NATURAL EFFIGIES.

At Conchise, Ariz., the passenger on the Southern Aacific Railroad is shown a wonderful face formed he summit of a mountain range. It is called the face of Sleeping Conchise, a famous Indian chief, and is said o be held in more or less reverence by the Indians who have seen it. The profile is remarkable, doubtless several miles in length, and from certain localities a perfect face gazing upward with wonderful dignity
In almost every portion of the country strange face or forms are found but none are more remarkable than the stone hale here shown. Nearly twenty ears ago the writer heard of this natural curiosity, his informant urg. ing him to go and see the whals high in the mountains. Vertebra of these huge creatures were not uncommon on the summit of the Coast Range Mountains, and the writer had seen the skeleton of a hale dug into when a street was eing opened in the city of Los An eles; indeed remains of these mals were found in various portions of the State, hence the story of the whale in the mountains did not re sult in a long trip at that time, and he natural effigy was not seen until many years after, when making coaching trip from Los Angeles o Santa Barbara. One afternoon, fter crossing a little stream in Ventura the coach rolled out into a
country road and came to a standstill by the side of the whale, an effigy so remarkable that it was easily seen how the early natives were attracted by it and had legends referring to it. The whale is a conspicuous landmark, and stands on the Los Angeles, Ventura and Santa Barbara bighway, pointing to the east and attracting the notice of all who pass that way.

Charles F. Holder.

THE D. O. MILLS EXPEDITION TO THE SOUTHERN HEMISPHERE

is well known that the observed positions and motions of celestial objects are influenced not only by the motions of the bodies themselves, but also by the motions of the observer. Neglecting minor disurbances such as latitude variations, precession, nuation, etc., the observer's motion is made up of four principal components:

1. That due to the rotation of the earth on its axis. The elements of this diurnal component are well known, and it can be eliminated completely from an observation. 2. That arising from the revolution of he earth around the com mon center of mass of the earth and moon. This monthly component is mall and readily allowed for. 3. That due to the annual revolution to the arth around the sur the form of the earth's orbit s well known, but there is at present an uncertain y of from one-quarter to one-half of one per cen in the assumed value of the solar parallax, or in the absolute value of the semi-major axis of the earth's ellipse. This in roduces a slight uncer tainty in the observer' speed which is trouble some in a few cases. It is hoped that as a result of recent observations of the planet Eros, we shall be able to eliminate th greater part of this uncer tainty. 4. That due to the motion of the solar sys tem as a whole. The ele ments of this motion are not well known. In fact, a better knowledge of them constitutes one of the most pressing problems in astronomy, and it is to contribute to the solution of this problem that the Mills expedition to Chile has been organized.

More than one hundred years ago, Sir William Herschel, from a consideration of the proper motions of the few stars previously observed, came to the conclusion that the solar system is moving in a straight line approximately toward the constellation Hercules. This was one of the shrewd guesses for which Her schel is justly famous. Later solutions have been

THIRTY-SEVEN-INCH MILLS REFLECTING TELESCOPE AND SPECTROGRAPH. the all in
has been much less satisfactory. Herschel had essen ially no information as to the distances of the stars but by making certain assumptions he was led to the conclusion that the speed of the solar system was probably in the neighborhood of ten miles per second Other discussions of the question have led to the as signment of values ranging from as low as five miles o as high as twenty-five miles per second. The weak ness of the solutions arises from our very imperfect nnowledge of the stellar distances.
The development of the spectroscopic method of meas uring stellar velocities in the line of sight has placed in our hands a means of making decided improvements in our knowledge of the solar motion, as this method is entirely independent of stellar distances. The meth od is exceedingly simple in theory, but extraordinarily difficult in practice. The displacements of the stella pectra due to their velocities of approach and rece pectra tion may easily exceed the magnitude of the quantities to be observed. Fortunately the thorough understand-
ion of motion vastly more than it does the speed It has for many years been my desire to organize a spectroscopic expedition to the southern hemisphere for the purpose of extending the observations to the South Pole of the sky. The problem under solution, and the needs of such an expedition, were recently rought to the atention of Mr . D. O. Mills who most mos generously provided funds for constructing the ap paratus, for employing the astroners, and for meet ing all general expenses.
The telescope recently constructed for this purpose is shown in the accompanying illustration, set up on Mount Hamilton for adjustment and trial. It is a re flector of the Cassegrain form. A parabolic mirror of silver-on-glass will be mounted in the extreme lowe nd of the tube. This mirror, now rapidly approach no the. 271 in meter and $57 / 8$ nches thick. The accurately polished surface is $361 / 4$ ches in diamer. There is a hole 5 inches in dia meter in its center. The rays of light from the sta would be brought to a focus $171 / 2$ feet above the mir ror; but a hyperbolic con vex mirror $93 / 4$ inches in diameter is to be placed $41 / 2$ feet inside the focus just within the upper en of the tube, to receive the converging beam of ray from the large mirror and reflect them back through the hole in its center The rays will thus be brought to a focus about 12 inches below the lower end of the telescope tube exactly on the slit of powerful spectrograph. The spectrograph is show supported by a steel truss In theory it resembles the Mills spectrograph now in use at the Lick Observa tory; but in reality it em bodies many new depar tures in design. Hithert the conventional spectro graph has been supporte entirely from its upper tremity, the entire instru ment projecting out into space "at arm's length," so to speak, thereby invit ing injurious flexure ef fects. The present instru ment is supported at tw points in such a way the strains in the suppothe
ing of the problem, reached through bitter experience in the past fifteen years, has made it possible at the present time to measure stellar'velocities with a high degree of accuracy
The velocities of some four hundred of the brighter stars have in the past six years been measured with the Mills spectrograph attached to the great Lick telescope. These stars are situated between the Norti Pole and 30 deg. south declination, and are distributed more or less uniformly over this section of the sky.
truss cannot by any possibility induce strains in the spectrograph.
The telescope is mounted equatorially in the usual way. Motion is communicated to the instrument, however, in a somewhat unusual manner. The large sector on the right carries a groove in its edge accurately turned to the arc of a circle; and attached to the lower point of the arc is the clock cord. This follows in the groove to a point on a level with the clock, where the cord can be seen running to the winding drum. The

