AN EXPERIMENTAL MOTOR AND DYNAMO.

In his work in teaching physics the writer has often felt the need of a simple and inexpensive outfit for illustrating the principles of the electric motor and dynamo. Not finding anything satisfactory in the market, he has built the apparatus describe and illustrated, having in mind a model used by himself at college.

The magnetic needle shown in Fig. 1 is an ordinary needle mounted so as to move freely in a horizontal plane, and above it is suspended a wire. If an elec tric current is passed through the wire the needle is deflected, the direction of deflection depending on the direction of the current and the position of the wire whether above or below the needle. A current flowing through the wire above the needle in a given direc tion will produce a deflection of the same kind as a current beneath the needle flowing in an opposite direction. It becomes easy, therefore, to increase the effect of the current upon the needle by replacing th single wire by a coil of many turns of fine wire, a in Fig. 2. When a momentary current is passe through the coil, the needle is thrown violently around, and by properly timing the impulses due to a series of momentary currents, the needle may be kept in rapid rotation in either direction. Here then is the fundamental electric motor: constant rotary motion, produced by a magnet, and an electric current passing through a coil of wire.

So far as the principle is concerned, it is immaterial whether the magnet or the coil of wire be made the moving part. In Fig. 3 the coil is mounted vertically so that it is capable of rotation, and the magnetic ne:dle is replaced by a powerful electromagnet. When a current is passed through the coil in the position shown, it is thrown violently around till the opposit side comes next to the pole of the magnet; if at this instant the direction of the current through the coil is reversed, it will continue in rotation. It is, how ever, difficult to reverse the current by hand with sufficient rapidity and at exactly the right time, hence t is not possible to produce continuous rotation fo any considerable period of time.
We may substitute for the single coil two coils mounted at right angles, as in Fig. 4, and having thei ends connected to a mechanical switch, or commutator which automatically reverses the current through the coils at the proper instant. With this addition continuous rotation immediately results, the direction of which may be change at will, either by reversing the current through the moving coils, or changing the polarity of the magnet.
The machine shown in Fig. 5 approaches a little more nearly the commercial orm. Here we have re placed the two coils by our, intersecting at angle of 45 degs., mounting them upon a shaft supported by durable bronze bearings the electromagnet which urnishes the field restin pon the two upper rod which hold the bearings in position. The direction of rotation may be change at will by reversing the polarity of the field or the cur rent through the armature. The polarity of the field may be reversed by changng the position of the electromagnet, or by reversing the current through it. To everse the armature current, a switch may be inserted in the armature circuit, or, what is much easier, the position of the brushes may be reversed by turning the brush holder on its bearing through 180 degs.; this showing also the effect upon the speed of the machine of the position of the brushes
The machine shown in Fig. 5 operates equally well as a series or shunt motor; and if the field is separately excited and the armature driven by a belt, it may be used as a shunt dynamo. The apparatus operates most satisfactorily with an E. M. F. of 8 to 12 volts, though 4 volts will give good results.

Arrangements have been made whereby the entire outfit can be placed on the market at a reasonable price. Further information may be had by addressing Mr. Parker at the High School, Torrington, Conn.

Japanese dentists perform their operations in tooth drawing with the thumb and forefinger of one hand.

a perplexing puzzle.

The following puzzle, culle from an English magazine, has been sent to us by Mr. O. Podewils, of New York city, who asks to have it explained.
If a flat strip of paper be taken, and its ends pasted together to form a ring, and it be then cut along its center line, two similar but entirely separate rings will be formed, unconnected in any way. If, however the paper be twiste as illustrate in the uppermost view, and its ends be pasted together to form a ring with a single twist in it, this ring, when cut along

its center line, will form two rings, one loope within the other as shown in the third and fourth views.
Perplexing as this may seem at first glance, the explanation is quite simple. We may consider the upper edge of the paper strip as one ring, and the lower edge as the other. Now, following the edges of the twist, as shown in the second view, it is evident that one edge has been twisted completely around the other edge; or in other words, one edge or ring has been passed through the other ring, which when cut apart form two interlooped rings.

The Reforestation of South Aastralia.

According to the report of the Conservation of For ests the reforestation of South Australia by the State during 1901 resulted in 68,695 trees being planted which 49,219 , or 71.5 per cent, have thrived. In the Ayers district, however, only 42.25 per cent of the tree have survived, owing to the ravages of grasshoppers which have estroyed them. The losses have been confine for the most part to the manna gum and the

Fig. 3.

Fig. 2

Fig. 5

1. Magnetic Needle.-2. Needle Arranged to Turn in Magnetic Field.-3. Coil Arranged to Kotate in the Field of a Strong Magnct.-4. Two Coils at Right Angles in Field of Magnet.-5. Experimental Motor and Dynamo.

AN EXPERIMENTAL MOTOR AND DYNAMO.

Tasmanian blue gum, plante many years ago at Bun aleer. Although some of them have attaine sub stantial proportions, the testing conditions of the northern districts are not favorable to their reaching in most cases beyond the pole and firewood stage. The value of this class of forest produce is but low. It has, however, in all cases returne the original cost per acre with more or less additional revenue. During the unfortunate continuation of dry seasons to which South Australia has been subject of late years valuable experience has been gained regarding the resisting twelve.
power which various trees possess to inimical influences. The red gum, the blue gum, and the sugar gum, being species indigenous to the country, have stood well, as would naturally be expected. They cannot, however, claim a monopoly of drought-resisting power, as the Victorian ironbark, both at Bundaleer and Wirrabara, has held out well even on indifferent soils, and made steady growth in spite of adverse conditions. The growth of the sugar gums at the Ayers Forest Reserve in the older plantations is very encouraging. Since they have been planted the seasons have certainly been far from favorable, and the position of the reserve is one of considerable exposure to the arid northerly winds, which are so trying to all vegetation. Notwithstanding these drawbacks, however, large numbers of the trees have attained heights of from 14 to 20 feet, with a circumference of from 12 to 18 inches.
On the Kuipo Forest Reserve, in addition to what has been cleared for planting purposes, about forty acres have been cleare of the undergrowth of honeysuckle as well as of the manna gum timber, in order to promote the stocking of this area with red gum by natural generation, and a promising start has been made by the young seedlings after burning the debris from the clearing. The ironbarks already planted are making satisfactory progress. As an exceptionally large amount of replanting has been necessary this yєar in consequence of the heavy losses last season at Wanilla, Ayers, and Bundaleer, cause by rabbits and grasshoppers, it has only been possible to plant about 100 acres. Owing to the spread of the rabbit pest it is now absolutely necessary to protect young plantations on almost all reserves by wire netting the fences, which, of course, very largely increases the cost of fencing. Hitherto large reserves such as Bundileer and Wirrabara, which for years have been the centers of the greater part of the operations, have been practically free from this scourge, but in consequence of the recent protracted droughts in the pastoral country these pests have gradually worked their way further and further into the more settle parts, and will now evidently have to be reckoned with for the future.

Professor Rowland.

Yet perhaps a few more words of personal delineation may help to keep in mind his remarkable individuality. He was tall, slender, but not slim, well pro portioned, alert, giving every indication of a healthy body. Of physical exercise he was very fond; in winter the horse, in summer the sailboat, gave him never failing delight. He knew where to find the trout and how to handle the rod. He would take great risks in following the hounds. "You should think of the fox, and no of the ditch," I have hear him say when he was chide for his rash horsemanship. He landed once in Liver pool and saw an advertise ment of a meet He ertise train to the nearest station, hired the best nag station, find the best nag he could find, joined in the run, won the brush, and then disap peared from among his competitors, who hardly knew what to make of this unexpected victor. He de signed a sailboat, and be fore it was launche he the builders to paint water-line where his calcu lations said that it should be. They objected; he per sisted. The boat was launched, and the builders smiled when they saw tha the line was above the water's edge. "Put in the mast," said Rowland, and the boat sank to the painted line. "That was what I had figured on," he exultantly said. The incident wa closed.-D. C. Gilman, in Scribner's Magazine

French Population.

The French government has issued the results of the quinquennial census taken in France in 1901. The total population is returne at $38,961,945$, showing an increase of 444,613 , as compare with 1896 . The increase between 1891 and 1896 was 175,027 . The move ment of French population from the country districts to large towns is still noticeable. The population of Paris is returne at $2,714,068$, and France has now fifteen towns with populations of 100,000 and upward; in 1896 the corresponding number of towns with populations of more than 100,000 did not exceed

An Investigation of the Pliysical Effects of Climbing.

Some interesting experiments and observations have been made by Nignor Mosso, upon the subject of man's endurance in mountain climbing. Up to the present the highest point to which a man has ever climbed i 23,393 feet-the summit of Aconcagua, the loftiest mountain of the main Cordillera range of the Andes. Signor Mosso asks will it ever be possible to reach 29,000 feet? We live at the bottom of an ocean of air and our bodies are specially adapted for life at low levels; consequently, when we are placed in unusual conditions, such as exist at great heights, we are af fected in different ways. Respiration becomes diffi cult, the circulation of the blood is altered, the heart is fatigued, "mountain sickness" is experienced, fol lotwe by lassitude and exhaustion. The reason that so few men have attempted the ascent of the highest mountain peaks in the world is due to the general conviction that man cannot withstand the rarefied air of these altitudes. From his own experiments and ob servations, however, Signor Mosso is convinced that man will be able slowly to accustom himself to the diminishe barometric pressure of the Himalayas. To accomplish such a climb, it will be necessary for the climber to acclimate himself during a slow rate of progress, in order to reach the top in conditions of health and strength. His victualing arrangement must be generously but prudently made, more espe cially as the last stages would have to be performe very slowly. Mountain expeditions have hitherto adopted too rapid a rate of ascent. The nervous sys tem consequently has not time to accustom itself to the action of rarefied air, nor the organisms to the cold the fatigue of the ascent consumes the strength of the climber, and leaves him no time to regain it; whereas by slowly making the ascent the climber adapts him self to the fluctuating conditions as he rises higher and higher.

BEET-TOPPING DEVICE

Messrs. Klaas Zuidewind and Adrian Van Putten, of Holland, Mich., are the inventors of a new hand operated device for topping beets. The top or crown of a beet is of a woody nature, containing little or no sugar, and it is therefore necessary to remove this portion. The device here illustrated is designed to be operate by a person in a standing position, and is so constructed as to release the severed top when the device is open. It is furthermore provided with an adjustable gage for regulating the depth of the cut This gage automatically centers itself above the meeting edges of the knives employed, and upon contact with the top of the beet will indicate to the operator that the device is in position for topping.

The device as shown comprises two handle-portions pivoted together and provide with shoulders, which when brought into engagement limit the forwar movement of the handles. At their lower ends these handle - portions spread out into a forked or bifurcate frame-section. To these sections the knives are bly seculust o permit adjust ment relative to each other when worn out. The cut ting edges of the knives are beveled from beneath, and their bottom surfaces are inclined, so hat the heels of the anives will not en age with th ground until after the cutting process is completed, thereby avoiding friction and affording the nives a bette hance to take hold of the beet at proper depth. Th gage-rod, as shown is threaded into a carrier which is hung, with some play, on the hinge bolt of the handles. This freedom of movement permit the gage-rod to always assume a vertical pesition. Be ing threaded in the carrier, adjustment ca.. -asiiy be made by turning the rod to the left or to the rigit. ' O operate the device, the handles are open and the body portion brought over the beet to be topped. As soon as the flattene foot of the gage-ro is felt restins apon the upper surface of the beet, the operator will know it is time to close the handle, whereupon the knives, entering the crown of the beet at opposit sides, will quickly and cleanly sever the top portion It is evident that earth will not collect and interfere
with the action of the knives, since the body is open at all sides, and any dirt taken up will quickly find an escape.

AN AUTOMATIC SIPHON OVERFLOW VALVE

Cases often are found in which it is necessary to have the overflow from a tank pass out at the bottom instead of at the top, when fresh layers of liquid accu mulate on the surface. This is necessary, for example, in septic reservoirs for treating sewage by filtration where, especially by the action of the bacteria, the

AUTOMATIC OVERFLOW

filtered liquid sinks to the bottom and passes out This emptying of the tank at the bottom is the en sought and attained in the construction of the Ridge way valve, illustrated herewith.
The illustration shows the valve as arranged in a sewage tank. The outlet opening is in the side of the tank at the bottom, and it leads into the V-shaped intermediate chamber, which in turn overflows into the main sewer. Normally, this outlet is closed by a square clapper that is suspended from a projecting arm pivoted horizontally above it. In this position the clapper is at an angle of 45 deg. as shown. A curve metallic arm fastene to the back of the clapper supports, outside the wall of the tank, a metal box which acts as a float and which is divided into two compart ments by a central horizontal partition.

When the tank has become fille it overflows through the siphon pipe seen in the upper part of its side wal (Fig. 1), and the water that thus runs out flows into the upper chamber of the small metal box on the out side, where its weight, coupled with the leverage of the arm attached to the clapper, tends to raise the latter slightly and allow the fluid to escape through the outlet in the bottom. As this outlet is sufficiently large, the liquid escapes rapidly, and soon fills the bottom compartment of the box, and causes the clapper to open wide, because of the additional weight thus exerte upon the lever arm. By this time the upper compartment has become fille (Fig. 2), where upon it is quickly emptied by a small siphon that connects the compartments
As the weight of the box is thus considerably dimin ished the clapper closes by its own buoyancy, aided by the pressure of water in the tank and the rush of the outgoing current. The emptying of the tank is therefore stopped till the water again rises and starts the large siphon once more.

The invention may have some slight defects, such as allowing the surface water that fills the upper part of the movable box to escape; but it certainly is very ingenious, for, by regulating the different open ings which let the water into the upper part of the movable box or control its escape therefrom, the time during which the clapper will remain open may be regulated exactly.-La Nature

The bahoon as a betecter subnarines

The French Naval Department has been carrying cut a series of interesting experiments with balloon for detecting submarine boats, when submerged, the results of which proved that the course of a submarine craft can be easily followed from a balloon in the air. The "Gustave Zéde" was used for these experiments The boat was submerged to a depth of ten feet and more, but it was easily discovered by the aeronau when the boat ran counter to the sun's rays, although the balloon remained at a height of 1,500 feet. An in genious telephonic apparatus was connected from the submarine to the balloon, in order that the latter might signal when it had discovered the boat. The experi ments further proved that the green color at presen employed in painting submarines is not an effective
disguise, and that the ease with which submarines may be descrie beneath the surface depends on their angle with regard to the sun

Mediterranean Trip.

The Count de la Vaulx is making active preparations for another attempt to cross the Mediterranean by balloon, and the experiment will have a better chance of success, as it will be carried out early in the summer. Last year the trip was delayed until late in the autumn, and it was undoubtedly due to the bad weather that the aeronauts were unable to cross. The start is to be made from a different point on the coast this time, at Palavas-les-Flats, near Montpellier, and here a great balloon shed is being erected on the beach. The balloon, after the last trip, was sent to Paris to be reconstructed and will be called the "Mediterranéen No. 2." The balloon shed at Toulon offered a great resistance to the wind, and on one occasion was nearly carried off by a violent storm, although it was well braced by guy-ropes. The aeronauts will profit by this experience and are building the shed in a tent-like form which will offer less resistance. The balloon, which is now in construction, has a volume of 4,160 cubic yards, and the upper part has been made in conical form to she the rain. M. Hervé has availed himself of the data obtaine on the last trip to make some improvements in his steering and floating devices, of which an account will be given later. The balloon is arranged so as to be either attached to the float upon the water or to take a free flight; for the latter case it is provided with an interior air-bal loon gaging 1,300 cubic yards which will be kept inflated by a ventilating fan. The former arrange ment of water-ballast tanks will be used, and this time will be improved by adding a 12 horse power petrol motor which operates a pump for automatically filling the tanks by a pipe which runs down to the water, and the tank will also be discharged by an automatic device. It is probable also that the balloon will be made partially dirigible by using the motor to operate a propeller.

FASTENING DEVICE FOR HORSES.

It is no longer necessary for a driver to fasten his liorse to a hitching post. If provided with the fasten ing device here illustrated, he needs simply to slip his reins on the catch in the wagon, and the horse will be unable to run away. Mr. Phillis Mayotte, of Wells, Mich., is the inventor of this new fastener. The con struction of the device is very simple. Supported in a bracket on the vehicle is a spindle carrying a disk provided with hooks to serve as a fastening means for the reins. Beneath this disk is a ratchet wheel engaged by a spring-pressed pawl. The lower end of the spindle protrudes from the bracket, and is connected by a universal joint to a rod which tele scopes in a tube carrie in a bracket on the fron axle. On the rod are a series of pins, which project through longi
tudinally ranging slots in the tube whereby the rotary motion of the tube i communicate to the rod. A the lower end of the tube is a small beve a small beve gear, whic engages a
large bevel gear on the hub of one of the front wheels. The teeth of these gears are curved out wardly, so as to allow for any uneven
 and all play in the parts is taken up by a spring coiled in the tube and abutting against the end of the rod held therein. A lever on the rod connects with the top of the tube and permits the latter to be lifte sufficiently to disconnect the gears This will be found useful in long drives, when it is desirable to save the parts from wear.
To fasten the horse, one needs simply to wind the reins around the spindle and secure them under a hook on the disk. If the horse should start forward the reins will be quickly wound up on the spindle and the animal suddenly checked. Any subsequent backwar movement would have no effect, on account of the spring-presse pawl ratchet, which prevents rotation of the spindle in the opposite direction. Hence, whichever way the horse may turn, the wheels cannot be moved.

