the tire so that it depended vertically; this position exerting the tendency to pull the frame away from the car. A load was applied, and the apparatus submitted to a severe vibration, so as to prevent all possibility of its sticking in any way, the paper at the same time being

TOP PLAN VIEW OF THE RECORDER, SHOWING THE DRUMS FOR RECORDING THE MILEAGE PER HOUR AND THE POUNDS PER SQUARE INCH
moved steadily and uniformly until the pencil of the gage occupied the position of equilibrium. This was the modus operandi with every reading. During the calibrating of the leverage of 8 to 1 , additions of 2 pounds were employed in nearly every case from 0 to

SIDE ELEVATION OF THE RECORDER.

THE DYNAMOMETER APPLIED.

28 pounds. For the 4 to 1 leverage calibration, increases of 14 pounds were taken; after 14 pounds had been reached the highest reading being 168 pounds. The 2 to 1 leverage had 14 -pound increments, the maximum being 280 pounds; and the 1 to 1 leverage had increments of 28 pounds up to a total of 580 pounds.
To calibrate the tachometer, an electric motor was utilized. A stop watch for readings of $10,15,20,25$, and 30 miles per hour, was employed to time exactly the three revolu tions of the drum. Three revolutions of the latter corresponded to 315 revolutions of the tachometer spindle. The mean diameter of the rear wheels of the car is 842 mm . when the car was bearing a normal load, and the tires were normally inflated The diameter of the pulley on the back axle is 225 mm .; and the diameter of the tachometer pulley is 75 mm

To operate the dynamometer and the tachometer during a trial, the castor frame is forced toward the car so as to push the ram as far out of the cylinder as it will go. The bulb, which has previously been filled with water, is then squeezed, thus forcing the water into the cylinder, then through the connecting
tubing, finally escaping through the pressure gage, as already described. When all the air has been expelled from the cylinder, the cocks at either end of the system are closed. The stops are then adjusted so that the maximum pressure of the water cannot exceed a pressure of 100 pounds per sqliare inch, this precaution being taken to prevent the pressure gage being destroyed, as might possibly otherwise be the case in the event of a greater pressure being exerted. Adjustments completed, a stretch of road is selected for the car to run over for a certain distance, and then back again to the starting point. The return journey is made for the reason that by taking the mean values for the run there and back, it is possible to eliminate the effect of inclines, and thus obtain a perfectly correct result. The load on the car is then augmented and the journey made again, and so on in the same manner, as desired.
The first run was made with a light iorry wheel of 40 inches diameter shod with a 3 -inch iron tire mounted on springs of 3 feet 2 inches centers each, with six plates $21 / 4$ inches by $5-16$ inch. Three runs were made with this wheel with three loads- $31 / 2$ hundredweight, $51 / 2$ hundredweight, and $81 / 2$ hundredweight respec. tively. The first trial was not attended with any conspicuous success, but another run with exactly the same mountings upon a road paved with sets, the weights being 6 and $81 / 2$ hundredweight respectively, at speeds varying from 5 to 14 miles per hour, showed that the tractive effort increased rapidly with the veloc ity, and at the same time was fairly proportional to the load. The next experiment was made with a pneumatic wheel measuring 24 inches in diameter by $23 / 4$-inch diameter tires. The springs were exactly the same, but there were only two plates. A macadam road was selected. The run was made with a given load at a constant speed for a distance of about one-half a mile and then back again, the runs being subse-

A Modern Poultry House.

The tractive effort was directly proportional to ine lgad, but showed a slight increase with the velocity. Several other experiments of a similar nature have been carried out with highly interesting results. The apparatus works very satisfactorily. The experimental wheel mounted in the castor frame runs very steadily, even under a heavy load and at a high speed. The best-running wheel, however, is the pneumatic-tired, it being found that the lorry wheel oscillates somewhat when running over certain descriptions of roads The pneumatic cushion is very useful in permitting the recording instrument to work successfully under varying conditions. It prevents the apparatus being subjected to any severe concussions or vibrations, such as might be experienced when running over rough roads, but enables the apparatus to swing gently from side to side. Several further important investigations are to be carried out with the apparatus this year, which it is anticipated will yield valuable information relative to the resistance of road vehicles to traction

SCIENTIFIC POULTRY RAISING

The tremendous growth, during recent years, of the poultry and egg industry, which, in point of value of the product, now ranks as one of the leading American wealth-producing activities, has resulted in the introduction of modern scientific methods which are quite as markedly which are quite as markedly in contrast to former practices as the advances in any other
progressive field of endeavor. Indeed, to present-day achievements in this direction must be attributed the recent development of the American export trade in eggs, which has re cently invaded markets as far distant as the Orient.
Perhaps the most convincing demonstration of what scientific methods are accomplishing in the poultry industry is af forded by the unique poultry farm at Sidney, Ohio, which ranks as the largest in the

Pens in the Broiler Building.

Pens in the Egg House

The Nursery for Newly-Hatched Chicks.

The Egg House and Hatchery and Broiler Buildings.

United States, and probably in the world. The build ings which comprise the plant consist of two main structures and a number of smaller inclosures. All are of brick construction, with slate roofs; and more than $\$ 100,000$ has been expended in buildings and equipment, exclusive of the cost of the site, which comprises one hundred and forty acres.

The hatenery, or broiler plant, is 480 feet in length The main portion of the building is built in the form of the letter U , and has a periphery of 840 feet. In the basement of the other part are thirty incubators, each containing three hundred eggs, so that there is a total of nine thousand eggs daily in a state of incubation. The filling of the machines is so timed that one incubator will discharge its brood each day, and thus the plant may be said to have a daily hatching capacity of three hundred chickens. From the incubator cellar, the small chickens are taken to what is known as the "nursery," which constantly shelters about six thousand young chickens, ranging in age from one to thirty days. When the chickens have at tained the age of thirty-one days, they are lowered by an elevator to the ground floor and put in the U shaped part of the building, which is divided into sixty pens. The chickens advance one pen each day, so that at the end of two months they have completed the circuit and are ready for transference to the shipping department. It may be noted, in this connec tion, that the U-shaped portion of the building is con stantly tenanted by about twenty-one thousand chick ens, ranging in age from thirty to ninety days. The egg house at the Sidney plant is 537 feet in length, and similar in construction to the building above described. It is bisected lengthwise by a four-foot aisle, on each side of which are thirty pens containing fifty hens apiece. The three thousand high-grade Leghorn fowls produce daily two hundred dozens of unfertile eggs for culinary purposes. The eggs for the incubators are produced by nine hundred highgrade Plymouth Rock fowls. As indicating the proportion of loss, it may be stated that out of every four hundred and fifty eggs which go into the incubators, an average of three hundred perfect broilers are obtained. Connected with the egg house is an egg washing and marking room, where the date is stamped upon each egg sent to market.

One of the notable advances which have been made by the scientific poultry farmer of the present day is found in the practice of herding chickens Instead of allowing the hens to run at large as formerly, mingling freely and picking their food from all kinds of refuse, they are now divided into colonies of not more than thirty hens. Each colony has its own reservation, maintained in the highest state of hygienic cleanliness, and each group of hens is separate and isolated at all times from the others. This also facilitates the use of feed calculated to insure the greatest possible productiveness-a subject to which the United States Department of Agriculture, as well as progressive poultrymen, have of late years given great attention; and, as an indication of what has been accomplished in this direction, it may be pointed out that the average yearly yield at these scientific poultry farms is in the neighborhood of two hundred eggs from each hen, whereas under the old conditions the average yearly yield per hen did not exceed forty eggs. Another advantage of this new policy of segregation is found in the fact that. should a chicken become sick or ireed vermin, the trouble cannot spread beyond the one reservation without detection; and thus there is obviated the danger from epidemics such as have frequently in the past resulted in serious loss to poultry raisers. Another new adjunct is found in the automatic nest, which preserves the eggs free from the taint of incubation. No degree of incubation is possible, vecause, by means of these new nests, the egg is removed immediately after it is laid. The automatic nest has a hole in the bottom, beneath which is a revolving disk that receives the egg as soon as it is laid and moves it away from the nest.

The new springfield army rifle.
and scahbard, 9.4 . poulud charge, 43.3 grains. Weight of gun including bayone

details of the new springfield army rifle.
Muzzle velocity, 2,300 feet per second. Weight of

Finally, credit must be given to the new methods of securing speedy transportation for poultry products. Crude "freezers" have been displaced by modern refrigerator cars, and special "dairy trains" now convey eggs from Chicago to New York in less than sixty hours. Even in the event of unexpected delays, no serious loss is entailed, inasmuch as railroads such as the Pennsylvania, which handle much of this traffic, have extensive re-icing plants at various points, where the refrigerator cars are freshly stocked with ice.

THE NEW SPRINGFIELD MAGAZINE RIFLE.

The new Springfield magazine rifle, which has under gone its preliminary tests with very gratifying results, will take the place of the Krag-Jorgensen, which now for several years, has been doing excellent service in the United States Army. We present a photograph of the gun, which will be known as Springfield Magazine Rifle Model 1902, and also a line drawing which shows several sectional views of the gun. By means of the carefully-lettered parts a good idea is obtained of the details of the gun. The weapon is supplied with a cleaning rod, which can be partially pulled from its place below the barrel, and held with a catch so as to form a bayonet. The great advantage of the rod-bay onet is that it lightens the weight made up of the gun, bayonet, and bayonet's scabbard, and, by dispensing with the latter two as separate articles to carry, per

The growth of the poultry business, as conducted on large scale, could find no more significant criterion than the recent marvelous development of the incu bator industry. The center of the incubator manufac turing business is found in the middle West, and one town in Illinois turns out more than fifty thousand incubators every year. It is estimated that not less than five hundred thousand incubators are now in use in the United States. Many of the large poultry farms have incubators with a capacity of one thousand egg each, and from which there may be hatched ten thou sand chickens a year, the loss varying from five to twenty per cent. From a scientific standpoint probably the most interesting incubator plant is that erected by former Vice-President Morton, at Ellerslie, on the Hudson, although ex-President Cleveland has a high-class installation on an experimental farm at Princeton, and President Diaz of Mexico has a costly incubator built especially to his order by an American manufacturer.

Even in the testing of eggs, improvements have been made in the prevailing method. The most effective way of testing an egg is to subject it to the light, but under the old plan, when the egg was held ciose to the flame of a candle, it almost invariably happened that the shell was blackened. The use of electric light has, however, rendered conditions perfect for a thorough test of the eggs and the utmost speed in handling. A fairly expert tester will examine at least two hundred and fifty eggs a day.
tail which both improve accelerate its production.

In closing it should be mentioned that the new gun is considerably shorter than any existing rifle and is only slightly longer than the military carbine.
NEW SPRINGFIELD MAGAZINE RIFLE COMPARED WITH THF KRAG-JORGENSEN, THE MAUSER and the german military rifle.

RUHMER'S SYSTEM OF LIGHT-TELEPHONY.
Although Ernst Ruhmer's system of light-telephony has been already described in these columns, the recent experiments conducted by the inventor have attracted such widespread attention that a recapitulation of what he has accomplished should not be without value. For the information herewith presented we have drawn on an excellent paper on selenium prepared by Mr. William J. Hammer, to whom we are also indebted for

arrangement for speaking in two directions.
kilometers, and 12 to 16 amperes for 5 to 7 kilometers, and the resistance of his selenium cell was 120,000 ohms in the dark, this falling to 600 ohms in full sunlight. For the transmitting end, Mr. Ruhmer employs a carbon transmitter and a battery superimposing waves on the arc light circuit; and the beam of light is reflected to some distant point, where it is received by a parabolic reflector, in the focus of which is placed a sclenium cell connected with a battery and a pair of very sensitive telephone receivers. Mr. Ruhmer has conducted extensive experiments both by night and by day, and even during fog and rain, on the Wannsee, near Berlin.
Doubtless many readers remember the interesting experiments made by Mr Hayes at the Electrical Exhibition heid in Madison Square Garden in Miay, 1899, in which music was transmitted over a beam of light. At one end of the garden was placed a telephone, before which a cornet was played, causing waves of current in the telephone circuit to ve superimposed upon those in a neighboring arc light circuit. The light rays from this arc lamp were reflected across the garden, where they were received in a parabolic reflector in the focus of which was a glass bulb containing filaments of̈ carbon. This bulb was connected to a pair of ordinary phonograph listening tubes. The varying light which fell upon the carbon caused variations of temperature inside of the glass bulb,
two of the photographs herewith reproduced. The vital part of Ruhmer's apparatus is a selenium cell. Selenium is a substance varying in electrical resistance on exposure to light. Among the early investigators who endeavored practically to utilize this remarkable property was Alcxander Graham Bell. Twenty years ago he devised his radiophone, in which a mica or glass diaphragm covered with a silvered foil was used to reflect a powerful beam of light upon a selenium cell placed in the focus of a silvered reflector. To the selenium cell were connected a pair oi telephones and a battery. At the back of the silvered diaphragm was a flexible tube and mouthpiece into which words were spoken. The sound waves causing the diaphragm to vibrate sent pulsations of the reflected light upon the selenium cell, producing corresponding variations in its resistance and reproducing audible sounds in the telephone. Prof. Bell used this only over very short distances.
In 1898 Prof. H. T. Simon, of the University of Erlangen, discovered that an arc lamp, the circuit of which was in proximity to a telephone circuit, was caused to vibrate very perceptibly. This suggested to him his interesting speaking arc by means of which he superimposed the sound waves produced by sound waves produced by
the telephone upon the the telephone upon the
circuit in which the arc circuit in which the arc
was placed. He connectwas placed. He connected the lamp circuit with the secondary winding of an induction coil, the primary circuit being connected with the carbon transmitter, and a battery. The sounds thus produced originally were
very weak; but by emvery weak; but by em-
ploying a suitable carbon ploying a suitable carbon microphone, the sound
was reproduced to large was reprod
Conversely, the arc could also be used in conjunction with teleconjunction with tele-
phone receivers to rephone recei
Mr. W. Duddell, of England, has also made some most successfill talking arcs. In his arrangement in the secondary circuit is placed a condenser, which precondenser, which pre-
vents the lamp current's entering the induction coil, but allows the induction current in the transmitter circuit to pass without obstruction; and this arrangement has the effect of greatly increasing the sound.
Mr. Ruhmer has ingeniously combined the apparatus of Bell, Simon, and Duddell and has successfully transmitted speech over a beam of light $41 / 4$ miles in length. In his experiments he employed an are lamp with a flaring arc 6 to 10 millimeters long, using an E. M. F. of 220 volts. The current varied from 4 to 5 amperes at 1 to 2 kilometers, 8 to 10 amperes for 3 to 4
which produced the original sounds in the listener's ear. A bulb simply coated with lamp black and containing nothing but air, would answer the purpose just as well.
Selenium cells may vary in resistance from 2,000 ohms to 500,000 ohms or more in the dark; and certain cells may be five to twenty times as good conductors of electricity in light as in the dark; and in the case of the Ruhmer cell used in the Wannsee experiments, will have 200 times the conductivity in light that it has in the darkness; and the ratio may be even higher.
Ruhmer's latest type represents, probably, the most important development which has been made in the selenium cell, and it has now become most stable, and responds most rapidly to variations in illumination. He employs two copper wires, wound spirally side by side around a cylinder of porcelain, which, after the wires have been covered with selenium, is placed inside of a globe, which is exhausted. The cylinder is mounted with a butt similar to an Edison incandescent lamp, and resembles a candelabra lamp. This makes a most convenient method of handling the cell; and by keeping it from the air the disadvantages inherent in all. cells heretofore have been very largely done away

RECEIVING STATION OF RUHMER'S SYSTEM OF
LIGHT-TELEPHONY.
RECEIVING STATION OF RUHMER'S SYSTEM OF
LIGHT-TELEPHONY.
with. Another form of Ruhmer cell consists of two fine platinum wires wound on a glass cylinder $11 / t$ inches long and $3 / 4$ inch in diameter; the wires, which are 1-32 of an inch apart, are coated with selenium.

An expedition is to be sent out by the Royal Geographical Society of London to relieve the British Antarctic ship "Discovery," which is said to be caught in the southern ice pack and to be in serious difficulty.

RUHMER'S STATION ON THE OUTSKIRTS OF bERLIN, STATION ON THE OUTSKIRTS OF
SHOWING THE HUGE MIRROR.

Liquid Air for Cooling Purposes.

One of the claims made for liquid air was that it would be "the cold-producing medium of the future." Not only would the working of our modern refrigeratiing and freezing stores be accomplished by means of liquid air, but everybody-the manufacturer in his workshop, and alike the agriculturist on his farmmight, at trifling cost, procure a cool and pure atmos phere for himself. Considering that licuefied air, vaporizing at atmospheric pressure, possesses a temper-

the receiving instrument

ature of -191 deg . C., it is hardly a matter of surprise that, with such an energetic cooling medium in view, the problem of applying liquid air for refrigerative purposes is raised again and again.
In the consideration of the merits of any particular source of cold two points are essential-first, the quantity of cold produced, i. e., the number of heat-units eliminated per unit of time; and second, the intensity of the cold, i. e., the temperature at which heat is removed.
The most important physical law relating to the production of cold is well known as determining that the expenditure of energy necessary for a certain amount of cold increases in direct ratio with the difference between the lower temperature (in the refrigerator) at which the heat is taken away and the upper temperature (in the condenser or cooler) at which heat is transferred to the cooling water or to the atmosphere. Now, if the refrigerative purpose be the production or the maintenance of a temperature only a few degrees below the freezing-point of water, then, according to the law referred to, it must be exceedingly irrational to employ liquid air, seeing that for its attainment we are compelled to descend to - 191
deg. C. (-312 deg. F.)
Supposing that anyone had to provide a well for obtaining surface-water from a depth of 10 feet, it would be insane to sink a shaft down to 300 feet, to let the water run from its surface-level down this pit, and then to raise it to a height of 300 feet. But this exactly corresponds to the idea of persons recommending the use of liquid air as a substitute in all the refrigerating machines of to-day. If we were to work our ice factories, our cooling and freezing stores, and our other cooling plants by liquid air, the requisite expenditure would be from thirty to fifty times greater than that of our modern refrigerating in-stallations.-Dr. Carl von Linde, in Cassier's Magazine.

Cedar and pine trees are rapidly being conare rapidly being con-
sumed for the purpose of supplying trolley and telegraph poles, and at the present rate of consumption, it will not be a great while before the visible supply will be exhausted. The foresters look to catalpa to fill the place of pine and cedar in this particular. The catalpa flourishes in a great many places in this country. and has the advantage of growing very straight, and attains the needed size in from sixteen to eighteen years. The time required for cedar and pine is more than double this.

Legal Notes.

A Rallroad Switch Patent in Court.-The case of Pettibone, Mulliken \& Co. against the Ajax Forge Company (118 Fed. Rep. 733), recently decided by the Circuit Court of Appeals for the Seventh Circuit, brings out an interesting state of facts. The patent in suit was one granted to Strom on August 18, 1891, for a switch. In a split switch the movable rails are planed to a point, respecting their width. The point-rails are coupled by a tiebar, which, by means of its con nections with the lever of a switch-stand, throws the switch. As the switch is set for the main or the side track, the appropriate point-rail should be brought into close contact with its adjacent stationary rail, while the other should stand several inches away from its fixed neighbor. If the contact is not close, the flanges on the wheels of engines and cars are likely to cause disaster. By the wearing of the rails, and of the bolts and nuts used in connecting them to the tiebar as well as by the accidental bending of the tiebar, or other disarrangement of parts, the original fixity of relation between the point-rails becomes impaired and the switch is made dangerous. At least twelve years before the Strom patent was granted, means were employed for spreading the point-rails to take up lost motion.
Three claims were made, the first covering in combi nation a split switch and a connecting medium for the switch rails, adjustable lengthwise thereof; the second covering in combination, a split switch and a tiebar connecting the switch rails and adjustable lengthwise thereof to set the gage; and the third claim covering in combination, a split-switch and a tiebar extending obliquely between and connecting the switch-rails and adjustable at one end lengthwise of the adjacent rails to set the gage. None of these spe cific devices was ever made or used. Appellant mar keted split switches made under the Strom patent of 1891, and under a patent granted in 1895. The former is called the "Channel" switch; the latter is referred to as the "Transit" device. In the "Channel" patent guard-rails are rigidly attached to the switch-rails and extend some little distance beyond the points. The extensions are bent inwardly toward each other in the plane of the rail-flanges. The spreading of the switch rails is accomplished by moving a bar forward into the throat of the convergence, and fastening it by means of plates that slide along the web of each rail and are attached thereto at the proper point, in a series of bolt-holes. In the "Transit" construction, to each switch-rail is rigidly fixed a plate that extends inwardly in the plane of the rail-flanges. In each plate is a series of holes in a right line that runs obliquely to the line of the rail, toward either the point or the heel of the rail. The switchrails are spread by moving a bar forward and bolting it at the proper points in the plates.

The appellee manufactured split switches under the Bradley patent of 1900 . To each switch-rail is rigidly fixed a plate that extends inwardly in the plane of the rail-fingers. In each plate is a circular opening with notched circumference. In the opening fits a toothed disk that has an eccentric bolt-hole. A bar, having its jaws at each end, is securely bolted, through the eccentric holes, to the disks and plates. The separa tion of the switch-rails to compensate lost motion is effected by changing one or both eccentric bolt-holes to a point further removed from the rail.
In affirming the decree dismissing the bill the Court remarked that in the bottom of appellee's argument was to be found the contention that each of the claims sued on is generic and covers every construction in which the connecting medium between the switch rails is used to separate them by being moved lengthwise the rails.
The Court cites several patents to show how old this device of Strom's is. The Court found that the first and second claims were not infringed because the appellee's device was not within the alleged new way depending for its efficiency solely upon the normal con vergence of the switch-rails. The third claim was not infringed because it was in the old field and must be limited to the means stated.

Tesla "Split Phase" Patent Declared Invalid.The Westinghouse Electric Manufacturing Company brought an action against the Catskill Illuminating and Power Company, alleging infringement of two pat ents granted to Nikola Tesla, December 26, 1893. The Circuit Court sustained both patents, and found in fringement of both claims of the one patent and of the first claim of the second patent. An appeal was taken by the defendant, the result of which was that the Circuit Court's decree was reversed.
The two claims of the first patent in issue (511.559) are as follows:
" 1 . The method of operating motors having independent energizing circuits, as herein set forth, which
consists in passing alternating currents through both of said circuits and retarding the phase of the currents in one circuit to a greater or less extent than in the other.
" 2 . The method of operating motors having independent energizing circuits, as herein set forth, which consist in directing an alternating current from a single source through both circuits of the motor and varying or modifying a relative resistance of self-in duction of the motor circuits and thereby producing in the currents differences of phase as set forth.'
The first claim of the second patent in issue (511, 560) is as follows:
"1. The combination with a source of illuminating currents and a circuit from the same, of a motor having independent energizing circuits connected with the said circuit and means for rendering the magnetic effect due to the said energizing circuits of different phase and an armature within the influence of the said energizing circuits.

The system of operating electrical motors by means of alternating current from a single original source covered by these claims is technically known as the "split phase system."
Tesla was the inventor of what is known as the polyphase system of transmission, which he covered in earlier patents and applications for which were flled during the fall and winter of 1887 and the winter and spring of 1888. Patents were finally issued May 1, 1888
By the methods and means described in the patents in suit Tesla dispensed with one of the line circuits and was able to run a motor by means of an alternating current from a single original source, which was ac complished by the process and by the apparatus described in the claims cited, the phase of the current in all circuits being so retarded, or the relative resistance of the motor circuits being so varied as to maintain the necessary difference of phase in the circuits. This utilization of a single original source by splitting a single current into two currents was an improvement of great practical value.

On April 22, 1888, there had been published in Milan, in an Italian journal, a report of a lecture by Prof Galileo Ferraris, in which the system covered by the patents in suit was fully described. In the opinion of the court this printed publication was such a disclosure of the subject-matter of the patents in suit that, if prior thereto, it would constitute an anticipation. Wit nesses were introduced by the complainant to prove that Tesla was not anticipated by Galileo Ferraris The testimony offered was not very satisfactory to the ccurt. In view of the inadequate testimony offered of priority on Tesla's part, the court held that Tesla did not prove that his invention antedated that of Galile Ferraris.

Patents anid the Anti-Trust Law.-The General Electric Company brought an action against Wise (13 Ned. Rep. 922) for an infringement of the Tournier patent No. 559,232 for an incandescent lamp socket The defendart set up an alleged anticipation by the Weston socket and the Westinghouse push button socket. The court, however, held that both of thes latter devices failed to accomplish the result sought and obtained by the devices of the Tournier patent. It is a well-known principle of patent law that a patent for an invention which successfully accomplishes a useful result is not void for anticipation or prior use because of the prior device, however similar in combination or close in resemblance to that of the patent, where such device was not operative and failed to produce the result sought, which result is, however produced by the device of the patent. The defendan in this suit set up as a defense that the complainant is a member of a combination in violation of the antitrust law of July 2, 1890. But the court held that even this circumstance did not give the third person the right to infringe a patent of which the complainant was the owner; nor did it preclude the complainant from maintaining a suit in equity to enjoin the infringement.

The Kodak Cases in England.-The verdict in the long and closely contested suit by the Eastman Kodal Company against several English manufacturers fo alleged infringement of their registered trademarks, "Kodaks," "Brownie," "Bull's Eye," etc., has been ren dered. The decision of the judge, Mr. Justice Swinfen Eady, who took great pains to bring out all the points in the case on both sides, is wholly in favor of the Kodak Company and is so succinct and far-reaching in its scope that it is thought there will be no appeal. Briefly stated, the bone of contention was that when customers of certain houses asked for a "Brownie" film oŕ a "Bull's Eye" film, meaning, of course, a film to fit a Brownie or Bull's Eye camera, they were sup plied with other makes of film which were got up in size and requirements to fit these cameras. The Koda Company stated in their complaint that they had no objection to the general use of the trade names, which they claimed as their own property, if they were used in a certain manner. For example, if the film was
said to be a film for an F. P. K. or Brownie as the case might be, but if a customer asked for a "Brownie" film he must be supplied with a Kodak make of film. The decision of the judge was fairly rendered and establishes a precedent. Having coined certain words and registered them as descriptive of certain goods of their own manufacture and created a demand by extensively advertising the same they are justly entitled to protection in the benefits to be derived there from.-Am. Amateur Photographer.

An English Fels-Naphtha Trade-Mark Decision.Before Mr. Justice Byrne in the Chancery Division, the case of Fels against Hedley \& Co. recently came up for hearing. The old question was raised as to the right of a manufacturer to appropriate a word in common use for the purpose of describing his goods. The plaintiffs were the well-known American soapmakers, who introduced both in the United States and England a household soap widely advertised by the name "FelsNaphtha." The defendants subsequently introduced a soap which they called "Ladybird Naphtha Soap." Both articles were widely sold. The plaintiffs sought to restrain the defendants from designating their goods by any title in which the word "naphtha" formed part, unless precautions were taken clearly to distinguish their goods from those of the plaintiffs. It was contended that the words "naphtha" and "naptha" in connection with soap had come to be used by the public to denote Fels-Naphtha soap and no other. The court, however, was of the opinion that the word "naphtha" as applied to soap was a descriptive word, and had not acquired the particular meaning which the plaintiff claimed. An injunction was, therefore, refused.

The English law upon this subject of trade names is much the same as in this country. In a case which came before the House of Lords in 1899, Lord Davey said that "a man who takes upon himself to prove that words, which are merely descriptive or expressive of the quality of goods, have acquired the secondary sense to which I have referred, assumes a much greater burden-and, indeed, a burden which it is extremely difficult to discharge-a much greater burden than that of a man who undertakes to prove the same thing of a word not significant and not descriptive, but what has been compendiously called a 'fancy word.' '

The Right of Privacy.-Unauthorized Use of Portraits as Trade-Marks Prohibited by Statute.-The Rochester Folding Box Company case has called forth so much criticism that the Legislature of the State of New. York has felt compelled to pass an act prohibiting the use of the name or portrait of any living person for purposes of advertising or trade without the written consent of such person. An injunction may be obtained and suit may be brought to recover damages for any injury sustained by reason of such use. If the defendant shall have knowingly used a name or portrait in the manner forbidden, the jury may use its discretion in awarding exemplary damages.

The question presented by the case was by no means new. It had been decided time and time again in the same way in this State. The court simply held that the right of privacy has as yet received no judicial recognition. Even if it had received judicial recognition, it would not be within the province of a court of equity to protect it; for a court of equity cannot protect abso lute personal rights. The so-called right of privacy is founded upon the claim that a man has the right to pass through this world, if he wills, without having his picture published, his business enterprises discussed, his successful experiments written up for the benefit of others or his eccentricities commented upon in handbills, circulars, catalogues, periodicals, or newspapers, and, necessarily, that the things which may not be written and published of him must not be spoken of him by his neighbors whether the comment be favorable or otherwise.
Obviously, if a court of equity could logically protect such an absolute right by injunction, a vast amount of litigation would result bordering upon the absurd. A court of equity would then be compelled to restrain the publication of libels, or in a word to assume quasi criminal jurisdiction, which it never had and which it was never intended that it should have. The statute which has been passed gives a court of equity the powe which it has hitherto lacked, and which will prevent the unauthorized use of any person's picture for advertis ing purposes.

When infringement would necessarily or naturally result from the ordinary use of a device, a defendan cannot escape liability for infringement merely by showing the possibility of a different use. The decisive question is whether the operation of the alleged in fringing device when in use is the same and produces the same results.

An idea is not patentable, but only the particular mechanical device or combination for carrying it into effect.

RECENTLY PATENTED inventions.

Agricultural implements.

double plow.-r. v. e. rasmussen, Emdrup, Copenhagen, Denmark. This new
improvement relates to double plows designed improvement relates to double plows designed
especially for plowing on inclined surfaces, especially for plowing on inclined surfaces, be used in either direction, having the beam mounted to turn to coact with either share. The plow works easily, and the position of the beam can be quickly changed.
PLOW.-S. V. Jerfords, Waycross, Ga. In
working young plants, the furrows should be working young plants, the furrows should be
formed as near as possible to the roots. Working close up to the plants with a shovel or half-shovel cultivator is objectionable, as the
dirt is thrown beyond the plants or upon sults, To overcome such objections, Mr. Je fords has invented an attachment adapted to be used with any type of plow or shovel cultivator whereby sliding action of the sod up
the plow is obstructed, with effect to break the plow is obstructed, with effect to break
and loosen it, the better adapting it for hilland loosen it, the bett
ing up young plants.

Engineering Improvements.

ENGINE.-G. Colombo, North Bergen, N. J. reference to an engine adapted particularly for use in connection with steam as a motive orce, the engine being provided with a new and a cut-off working therewith.
ATTACHMENT FOR AIR-BRAKE SYSThe particular object in view in Mr. Alexan-
der's invention is to provide a drum or reservoir with a blow-off attachment which may be
operated from a locomotive-cab and which operated from a locomotive-cab and which
subserves two purposes-first, to remove the subserves two purposes-first, to remove the
water accumulated in the drum, and, second, to suddenly relieve air-pressure in the trai
valie mbchanism.-J. T. Fento Philadelphia, Pa. This device belongs to the and the object of the invention is to provide a valve mechanism arranged to control the ad mission and exhaust of the motive agent to
and from the cylinders in proper succession, and from the cylinders in proper succession, to permit of varying the cut-off, quickly revers ing the engine, and
agent when desired.

Hardware.

rope-clamil.-J. S. Hermanson, west the rope in the clamp is free to move downward and to the left, but not in the oppo
ite direction. The least movement upward site to the right causes the rope to bear
and a channeled surface, thus forcing the eeth of a movable jaw toward the teeth of stationary jaw and firmly securing the rope of means of a handle the rotund portion the upper end of the movable jaw, thereby causing the teeth to move asunder, thus re-
leasing the rope. The teeth grip the rope leasing the rope. The teeth grip the rope
as soon as the handle is released. IMPLEMENT FOR APPLYING AND
CLINCHING FENCE-WIRE CLAMPS.-G. H CLINCHING FENCE-WIRE CLAMPS.-G. H Wright, Spokane, Wash. In this implement,
one object is to bend the fastener around the wires and to bend the wires themselves a struct the parts of the tool that the clamp may be placed in the tool, and by a slight novement of the bending-jaws the clamp is
seized by the jaws so as to be held in the mplement; another, the provision of bending Jaws to seize the clamp, and to bend parts of the latter around the wire; and another, to
provide means for holding the tool against displacement on the wires, and being operable with the jaws, so as to open f
plication of the tool to a line-wire.
CLAMP.-R. H. Makowsky, New Haven, Conn. This case relates to improvements in
clamps for the use of cabinet-makers and ther woodworkers, the object being to furnish a clamp of simple construction that may also may be employed as a vise adjustably COLUMN-CLAMP
COLUMN-CLAMP.-A. A. Low'scher, Du masses of material is provided by this device. In use, a chain is thrown loosely around the obect to be clamped, and a screw is rotated in
the proper direction to move the blocks apar to a maximum distance. The chain is next
drawn as taut as convenient by inserting a hook in some one of the links intermediat handle, turn the screw, and tighten the chain handie, turn the scre
SASH-LOCK.-J. Mac Vane. Riverside, R.
This construction locks both sashes in closed positions or when either or loth are
opened for ventilating. The lock is carried by one sash and equipped to move the lolts
simultaneously to their retracted positions, the olts being projected to their operating positions by springs and adapted to separately stile. A lever carries a dog which engages with the boot for the upper sash. and in the path of the lever drops a detent for holding
the lever against operation. the detent being the lever against operation, the detent being
placed in an inaccessible position from an
implement inserted between the meeting-rail

Mechanical Devices
CUTTING ATTACHMENT FOR CORNICE-BREAKS.-G. R. Byde, Fresno, Cal. Mr. useful improvements in slitting or cutting at achments for cornice-breaks, and has par ticular application to a mechanism of the type employed for cutting sheet metal or the structed so that it is easily attached to nary cornice-breaks.
MOVING-PICTURE APPARATUS.-G. M Higgins, Cleveland, Ohio. The prime feature mounted to move continuously in an endless path parallel with and at a speed propor-
tional to that of the moving film, these parts tional to that of the moving film, these parts moving past the light-admitting orifice, so that and the parts moving in exact time with, and the parts moving in exact time with avoids that objectionable appearance of vibration common to apparatus of this sort.
The operation is reversible, and there is an rrangement facilitating the reproduction of CUTTING DEVICE FOR BUTTER, LARD, EtC.-B. Hamblet, New York, N. Y. It is
the purpose of this invention to provide a the purpose of this invention to provide a
new and improved cutting device more espeially rer rail merchants selling butter and and like by the pound and arranged to enable the grocer to mechanically and accurately cut the product in the tub or like receptacle into parts
of a predetermined weight without the use of a predetermined weight without the use
of scales or other weighing devices. Crane.-L. S. Fleckenstein, Easton, Md. This mechanism may be classified as an are a vertically-rotatable post, a horizontal rm or jib permanently attached to the post and a winch or drum for winding up the hoisting chain. The crane has many advanthe in respect to simple construction and VENDING-APPARATUS-
Davenport, R. Stroppel, Cedar Valley, Kelly, F. Wyjack, Iowa City, Iowa.-These invenors have secured patent rights on a machine adapted especially for vending cigars from the vending apparatus is associated with cerapon peculiar coin-controlled devices, so that
une insertion of a coin into the machine apon the insertion of a
cigar will be delivered.

Railway Improvements.

railway-tie.-J. S. Miller, Clinton, Neb. This invention relates to improvements provide a tie, consisting partly of wood and partly of metal, so constructed that the rails may be prevented from spreading and will requisite elasticity.
RAILWAY-RAIL.-G. A. Case, Joplin, Mo. ver the construction covered in a prior patent of Mr. Case. The present invention is directly concerned with the base or main section of the rail ; and the object is to construct this section tubular so that compressed air or
fluids of any sort may be transmitted through fuids of any sort may be transmitted through
the rail without interfering with the use of the rail without interfering with
the rail in its ordinary capacity
mail-Crane.- 'f. J. Conway, Blancheste Ohio. Certain useful improvements in autoprovided by this invention, the object of which is to provide a mechanism of this characte capable of being readily placed in position for immediate use. After a mail-bag has
been taken away from the automatic mailbeen taken away from the automatic mail-
crane by devices on a passing train, the crane automatically swings away from or into a
FOLDING CAR STEP. N. GRay
FOLDING CAR-STEP.-N. Gray, Louisville or its object a novel construction and has bination of parts whereby the folding carstep may, together with the vestibule-door, entirely close the outer side of the vestibule when he folding step-section is closed and by which his section may be closed through the aid of platform when properly adjusted.
CAR-AXIF bON.-J. MALtry. Omaha. Neb provide for a constant supply of lubricant the journals of the axle and to prevent the en rance of dust into the oil or lubricant chamber. Another object is to so construct and arrange the parts that the chamber may be
readily removed or detached from the journal.

Vehicles and Their Arcessories. BICYCLE.-B. F. Modisetr. Helena. Ark
parts in this construction are organized in new way, so as to bring the carrying-wheels into parallel relation and to suspend the weight of the load close down to the ground. An improved steering device insures the control
of the wheels separately by levers within of the wheels separately by levers within
reach of the hands and these levers may be shifted so as to steer on any course or to simultaneously move the wheels to positions for
arresting without a brake. The machine is equipped with a mechanism adapted to use the
power of the hands and feet to secure high
speed. The frame is so mounted on the axles
as to reduce the shock when a wheel drops into a rut or depression.
RUBBER TIRE.-R. AUSTIN, Brooklyn, N. This tire comprises an endless member of resilient material, provided with bearing-
plates spaced apart and buried therein, each plate being provided with central perforations and mutilations upon its edges, for anchor within the central portions and the edges firmly within the material and encirclin the bearing-plates. This encircling all of connected from the plates and spaced asunder so that the material forms a cushion
tween the bearing-plates and the wire.

Miscellaneous.

stove or range.-B. F. Allen, St Louis, Mo. Improvements in stoves and ranges are provided by this invention whereby the either for cooking or quick baking by shifttraverse around the oven before reaching the chimney or to direct the heat into the heatingchamber under the top plate without causing no pass anoun the oven.
NON-REFILLABLE BOTTLD.-J. C. Gusfor its object the provision of a construction which will permit the contents to be disinclude but will prevent its refilling and tion of wires or other instruments to dis-解 ville provemy. The particular object in this imtion readily applicable to a door, window or other support in or adjacent to a room,
and by which safe descent can be made by means of a rope or cable and in so doing will devate another rope, so a second person can so that an unlimited number can escape by
alternately using the two cables supplied to alternately us
the apparatus.
TOOTH-BRUSH.-C. A. Torrance and G. S. Stone, Talmage, Neb. The purpose of these
inventors is to provide a tooth-brush so made anventors is to provide a tooth-brush so made
as to feed an antiseptic solution to the bristles as to feed an antiseptic solution to the bristles
for the prevention of disease. The brush is furnished with a hollow member having an inand connections for regulating the and discharge of an antiseptic liquid from
the chamber to the bristles of the brush-head. SUBMARINE CONSTRUCTION.-L. L. RIaldi, Somerville, Mass. This invention reighthouses, and the like; and the object is to provide a submarine construction arranged to permit of placing the building-blocks in proper
position below the water-level to securely fas ten the lowermost layer of blocks in place on the bed of the waterway and form a sewaters as well as in strong currents.
SELF-FEEDING MATCI HOLDER AND IGNITER.-C. H. Scales, Toronto, Canada.
Provision is made in this holder for the safe Provision is made in this holder for the safe
storage of matches in a manner to expose them for ready access, so that they can be
withdrawn individually for use, thus saving withdrawn individually for use, thus saving
the quantity used, which is an item where matches are offered gratis. A striker is assocated with the magazine to facilitate ignition the magazine on the withdrawal thereof from against a wall. Means are supplied for receiving burned matches, and also to enable
the holder to be used in connection with the holder to be used in
matches of different lengths.
Jar.-J. A. Maxson, Cogar, Oklahoma Ter The purpose in this invention is to provide a
new and improved jar for containing fruits, preserves, meats, and other fruit products and arranged to insure hermetic sealing of the mouth of the jar to protect the contents against air, moisture, and
tending to spoil the goods.
ANIMAL-YOKE.-W. M. Landers, Lawn,
Texas. Mr. Landers' invention has reference to improvements in animal-yokes, particularly simple and comparatively cheap constructio that will prevent an animal wearing the yoke from passing through a wire or other fence It may also be applied to horses or mules. Cameo Glass.-A. II. Frimanan. Mount ment is to provide a new cameo glass designed for use in colored-glass windows or other
articles utilized for ornamental purposes or for glassware and arranged to represent in relief any pattern or predetermined design in effect and enhance the appearance of the article.
PRinter's galley.-W. A. Faucett, Raleigh. N. C. In this case the aim is to pro-
vide a palley which will hold in proper condiion type-set matter that is sulsequently trans"form" by keying such matter in columns ley show the length of a "slug" of type-set matter at a glance. and facilitate the making up of a column of predetermined length by
avoiding the application of a rule thereto. HYPOIERMIC SYRINGE-T. A. Chap-
pell, Bronwood, Ga. This syringe has an
expansible plunger-head and means for ex
panding the head and relieving panding the head and relieving it from pres-
sure. It is so constructed that it may be introduced it will be pressed by the plunger head at its inward movement against an an vil-surface within the body of the syringe, crushing the tablet and dissolving it quickly. This invention relates to one previously pat Device
DEVICE FOR TEACHING PENMANSHIP. W. W. Fry, Philadelphia, Penn. That class devices for teaching penmanship in which guide-copy, is represented by this inven on. The object of the invention is the provision of means whereby a series of guide-
copies may be interchangeably placed in position before the pupil and in which each copy is held in place and flat by devices adapted to removal of the copy. FARM-
FARM-GATE-J. T. Yager, Brownsboro, Ky. The purpose of this improvement is to pro-
vide a farm-gate adapted to open from either side and so to hinge the gate to a swing post and an operating-lever mounted on the post that when the lever is moved upon its pivot the first action of the gate will be to raise itself at its outer or free end, thus disconnecting the gate-latch from its keeper, the next action of the lever swinging the gate operating-lever carries means for preventing the gate when swung closed from passing be-
yond the closed position and when the gate arrives at this position to carry the checking means out of checking action.
COPY-HOLDER.-S. C. Hoyle, Bryan, Texas. The purpose of the inventor is to provide a holder which will keep the place during the task of copying and will turn the leaves of
the shorthand-book, thus obviating the removal of the book from the holder until all the copying is completed: and, further, to provide means for automatically operating the device through the medium of the carriage of a type-
writing machine or manually, as may be conwriting machine or manually, as may be con-

LAMP.-B. Nadeau, Boston, Mass. This lamp is of that class intended to be used with gas as a fuel and to carry an incandescent mantle. The aim of the invention is to im-
prove the lighting efficiency of the lamp, which end is attained by certain features and parts serving to contine the heat to the immediate vicinity of the burner, thus facilitating the combustion of gas.
RECORD ATTACHMENT FOR WAITERS' OR MERCHANDISE CHECKS.-A. WYse, to provide a device for use of waiters' and merchandise checks to carry a duplicate of the amounts of individual checks used during a
given period or a duplicate of the totals of individual checks, and means enabling a checker to as readily make the entry on a tally sheet as on the check. Another purpose is to place the record in an endless form upon a support, and to provide means to enable each waiter, checker, or salesman to have at hand during the service a complete duplication of prices persons comparing accounts to have before them a record of sales made by have before ployed during specified periods of time.
heater.-O. f. Roggenkamp, Seneca, Kan. filled opation the drum of this heater is to be filled with fuel such as corncobs or long sticks
of wood standing upright. The combustion will take place in the base or fire-box, and the products of combustion will pass through the drum and the pipe. This self-feeding heat-
er may be made of comparatively light metal. COMBINED WA'tiER heater and con-denser.-W. Tate and M. L. Cable, Greens horo, N. C. The inventors have for their ob-
ject improved means whereby feed-water for steam-boilers and heating plants generally may be more effectually heated by exhaust-steam or return water from radiator heating systems. Means are adapted to condense exhauststeam and the water thereor be mingled with water pump operating to force the heated

Picture-holder.-Emaie C. Etiferton and G. E. Powell, Atlantic, Iowa. The intention of the inventors is to provide an improved way that it may be expeditiously applied to pictures, plaques, photographs, mats and other fat objects, so as to securely engage therewith.
The device may be equipped with a leg mem The device may be equipped with a leg mem-
her adapted to support the holder and the arDRESaged therewith in a standing position. DRESSER.-J. L. Larson, Butte, Mont. The invention relates particularly to improvements olject being to so mount a plurality of mirrors that their angle may be adjusted one indejustment of another for such relative adceive the reflection from the front and sides oive the reflection from the front
or from the front, sides and back.

Designs.

DESIGN FOR MATCH-SCRAPER.-A. B. Rislex, Hoboken, N. J. The design consists in match-receptacle which is in the form of a feed-box and represented as supported in close
of a donkey in relief waiting for the feed supposed to be in the feed-bo

IESIGN FOR A BOX-COVER.-H. L. CROLL, the top of a box cover and consists in a major wreath, inclosing two minor wreaths, and these Note.-Copies of any of these patents portraits. Note.-Copies of any of these patents will be
furnished by Munn $\mathbb{\&}$ Co. for ten cents each. Please state the name of the patestee, title of

Business and Personal KUants.

 READ THIS COLUMN CAREFULLY,-YYou will ind inquiries for certain crasses of articlesnumbered in consecutive order. If you manul.
facture these goods write us at once and we will
send you thame and address of the party desir-
ing the information. In every case it is necess ing the information. In every case it is neces
sary to give the number of the inquiry.
MUNN \& CO.

Inquiry No. 4231.- For manufacturers of alumi Autos.-Duryea Power Co., Reading, Pa
Inquiry No. 4.3.3.2.-For maakers, of Ferris wheels
for use at fairs and summer resorts. Morgan Emery wheels. Box 517 , Stroudsburg, Pa.
Inquiry No. 4233.-For makers of fans driven b lish. Indiauapolis. Samples free. Inquiry No. 4:34.-For catalogues. prices and
descriptions of automobiles suitable for alivery. Blowers and exhausters. Exeter Machine Works,
Exeter, N. H. Inquiry No. 4235.-For makers of light, portable Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St.,
Chagrin Falls, 0. Inquiry No. 4236.-For makers of plows with
elevator attachment for placing dirt into wagous. Mechanics' Tools and materials. Net price catalogue.
Geo. S. Comstock, Mechanicsburg, Pa. Inquiry No. 4\%37--For domestic and foreign
manuracturers of inflatable rubber toys. such as bal-
luons, etc. Sawmill machinery and outfts manu
Lane Mfg. Co.. Box 13, Montpelier, Vt.
Inquiry No. 4238.-For a machine for cutting
wire into lengths and winding it around a smail pack-
age. Let me sell your patent. I have buyers waiting.
Charles A. Scott, Granite Building, Rochester, N. Y. Inquiry No. 4239.- For a steam jacketed vulcan-
izer for making artificial rubber lim bs, etc. MANUFACTURERS! Want any parts made of any
metal? Write us. Metal Stamping Company, Niagara
Falls, N. Inquiry No. 4240.-For makers of wire cushions
for invaiid chairs. Inventions developed and perfected. Designing and
machine work. Garvin Machine Co., 149 Varick, cor. machine work. Garvin Machine Co., 149 Varick, cor.
Spring Sts., N. Y.
Inquiry Mo. 4241. - For dealers in second-hand Inquiry No. 424 1.-
pool and biliard tables.
Manufacturers of patent articles, dies, stamping
tools. light machinery. Quadriga Manufacturing Company, 18 South CanalStreet, Chicago.
Inquiry No. 4242.-For a mechanical lawn grass For Sale.-Patent No. 6ĩ0,482. Hat fastener clasp-
ing head as did old elastic, but is applied under hair. ing head as did old elastic, but is applied
Address Emnua T. Miller, Urumia, Persia.
Inquiry No. 4243. For makers of apron springs
for use of sporting men, etc. Crude oil burners for heating and cooking. Simple,
efficient and cheap. Fully guaranteed. C. F. Jenkins Co., 1103 Harvard Street, Washington, D.
Inquiry No. 4244 - - For makers of shot guns, ham-
mer and hammerless guns, etc. The largest manufacturer in the world of merry-goand terms write to C. W. Parker, Abilene, Kan.
Inquiry No. 4245.-For makers of hose. hose etc. We manufacture anything in metal. Patented articles, metal stamping, dies, screw mach. wor
Metal Novelty Works, 43 Canal Street, Chicago.
1nquiry No. 42446 .-For make
ings or smail steel pressed work.
The celebrated "Hornsoy-Akroyd" Patent Safety oil Engine is built by the De La Vergne Refrigerating Ma-
chine Company. Foot of East 138th Street, New York. Inquiry No. 4847.-For
Contract manufacturers of hardware specialties, machinery, stampings, dies, tools. etc. Excellent market-
ing connections. Edmonds-Metzel Mfg. Co., Chicago. Inguiry No. $\mathbf{~ N 2 4 8 . - F o r ~ d e a l e r s ~ i n ~ p h o s p h o r e s c e n t ~}$
sulpide of calcium. WANTED.-A competent and energetic foreman for
brass manufacturer making brassofttings. One who is brass manufacturer making brassonttings. One who is
a good manager of men and systematic in the handling
of work, also practical in designing tools. A growing of work, also practical in designing tools. A growing
opportunity for the right man. Address with referopportunity for the right man. Address with refer
ences "Brass Manufacturer,", Box 7 Ti 3 , New York.

For SALE.-Patent desk calendar (No. 722,76 , $\%$, March
17,1903) accepted by four San Francisco wholesale sta1i, 1903) accepted by four San Francisco wholesale sta-
tionery houses for regular drummers' line for Pacitic tionery houses for regular drummers' line for Pacitc
coast. A money maker for party w wo has means to
intro introduce extensivel
San Francisco, Cal.

Inquiry No. 4250.-For makers of adding ma- chines.

Manufacturers desired for the manufacture under
royalty of valuable U.S. air compressor patents. Invention great success and growing rapidly into large use abroad. Princioals only dealt with. Full particulars on application to Box T22,
Inquiry No. 4251. - For info
telephone system lately
devised.
WANTED-A factory superintendent for progressive
manufacturer of brass and iron fittings. A man versed in general machinery and tool practice and thoroughly be qualifted in the handling of men and perfectly reliable for takng charge of factory. Give references and
address "Manufacturer," Box 773 , New York.

Nan
 Notes and Queries.

hints to correspondents.

 nquiries not answered in reasonable time should be
repeated; correspondents will bear in mind that
some answers require not all ittar researn, that,
though we endeavor to repply to all alither and
letter or in this department, each must take though
letter or
his turn Buyers wishing to purchase any articie not adver-
tised in out columnse will be furnished with
addresses of out houses manufacturing or carrying
the sume Special Written Information on matters of personal
rather than general interest cannot be expected
without remer Scientificic American Supplements referred to may be
had at the office. Price 10 cents each. Books referred to promptly supplied on receipt of

price. | $\begin{array}{c}\text { Minerals sent } \\ \text { marked or lor examination should be distinctly }\end{array}$ |
| :---: | (9035) J. T. K. asks: 1. I want to magnetize a needle to saturation, steel $1 / 8 \times 1-16$

inch, 3,6 or 12 inches long (but I suppose the inch, 3,6 or 12 inches long (but I suppose the long enough for the winding). How many am-
pere-turns should I use? How long should the current be kept in the circuit? A. To mag-
netize a bar of steel by a battery, wind a coil netize a bar of steel by a battery, wind a coil
of a few turns of wire of such a size that the of a few turns of wire of such a size that the
bar will slip easily through it. Connect it to the current, and pass the bar back and forth a few times from the middle to the end and then
to the other end, etc., stopping at the middle before cutting off the current. If you have an electromagnet with an iron core such as a bar by drawing it from end to end along one o the ends of the core of the electromagnet. It is
well to draw it in the opposite direction along he other core, also, the same number of strokes to each core. If you would use a dynamo cur coil or electromagnet for the purpose in series with a lamp, are or incandescent, and use the current which lights the lamp to do the work. 2. Itave you a Supplemest that explains how
to wind a transformer for a certain output, both step-up and step-down? That is, how many primary turns to how many secondary turns If not, where can I get a book at low cost that
will tell? A. We have not published any plans for transformers. You will find some in the 400 , or 1,000 volts, and deliver $18,32,50$ or 100 volts, or the reverse.
(9036) A. W. writes: During a late residence of five months on the highland of that all colorless transparent glass assumed a deep violet hue after a short time. The neigh borhood is flat and sandy, forming the bed of a dried-up lake. The district is subject to vio lent electrical disturbances. Borax, magnesia cause of the violet color of the glass" me the should look for the cause of the discoloration of the glass to some substance in the region rather than to the altitude. But we are not able to explain the case satisfactorily to ourselves.
Some reader may have knowledge on the matter. (9037) A recent note gave figures for the pressure used in organ bellows in pound
per square inch. It is the custom of builders per square inch. It is the custom of builders
to rate the pressure to be used in the organ in to rate the pressure to be used in the organ in
inches of water, determined by the difference of level in the two arms of a "U" tube, one arm of which is connected to the bellows. In
our statement the error was made to give as pounds per square inch figures which shoul have been given as inches of water. A firm o builders has given us the following data
"Pressures of air usually employed are 3 "Pressures of air usually employed are 3 to
$31 / 2$ inches on the manual pipes, and $31 / 2$ to inches on the pedals. In very large organ this is very often increased as high as 8 inche
on the pedals and from 8 to 15 inches wher on the pedals and from
there is a solo organ."
(9038) W. L. W. asks: Requiring to gild the first surface of a glass mirror whose tried the formula furnished by Prof scherav bach. The experiment has failed entirely, al though conducted with care. Can you say also whether any particular method for making the marsh gas is required to insure purity: A The following process, devised by Wernicke and
improved ly Böttger, will undoubtedly give improved ly Böttger, will undoubtedly give
thorough satisfaction. Three solutions are prepared. a. Dissolve 1 gramme pure gold in aqua regia, evaporate to dryness in the water bath
to expel excess of acids, take up with water and dilute to 120 cubic centimeters. b. Dissolv 6 grammes pure caustic soda in 100 c.c. of
water. \quad c. Reducing solution: grammes dextrose in 24 c.c. water and add 24 c.c alcohol and 24 c.c. acetaldehyde of 0.870 spec prep. This solution should always he freshly prepared, as it deteriorates on standing. For gilding, mix in the ratio of 64 c.c. of solution
a. 16 c.c. of solution b, and 1 c.c. of solution c The glass surface to be gilded should be cleaned thoroughly with caustic soda solution, but not with acid. Marsh gas is obtained in pure form by mixiug 2 parts sodium acetate, 2 parts
caustic potash and 3 parts quicklime, and heat ing the mixture.
(9039) M. K. McQ. says: 1. What given amount of water? A. One coulomb of electricity will decompose water so as to give
0.000010384 gramme of hydrogen and
0.0 0.00008286 gramme of oxygen. This is an amount of current given by one ampere flow-
ing at a pressure of offe volt for one second. ing at a pressure of offe volt for one second.
Any other amounts are calculated easily from this. 2. Give a formula or recipe for a cement that will firmly rnite meerschaum and silver As a subscriber of the Scientific American cannot say enough in its praise as an up-to
date scientific publication. a. Dissolve glue in water and add half as much linseed oil varnish and one-quarter as much Venice turpentine as the amount of glue used. b
Mix 3 parts copal varnish, 1 part linseed oi Mix 3 parts copal varnish, 1 part linseed oil
and varnish, 1 part oil of turpentine and and varnish, 1 part oil of turpentine and 1
part glue. c. Mix Canada balsam with carpenpart glue. \boldsymbol{c}. Mix Canada balsam with carpen-
ters' glue 2 ounces and Venice turpentine $1 / 2$
(9040) O. R. B. asks how to lag pulleys. A. Cast-iron pulleys may be lagged with leather without the use of rivets, by first brushing over the surface with acetic acid, which
will quickly rust it and give a rough surface; then attach the leather to the face of the pulley with cement composed of 1 pound of
fish glue and $1 / 2$ pound of common glue. To Cover Pulleys with Paper.-Scratch the face
of the pulley with a rough file thoroughly, so that there are no bright or smooth places Then swal the surface with a solution of
nitric acid, 1 part; water, 4 parts ; for 15 nitric acid, 1 part; water, 4 parts; for
minutes: then wash with boiling hot water Having prepared a pot of the best tough glue ounce of strong solution tannic acid, oak bark, or gallnuts, as convenient to obtain, to a quart of thick glue; stir quickly while hot and apply to the paper or pulley as convenient, and pulley, overlapping as many folds as may be required. By a little management and moist ening of the paper, it will bind very hard on
the pulley when dry, and will not come cff or get loose until it is worn
hardware wrapping paper
(9041) G. F. M
says: 1. Do you or acid stains from marble, without cutting it down? A. Grease spots can often be removed or powdered chalk, saturated with benzine; let lie for a few hours, then remove and scour. Acid stains cannot be removed, as they eat into the marble. Iron stains can sometimes be re moved by the use of hot strong caustic soda
solution. Oxalic acid is much more likely, solution. Oxalic acid is much more likely,
however, to remove the stain, but will more or less attack the marble. 2. What substance will produce the greatest volume of gas when
biought in contact with fresh or salt water d. Metallic lithium will probably yield the
greatest volume of gas when brought in contact greatest volume of gas when brought in contact
with water. Theoretically, 7 pounds of lithium wilh water. Theoretically, 7 pounds of 1 pound of hydrogen gas, equivalen over 5,000 liters, or
(9042) G. W. says: Would you please send me a receipt for making a good library pength of time and one that would answer the forms the base of nearly all library pastes The dextrine is treated chemically, and the manufacture is entirely unlike that of ordinary pastes. Many of these pastes are patented.
We have no definite formula. For $\$ 1$ we will look up and send two or three copies of patents which will give you an idea of the composition
and methods of manufacturing such pastes.
(9043) J. J. McV. says: Can you in form me where I can obtain the following in formation in regard to wood pulp? 1. About pulp? Also its weight per cubic foot after it has been compressed into the solid form: A Wood pulp is always put on the market in the
form of a coarse board; the specific gravity in this form will vary, being dependent on the nature of the wood, the method in which the pulp has been made, and its relative dryness
We cannot find any figures published, and doub whether any determinations pave been made of its specific gravity. 2. Can it be made imper dous to moisture, and reasonably free from
decay, if placed in the earth? And does the pecay, if placed in the earth? And does the
process of making it so materially increase the cost? A. The treatment to which pulp is sub ilber in the manufacture of indurated ware finer pipe or papier mache makes it quite im-
pervious to water. The cost of such treatment considerable. relative to the cost of the
oood pulp itself. 3. When compressed into the solid form what is its tensile and shearing of these tests. 4. What is the approximate cost per cubic foot or pound the coarsest, cheapest kinds of timber. in large quantities? A. We is the process of making the pulp from the waterproof? A. There are two general methis, mechanical and chemical. The mechanica is simply a grinding operation. The chemica
method is subdivided into two, the soda method and the sulphite method. Descriptions of the methods of making wood pulp are beyond our limit of space, but the details can be found in all chemical technologies. It is waterpro
with rosin dissolved in boiled linseed oil.

NEW BOOKS, ETC.

India Rubber and Gutta Percha. By T.
Seeligmann, g. L. Torrilhon and H . Seeligmann, G. L. Torrilhon and H .
Falconnel. London: Scott GreenFalconnel. London: Scott Green
wood \& Co. New York: D. Van Nostrand Company. 1903. 8vo. Pp. 402 Price $\$ 7.50$.
A complete practical treatise on these two gums, dealing with the historical, botanical,
arboricultural, mechanical, chemical, and electrical aspects is this work, translated from the French by John Geddes McIntosh. The liter ature of rubber is extensive, as is shown by the excellent bibliography. It is rather surprising that the invention of vulcanization is credited to Nelson Goodyear instead of Charles Goodyear. It is to be hoped that the error one but corrected. The book is an excellen might have profitably been included, also rub-ber-tire making. Foreign authors are apt to forget that the rubber industry was brought to perfection by American inventors. Thomas Hancock does not deserve much credit for what
he did, and the story is not given in the e did, and the

Le Navire pour Passagers. Essai sur un Type Nouveau de Navires sans Tan gage et sans Roulis Evitant Ainsi le rables et Insubmersibles aprés Abor dage. Par C. Turc, Lieutenant de polytechnique. Paris: E. Bernhard et Cie. 1903. Pp. 88.

INDEX OF INVENTIONS
 For which Letters Patent of the United States were Issued for the Week Ending
 May 26, 1903,

AND EACH BEARINGTHAT DATE.

W ALWORTH MAS MANUFACTURING Co
128 TO 136 FEDERAL STREET, BISTON, MASS.

Marine Gas Engines Launches, Row Boats, Canoes and Boat Fittings. Our
prices are right,. our wort is right. Catalogue free.
THE GENESEE LAUNCH \& POWER CO, Rochester, N. MORAN FLEXIBLE JOINT Maf ston ant Ait or it ididide

ARTESIAN
Wollo Olland Gas 耳ellagrilled

Veeder Ratchet and Rotary Counters

 THE VEEDER MFEC. CO

THE WATERBURY Emery Grinder,
 BLAKE \& Sen for dataoné P. O. Box Tr,
WATERBRV,

MARINE Gasolene MOTORS

Reppert for feara have ranked oir engno yitht the high:
 Ife years hence.
ing all parts, and then buy ar Rechester
ROCHESTER GAS ENGINE CO., ROCHESTER, N. Y., U.S.A

PARTS EOR
AUTOMOBMES
 HWMMMMOMO Genmem

> Rer

be

The only fastener that insures you against robbery or loss Simple, secure and
easily adjusted

THE HIGHEST EFFICIENCY

SAVE HALF YOUR CIGAR MONEY AND GET A BETTER SMONE

 Quires but oow pressure, the motor being fed through a
I-1bi-ich hole. Runs smoothy, without noise
ance eespecianno

Price Complete $\$ 1.50$ Booklet Free God Agents Wanted to sell the Water Motor Fan to
the thousands who have been waiting for a perfect fan
at a low price. 631 Market Street ELEVATING - CONVEYING COAL WASHING MACHINERY COLD GALVANIZING

LESLIE'S WEEKLY
AMERICA'S GREATEST ILLUSTRATED WEEKLY

Lessitie's WeEkI, y occupies a unique position in the field of illustrated weekly jour
all others.

0
0 of the world's greatest authors and of the
writers.

The Best General Advertising Medium Rates and Estimates on Application \boldsymbol{D}

225 FOURTH AVENUE, NEW YORK

 WILLIAM L. MILLER, Advertising Manager western office, 828 Marquette Building, chicago, ill ChAS. B. NICHOLS. Manager
SIT,RIDEAnd SLEEP

 ON AIR

r.
$.729,370$
729,092
7292
729VELOCI'CY OF ICE BOATS.-A COL-
\%

Look at Your Nails Polpasta FOR MA NICURING
nails, CURES CALIOUS CUTICLE
PREVENTS brittle nails, CURRES CALIOUS CUTICLE At Your Druggists',
To start you with One F. B. Flexible Ful
Six F. B. Emery Boar One F. B. Orange Stic
Sample of Polpasta Sample of Polpasta
Sample of F . B. Nail
FOReu FORQUIGNON MFP
-

3
Hay rake, horse, Brown \& Holtorance
Heater. See Curling iron heater.Heater. See Curling iron heater. Wergo
Heating fabric, electric, J. M. M. C. Herrgott
Heating funnace, continuous, H. V. Los....
Heating furnace, double hearth, P. Patter-

 Grann elevator coterstruction, I. I. Conen..........
Grain treating and drying apparatus, Cald-

Ho

 $\xrightarrow{\text { Hoo }}$

 $\xrightarrow{\text { Hoo }}$}

K

룰

$$
\begin{array}{l|l}
\text { Land } \\
\text { Lant } \\
\text { Lant } \\
\text { Lat, } \\
\text { Last, } \\
\text { Last, } \\
\text { Latath } \\
\text { Lath }
\end{array}
$$

$$
\begin{aligned}
& \text { Liquids, aparatus for drawing gaseous, } \\
& \text { Loading. orarlier or unloading apparatus, A. } \\
& \text { Flesher }
\end{aligned}
$$

 (Continued on page 499.)

त秉我
 BANI - MAIL
 A Tower of Strength

 4% Interest on Sarings, canponnided Semi-Annadlly.\qquad
OVER \$10,000.000.00 $\mathbf{\$ 6 , 0 0 0 , 0 0 0 . 0 0}$
$\$$ roo.oo can be withdrawn without notice.
Send for Booklet S "How to Bank Safely
DITTSBURG TRUSTC
Will Make Hair Grow

THE BEST MADE FLOATS $\begin{aligned} & \text { and the the best } \\ & \text { inats made } \\ & \text { are }\end{aligned}$

W-WONDER $\frac{\text { Acetylene Burners }}{\text { ARE }}$ 5he Sold by good dealers or write

MADE \$ 105 THE FIRST MONTH
 110 l

PUNCTIUREPRROOF

 yention Scientritc umrridan.

Scientific American

 Building Monthly
NEW VOLUME NOW READY

 VOL. 34-JULY to DECEMBER, 1902 A Monthly Magazine of DomesticSumptuously Illustrated
75 Illustrations Six Covers in
Bound in Boards Price, $\$ 2.00$ prepaid by mail The Thirty-fourth Volume of the ScIENTIFIC
AMERCAN
 tecture; and its many specisilized Departments make it
the most useful and most valuable publication of its
TALKS WITH ARCHITECTS

Hiome., Mr. Cbarles M. Lehean on on opportuni-
 EDITORIAL ARTICLES
"Cheap Houses," Walls, nd Wall Treatment.",
How the Architect Heelps the country House." Home." How
the Householder Helps the House." DEPARTMENTS

 taten. The inlustrations are all made from photographs
taken expresl for the Magaine and are printed with
every advantage of the pringrin art. The plans which every advantage of the printer's art. The plans which
accompany
synopsis of each of the int illustrations present a complete

 MUN \&or Rale by
MUNN \& CO., $361 \begin{gathered}\text { For } \\ \text { and all } \\ B^{2} \text { way, } \\ \text { newsdealers }\end{gathered}$

 Machinery tim
Anderson
Magnet struct

Manure covereder, C. E. Burney
Match lighter and Kiffen

Newell
Metal wills, machine for making,
williams

Music leaf turner, JJ. G. Meriere. .a.
Musical instrument, H. H. Briman
Musical instrument, key actuated.

 Packing, metaliic, R. D. Smith
Paint or protective composit
 Pan lifter, automatic spring, T
Panoramic, cabinet. A. M. Woo
Paper box, R. H. Hederson ..
Paper fabric. T. Arkell Paper box, R. H. Henderson
Paper fabric, J. Arkell
Parachute C. W. Van vicet
Pen, fountain W. Yan Pen, fountain
Photographic
Stage

Pigment, $\left.\begin{array}{c}\text { apparatus for manufacturing } \\ \text { white, J. } \\ \text { B. Hannay }\end{array}\right)$. 729,492 ,

Power appliance, L. B. Holliday
Power fatoror meter, o. Holz.....
Power transmsion, H. Buck
Power transmitting device, O. F.

\qquad Railway tie cuting machine, M. W. Barr
Railway track structure. G. M.
729.088 Railway track structure, A. L. George,
Railw
Ralw, Railway track structure, $\begin{aligned} & \text { G. H. Part. Palele, } \\ & \text { Railways, plow raising means for conduit, }\end{aligned}$ Rake. See Honnett rake.
Rake attachent,
Ratechat

 Revolver, A. Fybrberg
Rheostat, C. J. Reed
Riveting, machine, P. F. King $\ldots \ldots$.
Rolling plates or sheets, apparatus for,
Wray
Rotary engine, M. Cameron
Rotary engine, F. A. Palle
Sap spout, G. G. Grimm

Manufacturers' Agent Wanted Good Staple as Flour. \$20,000,000 year in this line. We have them Exclusive Agency Life contract Must carry stock $\$ 1,000$ to $\$ 5,000$. 64 Sherman St., Chicago, II!	
iCe Yacht building.-COMPLete 	

DRY BATTERIES.-A PAPER BY L. K. K .

Best American Made Motor

WMATIS SCMAPIROGRAPM*)?

0
 Price for Complete Apparatus, cap-size, $\mathbf{8 8 . 0 0}$.
*) To Preve that the chapirograph is superiur to any

STUDEBAKER ELECTRIC

 AUTOMOBILES为

 STUDEBAKER BROS. MFG. CO. Firat-Glass Agents defired id.
territory not alrealy covered.

The Waterless Knox SIMPLICITY

RELIABILITY
CONYENIENCE
Iy demonss ofrated patent years of conse. ses system has been thorough
Man details improved in 1903 car. Catalogue on application. KNOX AUTOMOBILE CO., ain Office and Works, SPRINGFIELD, MASS.

$$
\begin{aligned}
& \text { new position. Start TODAY to rise! Fill out and } \\
& \text { send in wie coupon NOW! } \\
& \text { : - }
\end{aligned}
$$

International Correspondence Schools,
Name
St. \& No._-___

The Balanced Motor

\qquad Most Distinctive Feature
Haynessapperson Carof the French year, and is more flexible under all rad
oondition than any other automobile speed onanfinp
device in existence. It has been constintly deveShould this be of interest, we shall be glad to
tell you more about it. Send for our literatureTHE HAYNES=APPERSON CO., Kokomo, Ind.

Scientific American.

HENRY CAREY BAIRD \& CO., HENRRY CAREY BA IRD
INDUSTRAL PUBLSHERS, BOKSEELERS\&I MPORTERS,
$\mathbf{8 1 0}$ Walnut St., Philadelphia, Pa., U.S.A.

 and our other Cataloguss and Circulars, the whole covering
every branch of Science applieat to the Ars. sent free and
free of postape anyone in and part of the world who
will furnish his addaress.

I Print My Own Cards

ROSE POLYTECHNIC INSTITUTE

TRANSLUCENT FABRIC

 moderate users are SPECIALLY invited to write to
us for detailed information.
 Made of fine cloth, exactly resembling fashionable
inen goods. 10 collars or 5 parirs cuffs, 25 Cb . By mailizoc. Reversible Collar Co., Dept. 3, Boston, Mass.

A.W. PABER

Manafactory Established 1761.
LEAD PENCILS, COLORED PENCILS, SLATE RUBBER GOODS, RCLERS, ARTISTS' COLORS 78 Reade Street, New York, N. Y. GRAND PRIZE, Highest Award, PARIS, 1900.

EveryMechanic

 Should Ownit.

The Light Running YOST is easy to operate Its Beautiful Work is easy to read Our Unusual Catalogue is easy to understand. Why not send for the UNUSUAL CATALOGUE
and learn of the BEAUTIFUL WORK dme by and learn of the BEAUTIFUL WORK dome by
the LIGHT RUNNING YOST
Sent free. yost writing machine co., 245 B'way, New York.
The SuperiorDomeFurnace

PieRider Agents Wanted

 our wonderful special offer to agents.
Tires, equipment, sundries, haif price. AUTOMOBILES Bargatns in

Water closet and apparatus connection,

DESIGNS.

Rag, $\mathbf{~}$. T. Brundage

$$
.36,334 \text { to } 36,3
$$

...36,

TRADE MARKS

Antiseptic powders, certain named, E. D Beer, Davenport Maiting $\dddot{\text { co. }}$.
Beverages, certain named,
Bitters
W,

Diry products, certain named, McDermot
Dairy
Bunger Dairy Co.

 Foods, certain named prepared cereal, Vean
Food Co
40, Game articles, Brist Company
Gas mantles, incandescent, Gas mantes,
Gum, chewing, J. J. Minor
Hats and bonnets, Warren
 Medicines, dyspepsia, M., D. Batchelder
Metals, readily fusibe, B. H. Seabury
Music, seet, $\underset{\text { Packings, }}{\text { Mrg, }}$ certain Packings, certain named, Turner Brothers.
Periodical or magazine, Bobbett \& Kegrize
Pettiooats, Iadies, M, Bernstein
Razors. S. R Droescher
Ro.

 removing, Masury, Young \& Co.
Starch, laundry, Gold
Co Stockings, Corneli Stocking Corporation $\ldots . .$.
Tools, certain named pneumatic, Philadelph

LABELS

 comania, transfers, B. Illeelder for decal-
Imperial," for fire clay, Jenkins \&

 for cosmetics, Graham Bros. \& Co.

\qquad

PRINTS.
Cantripu
Mitchen
"Gents
Cantripum." for overalls. Hooker. Croser \&
 Men's Winter Apparel,, for men's apparel,
David Adler \& Sons Clothing Co Mosquitokill, for insecticides. CMlecide Co
"Naples Back No. 6o6 Congress Plaving Cards
for playing cards, United States Playin "The Comfort Passenger Car-In Fall," for pas
 passenger cars. Hermann Romunder
"The Comfort Passenger Car-In Summer,;
passenger cars, Hermann Romunder passenger cars, Hermann Romunder
"The Comfort Passenger Car In Winte
cossenger cars. Hermann Romunder

A printed cons of the specification and drawin in any patent in the foregoing list, or any pate
in print isued since 1863 , will be furnished from
this office for 10 ents number of the patent desired and the date
given. Address Munn \& Co., 361 Broadway,

THE HARRINGTON ANO KING PERFORATING CO.
 .ind ind 225 NORTH UNION ST CHICAGO, NL. D.S.A.

"Free from the care which wearieg and annoys Where every hour bringa tis several jogk.)

"AMERCA'S
SUMMER
RESORTS"
 dering where they will go to spend their vaca-
tion this semmer.
much tuing ar. vialable map, in addition to
much interesting information regarding resorts
on or reached by the much interesting information regaralak
on or reached by the
NEW YORK CENTRAL LINES

SHOE BLACKING.-FORMULAS FOR Siquid and solid blacking are given in SUPPLEMENT
Nos. 1213 and 1239. Trice 10 cents each. For sale
by Mun \& Co. and all newsdealers.
Do You Want CASH

Real Estate or Business?

INVENTIONS DEVELOPED

Experimental \& Model Work

 MATCHMAACMINERY:

TWENTY-THIRD EDITION
EXPERIMENTAL SCIENCE.
By GEORGE IT. HOPKINS
$\begin{gathered}\text { Revised and Greatly Enlarged. } 2 \text { Octavo Volumes. 1,100 } \\ \text { Pages. } 900 \text { IIlustrations. Cloth Bound, Postpaid, }\end{gathered}$

MUNN \& CO. Publishers, $\quad 361$ Broadway, New York. Stephens Patent - VISES

PROPOSALS.

"THIS BEATS NEW JERSEY."
Cbarters procured under South Dakota laws for a few
dullars. Charters procured under South Dakota laws for a few
dullars. Writ for Corporaton laws blanks, by-laws
and formsto HHILP
 Dies, Tools and Special Machines. Models
and Experimental Work. General Machine Work.
PE. J. BENDER \& SoNs, Inc.. 87 Hrankfort
 DRYINQ MACHINES. ${ }^{8}$ s. E . Worment.

 NOVELTIES \& PATENTED ARTICLES
 LEARN RUBBER STAMP MAK ${ }^{\text {ricomplote }}$

MODEES FCHIGEDMODFLWORKS

Cement Boks. Fow to Tge Rorliand Cement MODELS I E EXPERRMENTALL WORK. V. BailLa ABo, Fox Bidge., Frankiin Suauate. New York. MODEE AND EXPERIMENTAL WORK.

 Mtasov's Pati. Friction Pulleys and Clutches

F. N. Roehrich \& Co. Machinery 102 fulton street, Designing,

NEW York. | NEW YORK. | $\begin{array}{c}\text { Mechanic } \\ \text { Drawing. }\end{array}$ |
| :---: | :---: |

From Any Point of View Remington Typewriter IS THE BEST INVESTMENT It leads in durability, reliability,
permanent
adatabe permanent excellence of work,
adaptability to all classes of work,
ease, speed and convenience of ease, speed and convenience o
operation, and economy in service REMINGTON TYPEWRITER CO 327 Broadway, New York

7 H. P. GASOLINE CAR

CHARTER ENGINE

USED Stationaries. Portables. Sawing nutits,
Host Send FUEI-G.-Gasoine, Gas, Distillate

eng gas engine co.. Box 148 sterling. ill

Waltham Watches

A great American achievement.
"The Perfected American Watch," an illustrated book of interesting information about watches, will be sent free upon request.

American Waltham Watch Company,
Waltham, Mass.

WE PAY MORE
$\underset{\substack{\text { tof } \\ \text { co } \\ \text { LOAN }}}{ }$
 C. E. SHEPARD \& CO., Hartford, Conn CRUDE ASBESTOS DIRECT FROM MINES

PRICE S125.
 requer, there it on ty one machine that will mill you
requrents, and that is the MARSH 3 H. P. MOTOR CYCLE motor crcle mfa. co., \quad BROCKTON, mass Everybody's Punching Bag have you yours? Have you Yours?
Agnota Vest Pocket Punching Bag
(Patented Sentember 30, 1902 and Deember 11,190$)$

 the m. lindsay rubber co. THE M. LINDSAY RUBBER CO.
 WIRE $\underset{\text { For Transportation of Ore, Coal. Dirt, timber, etc. }}{\text { Patent aerial }}$ HERCULES
WIREROPE Perfect
 A. LESCHEN \& SONS ROPE COMPANY. Main olreet, st. Liouis, Mo.

MITCHELL MIEEA-A MOTORCYCLE

3/2 Brake Horse Power. Price \$225. WISCONSIN WHEEL WORKS. Turnor Ave., Racine, Wis.

Apple Economical Gas Engine Igniters

The Dayton ElectricalMIg. Co.
80 S. st. clair St., Dayton. o.

 NEW YORK LABORATORY, LAMP TESTING
Bth Floor. No. 14 lay Street, New York

SOLAR MOTOR LAMPS

"Show the Way and Always Satisfy." We make a score of styles and models of
GAS and OIL
Side Lamps, Headights, Tail Lamps \& Searchlights

With Lens Mirror Reflectors.
new models with Latest Improved Generators are
 Write for new catalos.
THE BADGER BRASS MFG. CO., Kenosha. WIs., or 11 Warren St., New York

8 H. P. PRICE 9975 All speeds to 30 miles per hour. Will climb any grade. WALTHAM MFG. CO., - Waltham, Mass. NO EXCUSE

The RAYMOND BRAKE

 A. H. RAYMOND, 332 Fairfield Ave,, Bridgeport, Conn.Anybody can make Good Pictures by the

Kodak

System. Better results than the old way, too.

Dark=Room

Abolished
Bythe
Kodak Developing Machine.
Kodaks, $\$ 5$ to $\$ 75$. Developing Machines, \$2 to \$10. EASTMAN KODAK CO. Catalognue free at the
dealers or by mail. \quad Rochester, N. Y

Simple Yet Positive Fisk Tires

FISK RUBBER COMPANY

Chicopee Falls, Mass.

Bevel Pinions
We can furnish our New Process
Noiseless
as spurs
of anions in in bevels as mell as spurs of any size wanted and
to transmit any
power. Write for catalogued horse
hoter the new process rawhide co. Syracuse, N. Y.

