AN EXPERIMENTAL MOTOR AND DYNAMO.

In his work in teaching physics the writer has often felt the need of a simple and inexpensive outfit for illustrating the principles of the electric motor and dynamo. Not finding anything satisfactory in the market, he has built the apparatus describe and illustrated, having in mind a model used by himself at college.

The magnetic needle shown in Fig. 1 is an ordinary needle mounted so as to move freely in a horizontal plane, and above it is suspended a wire. If an elec tric current is passed through the wire the needle is deflected, the direction of deflection depending on the direction of the current and the position of the wire whether above or below the needle. A current flowing through the wire above the needle in a given direc tion will produce a deflection of the same kind as a current beneath the needle flowing in an opposite direction. It becomes easy, therefore, to increase the effect of the current upon the needle by replacing the single wire by a coil of many turns of fine wire, as in Fig. 2. When a momentary current is passe through the coil, the needle is thrown violently around, and by properly timing the impulses due to a series of momentary currents, the needle may be kept in rapid rotation in either direction. Here then is the fundamental electric motor: constant rotary motion, produce by a magnet, and an electric current passing through a coil of wire

So far as the principle is concerned, it is immaterial whether the magnet or the coil of wire be made the moving part. In Fig. 3 the coil is mounted vertically so that it is capable of rotation, and the magnetic ne dle is replaced by a powerful electromagnet. When a current is passe through the coil in the position shown, it is thrown violently around till the opposit side comes next to the pole of the magnet; if at this instant the direction of the current through the coil is reversed, it will continue in rotation. It is, how ever, difficult to reverse the current by hand with sufficient rapidity and at exactly the right time, hence it is not possible to produce continuous rotation for any considerable period of time.
We may substitute for the single coil two coils mounted at right angles, as in Fig. 4, and having their ends connecte to a mechanical switch, or commutator which automatically reverses the current through th coils at the proper instant. With this addition con tinuous rotation immediately results, the direction of which may be change at will, either by reversing the current through the moving coils, or changing the polarity of the magnet.
The machine shown in Fig. 5 approaches a little more nearly the commercia
orm. Here we have re placed the two coils by our, intersecting at angle of 45 degs., mounting them upon a shaft supported by urable bronze bearings the electromagnet which urnishes the field restin pon the two upper which hold the bearings in position. The direction of rotation may be change at will by reversing the polarity of the field or the cur rent through the armature The polarity of the field may be reversed by chang ing the position of the elec tromagnet, or by reversing the current through it. To reverse the armature current, a switch may be inserted in the armature circuit, or, what is much easier, the position of the brushes may be reversed by turning the brush holder on its bearing through 180 degs.; this showing also the effect upon the speed of the machine of the position of the brushes.
The machine shown in Fig. 5 operates equally well as a series or shunt motor; and if the field is separately excited and the armature driven by a belt, it may be used as a shunt dynamo. The apparatus operates most satisfactorily with an E. M. F. of 8 to 12 volts, though 4 volts will give good results

Arrangements have been made whereby the entire outfit can be placed on the market at a reasonable price. Further information may be had by addressing Mr. Parker at the High School, Torrington, Conn.

Japanese dentists perform their operations in tooth drawing with the thumb and forefinger of one hand.

a perplexing puzzle.

The following puzzle, culle from an English magazine, has been sent to us by Mr. O. Podewils, of New York city, who asks to have it explained.
If a flat strip of paper be taken, and its ends pasted together to form a ring, and it be then cut along it center line, two similar but entirely separate rings will be formed, unconnected in any way. If, however the paper be twisted as illustrate in the uppermos view, and its ends be pasted together to form a ring with a single twist in it, this ring, when cut along

its center line, will form two rings, one looped within the other as shown in the third and fourth views.

Perplexing as this may seem at first glance, the explanation is quite simple. We may consider the upper edge of the paper strip as one ring, and the lower edge as the other. Now, following the edges of the twist, as shown in the second view, it is evident that one edge has been twisted completely around the other edge; or in other words, one edge or ring has been passe through the other ring, which when cut apart form two interlooped rings.

The Reforestation of South Aastralia.

According to the report of the Conservation of For ests the reforestation of South Australia by the Stat during 1901 resulte in 68,695 trees being planted of which 49,219 , or 71.5 per cent, have thrived. In the yers district, however, only 42.25 per cent of the tree have survived, owing to the ravages of grasshoppers which have destroyed them. The losses have been confine for the most part to the manna gum and the

Fig. 3.

Fig. 2

Fig. 5

1. Magnetic Needle.-2. Needle Arranged to Turn in Magnetic Field.-3. Coil Arranged to Rotate in the Field of a Strong Magnct.-4. Two Coils at Right Angles in Field of Magnet.-5. Experimental Motor and Dynamo.

AN EXPERIMENTAL MOTOR AND DYNAMO.

Tasmanian blue gum, plante many years ago at Bun aleer. Although some of them have attaine sub stantial proportions, the testing conditions of the northern districts are not favorable to their reaching in most cases beyond the pole and firewood stage. The value of this class of forest produce is but low. It has, however, in all cases returne the original cost per acre with more or less additional revenue. During the unfortunate continuation of dry seasons to which South Australia has been subject of late years valuable experience has been gained regarding the resisting twelve.
power which various trees possess to inimical influences. The red gum, the blue gum, and the sugar gum, being species indigenous to the country, have stoo well, as would naturally be expected. They cannot, however, claim a monopoly of drought-resisting power, as the Victorian ironbark, both at Bundaleer and Wirrabara, has held out well even on indifferent soils, and made steady growth in spite of adverse conditions. The growth of the sugar gums at the Ayers Forest Reserve in the older plantations is very encouraging. Since they have been planted the seasons have certainly been far from favorable, and the position of the reserve is one of considerable exposure to the arid northerly winds, which are so trying to all vegetation. Notwithstanding these draw backs, however, large numbers of the trees have attaine heights of from 14 to 20 feet, with a circumference of from 12 to 18 inches.
On the Kuipo Forest Reserve, in addition to what has been cleare for planting purposes, about forty acres have been cleare of the undergrowth of honeysuckle as well as of the manna gum timber, in order to promote the stocking of this area with red gum by natural generation, and a promising start has been made by the young seedlings after burning the debris from the clearing. The ironbarks already planted are making satisfactory progress. As an exceptionally large amount of replanting has been necessary this year in consequence of the heavy losses last season at Wanilla, Ayers, and Bundaleer, cause by rabbits and grasshoppers, it has only been possible to plant about 100 acres. Owing to the spread of the rabbit pest it is now absolutely necessary to protect young plantations on almost all reserves by wire netting the fences, which, of course, very largely increases the cost of fencing. Hitherto large reserves such as Bundileer and Wirrabara, which for years have been the centers of the greater part of the operations, have been prac tically free from this scourge but in consequence of the recent protracted droughts in the pastoral country these pests have gradually worke their way further and further into the more settled parts, and will now evidently have to be reckoned with for the future.

Professor Rowland.

Yet perhaps a few more words of personal delineation may help to keep in mind his remarkable individu ality. He was tall, slender, but not slim, well proportioned, alert, giving every indication of a healthy body. Of physical exercise he was very fond; in winter the horse, in summer the sailboat, gave him never failing delight. He knew where to find the trout and how to handle the rod. He would take great risks in following the hounds. "You should think of the fox, and no of the ditch," I have hear him say when he was chide for his rash horsemanship. He landed once in Liver pool and saw an advertise ment of a meet Hertise train to the nearest station, hired the bearest station, fird the best nag he could find, joined in the run, won the brush, and then disap peare from among his competitors, who hardly knew what to make of this unexpected victor. He de signed a sailboat, and be fore it was launched he tol the builders to paint the water-line where his calculations said that it should be. They objected; he persisted. The boat was launched, and the builders smiled when they saw tha the line was above the water's edge. "Put in the mast," said Rowland, and the boat sank to the painte line. "That was what I had figured on," he exultantly said. The incident wa closed.-D. C. Gilman, in Scribner's Magazine

French Population.

The French government has issue the results of the quinquennial census taken in France in 1901. The total population is returne at $38,961,945$, showing an increase of 444,613 , as compare with 1896 . The increase between 1891 and 1896 was 175,027 . The movement of French population from the country districts to large towns is still noticeable. The population of Paris is returned at $2.714,068$, and France has now fifteen towns with populations of 100,000 and upward; in 1896 the corresponding number of towns with populations of more than 100,000 did not exceed

