

The Borcea Bridge Across Branch of Danube. Length of Bridge and Viaduct, 3,152 Feet.

SCIENTIFIC AMERICAN ESTABLISHED 1845

MUNN \& CO.. - - Editors and Proprietors
 No. 361 Broadway, New York
 TERMS TO SUBSCRIBERS
 e scientific a merican publications

NEW YORK, SATURDAY, OCTOBER $25,1902$.

THE AFTERMATH OF THE COAL STRIKE
The effects of the great strike in the anthracite coal regions will make themselves felt in a very practica way long after the more dramatic incidents of the strike have passed from the public mind. 'I hat the immediate pecuniary losses both to capital and labor resulting from the strike will be enormous, goes without saying; but in addition to these the anthracite coal trade will unquestionably suffer a serious loss, because of the widespread public attention which had been directed to the great question of utilizing other domes tic fuel supplies than that of anthracite coal
After all is said and done, we are very much the craa tures of habit, even in America. We have used an thracite coal so long, and so exclusiveiy, that to the majority of workaday citizens it has never occurred that there might be substitutes which would be supe rior to anthracite in economy, and greatly superior to it in convenience and cleanliness of use and operation There are thousands of homes, in which, previous to the strike, the use of gas and coal oil for heating and cooking purposes was unknown, that have been driven by necessity to the use of these fuels, and have formed such a good opinion of their qualities, that they are certain to continue their use, either in whole or in part, to the prejudice of the interests of the retai coal dealer. Just how far the consumption of coa will be affected, will only be known as the winter months advance; but it is certain that the vigorous campaign of instruction which has been carried on by the gas companies and the manufacturers of coal-oi stoves and ranges, will result throughout the anthra cite-using districts in a great increase in the domestic consumption of oil and gas fuel.
Elsewhere in these columns will be found a discus sion of the relative merits of fuels other than anthra cite coal, and in the current issue of the Supplemex we publish an illustrated article describing a number of methods of lighting and heating by alcohol, which were shown in an exposition devoted to the subject that has recently taken place in the city of Paris. While it is true that the present strike has been set tled, and the supply and price of coal are likely to resume gradually their normal conditions, it is certain that the lessons of the strike will be very lasting in the public mind; and the most important of these lessons, as far as they touch the comfort of the individual householder, is that by familiarizing himself with oil and gas fuels he should make provision against the serious contingency of a coal famine as it has recently presented itself with very alarming distinctness during the past few weeks.

OUTPUT OF THE UNITED STATES STEEL CORPORATION

In view of the vast extent of the plant and operations of the United States Steel Corporation, it will come as a surprise to many people to learn how large a proportion of the production of iron and steel of the United States is still turned out from mills and forges other than those included in the great steel trust According to figures published by the American Iron and Steel Association, out of a total production in 1901 of $28,887,479$ tons of iron ore, 43.9 per cent was produced by the United States Steel Corporation, and the balance by individual firms. From this ore there was produced $15,878,354$ tons of pig iron, of which 42.9 per cent was the output of the corporation's fur naces. The total production of Bessemer and openhearth steel ingots and castings in the same year was $13,369,611$ tons, 66.3 per cent of which was produced by the United States Steel Corporation. They also pro duced 59.9 per cent of the steel rails, 62.2 per cent of structural shapes, 77.6 per cent of the wire rods and 50.1 per cent of a total of all rolled products of 12 , 349,327 tons.

It will thus be seen that the Steel Trust is far from having a monopoly of the steel trade in this country, and it is gratifying to know that this great corpora tion has made a wise use of its enormous influence in
the steel trade, and prices have been maintained at reasonable figure. There is no gainsaying the tact tnat the control of about 65 per cent of the total production of iron and steel in this country stands for a most powerful influence, should it come to the question of the control of the market, and it is sincerely to be hoped that the moderation which has marked the conduct of the affairs of the corporation will be a lasting characteristic; for herein lies the guarantee of the per manence of a prosperity in the steel and iron trad which has excited the interest and wonder of the world.

ELECTRIC EQUIPMENT OF A GREAT RAILROAD.

One of the most notable movements yet recorded in the substitution of electric for steam traction on trunk railroads is now in progress on the North-Eastern Rail way, one of the most important systems in Grea Britain. Special interest attaches to this work from the fact that the change is being made on a stretch of road that is not in any sense suburban, since it runs largely through an agricultural district. The change involves the electrifying of 35 miles of double-track main line, 4 miles of single-track, and 2 miles of four track road. With the exception of a road recentiy constructed in Italy, this will be by far the longest stretch of electrically-operated main line in the world

A study of the cail by the North-Eastern Railway Company for bids for the construction of this work shows that the company has had the wisdom to leave a great deal to the discretion of the contractors in the matter of the plant and equipment. Alternating cur rent will be furnished by the Newcastle-upon-Tyne Electric Supply Company, at a pressure of 6,000 voits, and this will be stepped down to 650 volts for use at the motors. The important detail of the method of re duction of the current, and other details of less im portance, are left to the discretion of the contractor although the North-Eastern Company prefers that di rect current be used.
This decision of the company to leave the question of the type of current open will be commended by electric engineers in general, inasmuch as it takes cognizance of the important experimental work which is being done on the Continent in the direction of the use of alternating, high-pressure current direct at the motors The indications are that for trunk line installations, such as this on the North-Eastern, the Ganz system or some modification of it will be found to be most efficient.

The advertisement for bids specifies that the work must be completed within twelve months from the date of signing of the contract; and if the scheme is pushed through with a vigor corresponding to the sweeping nature of the change proposed, it is likely that, befor the New York Central Railroad commences the much talked-of electrical equipping of its main lines into New York, it will have an opportunity to avail itself of the practical results achieved on this English road.

BALLOON TRIP ACROSS THE SAHARA

In the month of December Capt. Debureaux is to commence his project of crossing the Sahara by bal loon. It is intended to explore the region by a balloon containing four aeronauts, probably including Count Castillon de Saint-Victor, Jacques Balsan and Lieuten ant of Marine Hourts. Before making the attempt it has been decided to carry out a preliminary experiment with a balloon of 1,300 cubic yards' capacity which is to be furnished by the Minister of the Marine This balloon, however, will not be mounted by aero nauts; it is provided with automatic apparatus for assuring the equilibrium and for throwing out ballast at the right time, and these will take the place of the aeronauts. The equilibrium is to be obtained by a steel guide-rope measuring 2,400 to 2,700 feet long and weighing 550 to 660 pounds. The ballast arrangement is a water reservoir, which is provided with a simple automatic device so that when the balloon comes within 150 feet of the ground a valve is opened and the proper quantity of water discharged. An air-bag incide the balloon is kept inflated by an automatic air fan, and thus keeps up the form of the balloon should the gas leak out or contract under the influence of a lowering of temperature. The start will take place from Gabes, on the Mediterranean coast, about 150 miles southeast of Tunis, taking advantage of the north northwest winds which prevail constantly in the Sahara region from the beginning of October to April. These winds should drive the balloon with its guiderope at a mean speed of 12 miles an hour. The distance to be covered, from Gabes to the Niger, is about 1,400 miles, so that the balloon should traverse this part of the Sahara in about five days. The projectors have also provided for the case where the guide-rope becomes entangled in an obstacle along the route, and for this purpose the cable possesses four points of rupture, whose resistance increases with the length of the rope, going toward the balloon. The lower sections will thus be broken first and free the balloon. Automatic registering devices will be carried, as well as carrier pigeons, which will have their cages opened by an automatic release when the car touches ground.

The experiment, which is to cost about $\$ 1,600$, has been favored by the government, and the Minister of the Marine, besides furnishing the balloon, will no doubt bear the expenses of the inflation which will be carried out with pure hydrogen, as well as of the trans port of the material. The Municipal Council of Paris and other bodies have also given financial aid to the project. If the first experiment succeeds it will no doubt be followed by an attempt to cross the Sahara in a balloon mounted by Capt. Debureaux and the three aeronauts mentioned above.

recent improvements in weaving

An interesting lecture was recently delivered in London before the Society of Arts by Prof. Beaumont upon the most important recent improvements in weaving. In the ordinary power loom for weaving plain simple fabrics, the difficulty for many years has been to initiate improvements which would result in greater productive power. Experiment and experience alike have demonstrated that beyond a certain speed it is undesirable to attempt economy by higher run ning power, which applies additional strain to the warp and augments the degree of vibration on the motive parts of the loom. If the maximum speed of a loom has been obtained on a given quality and fine. ness of thread, the problem arises, In what direction are further advances to be made in the construction of power looms for weaving simple types of fabrics? The builder of looms as well as the student of weav ing has for some time past realized the loss of time necessitated in the recharging of the shuttle with weft yarn Other methods of conveying the weft into the warp than by the use of the flying shuttle have been attempted, but the difficulties of weft insertion have so far proved beyond solution by any more efficient means than the common shuttle.
Accepting the shuttle as the most practical weft conveyor yet devised, the modern loom builder has endeavored to provide a continuous supply of weft in two ways: First, by ejecting a spent bobbin from the shuttle and introducing a full one; and, secondly, by ejecting the shuttle containing the empty bobbin and replacing it by a shuttle with a full bobbin. The first system has been developed to such an extent by the Draper Company, of Massachusetts, that between 70,000 and 80,000 looms have been made on this prin; ciple. This invention has effected much economy in the weaving of plain fabrics. A weaver is able to mind 18 to 20 of these looms, where on the ordinary system 4 to 6 was considered the maximum. To change from one bobbin to another in a shuttle without removing from the shuttle box, and the loom running at full speed, making 190 to 200 shots per minute, is a mechanical triumph. To obtain a con stant supply of weft English and Continental inventors have adopted the principle of changing the shuttle while the loom is running. Important motions for doing this are the Crossley, Hodgson and Hatters $\mathrm{l} \in \mathrm{y}$; the two former change the shuttle while the loom is running, but in the latter the loom is for a briel period ingeniously made inoperative, and automatically re-started.

With regard to inventions applied to looms for special styles of fabrics such as velvet, swivel and lappet, two ingenious contrivances have been devised for this purpose by Mr. Hollingworth, of Dobcross England, and Mr. Hutchins, of Worcester, Mass., re spectively. In the Hollingworth device, which is for looms used in the weaving of fabrics in which wires are inserted into the warp to produce a pile effect as in carpet, velvet and plush, the reed and shuttle boxes are separated, thus providing more space for the wiring motion. The chief mechanical difficulty in such disconnection of parts-which in ordinary looms are combined-consists in securing a relative turning of the reed and shuttle boxes, so that they will be per fectly level with each other when the picking motion comes into action. Any failure of this results in the shuttle not traveling in a straight line and diverging out of its course. The Hollingworth invention is constructed in such a manner that there is little possibility of such defects arising.

The Hutchins invention relates to swivel weaving and its object is to substitute the ordinary shuttle by shuttles having a needle or pointed appearance, and in a line with, instead of at right angles to, the warp and forming one continuous series of shuttles from side to side. The chief advantage of this invention is the frequency with which the swivel shuttles may figure this fabric, there being 3 or 4 to the inch; and. secondly, in the indication of their entrance into the warp by the Jacquard, so that they be retained in or out of action for any period demanded.

In small ware looms the Poyser loom has accomplished what was, anterior to its inception, quite im possible. In this device there is a shuttle behind the reed, necessitating a division in the reed to allow the tongue or projection of the shuttle to place the thread of weft against the fell of the fabric. One advantage of this system is that the shuttle places the thread
almost in the exact position it is to occupy in the fabric, removing the friction upon the warp yarns produced in other looms, due to the backward and forward traverse of the reed to allow of the crossing of each pick of weft. The Poyser looms are capable of running at a speed of about 390 picks per minute.

MAINE'S WOOD NOVELTY MILLS

Summer visitors to the woods find rare sights in the most unexpected places these days, and whether the trail leads along the watercourses or strikes directly across country into the very heart of the great spruce and hardwood forests, it is pretty apt to bring up to some mill where queer modern machinery is busy at work in cutting up the timber at one end and spouting out articles of commerce at the other. The great machinery chewing up forest trees of spruce to make paper for printing our books and periodicals can never quite lose its attraction to the uninitiated, and the scene of one of these modern mammoth paper mills is always a center of attraction
But there are other mills in the Maine woods which we hear less about, and which in recent years have become remarkable institutions. We do not hear about them often, but every day of the year we use some of their products, utilizing them so often and commonly that our wonder about their manufacture ceases. These wooden novelty mills, as they might be called, are the outcome of Yankee genius in utilizing waste material by the invention of new machinery. It was found that the lumber mills of Maine were wasting enormous quantities of wood. The white pine trees furnished lumber in various sizes, but the trimmings were nearly all waste. Such immense piles of this waste wood accumulated at the various mills that it became a great inconvenience. It was difficult to burn it without setting fire to the mill, and to cart it away was both inconvenient and expensive.
Some enterprising pioneer then started in to utilize this waste lumber by manufacturing it into small com mercial articles, and to-day this work has spread and multiplied so that the novelty mills are in great numbers and importance all through the Maine woods. One of the first mills established was to manufacture wood en toothpicks. A small machine was invented which would cut out of the soft pine wood hundreds of these toothpicks at one stroke. So important has the manu facture of these become that the annual output of the Maine woods to-day is over $500,000,000$ toothpicks. The smallest pieces of waste wood can be used for this pur pose, and the cost in raw material is practically noth ing. Following these, other common articles were made at the same mill. There are a score or two of the novelty mills in Maine to-day, and their total out put is enormous, including nearly all of the common articles of use. The long wooden skewers which but chers use to hold their meat together are manufactured in the mills at the rate of half a million a week. On mill alone will turn out in the summer season $5,000,000$ skewers, and $50,000,000$ toothpicks, besides a great num ber of other articles.

A common article made at these mills is the spool for cotton and thread. The spool factories number nearly a score, and they turn out something like 250 , 000,000 spools a year. One can hardly realize what this amount means. On them some fifty billion yards of cot ton or thread can be wound. Laid in a row they would stretch across the whole State of Maine, and piled up one on another they would make a slender tower that would reach up in the air ten times higher than the tallest mountain peak. Only white birch is used by the spool factories, and they consume immense quantities of this timber. To make the annual output of spools over $15,000,000$ feet of white birch timber are needed. In addition to this immense quantities of the white birch timber suitable for spool manufacturing are shipped to factories in England and Scotland.

There is a common saying that the spool factories and hoop pole hunters saved Maine's woods from being overrun by white birch saplings. At one time count less millions of deer and rabbits roamed through the Maine woods, and they subsisted largely in the spring and winter on the sprouts of the white and gray birch saplings. There is no more prolific growth than the birch, and in Maine if left unrestricted the trees will soon spread everywhere and crowd all else out of exist ence. The destruction of the rabbits and deer destroyed nature's nice balance, and the birch trees threatened to rule everywhere. When the trees were about to monopolize all the Maine woodlands, the hoop pole hunters and the spool manufacturers discovered that the birch was the best wood for their purposes The result has been that an enormous industry ha been built up with an inexhaustible supply of raw ma terial, and the birch saplings have been kept within certain restricted areas.
The barrel hoops made out of the birch saplings and brown ash in Maine each year number some $35,000,000$. and the demand is constantly increasing. Their manu facture cannot be said to belong to the so-called novelt mills exactly. They are made and gathered by hoop
pole bunters, who go through the woods, and cut and shave them for market. The price they receive for these hoops averages $\$ 1$ per thousand for the smallest size to $\$ 1.25$ for the largest. A good man can cut and haul two thousand poles per day. When these are split, shaved down, and cut the right length, they will make about four thousand hoops. A man must then, work pretty lively to make from $\$ 3$ to $\$ 5$ per day at this work. Some of the old hunters, however realize the latter amount during the dull season of the year when there are no summer visitors to guide or board. In the summer the hoop pole business is quiet, and few men attempt to gather the birch and ash saplings when they can make several doliars a day simply guiding people through the woods. Some two thousand men are engaged in hunting barrel hoops in the Maine woods, and the total gross income from this source is estimated between $\$ 40,000$ and $\$ 50,000$.
The novelty mills proper make their income from manufacturing very small things on a large scale. A bunch of wooden toothpicks, which sells in the city for a fraction of a cent must net to the manufacturers a ridiculously small sum, but when they are made and sold by the millions and billions there is money in them. Likewise the cheap wooden checkers are inexpensive articles of commerce, but in the novelty mills they pay a good profit, for one factory alone will receive an order for five million checkers. On such a scale it is possible to figure out a profit, but not unless the raw material is cheap, and the machinery invented for the work so thorough and quick that the little round pieces of wood can be made at a marvel ously rapid rate. Indeed the checker pieces spout out of a funnel so fast that they quickly form a huge heap. The piece of timber is first shaved off the right size, and then as it is forced through a funnel knives cut it into small pieces just the size of the checkers.
Another product of some of the mills are small dice boxes, which are manufactured for the trade out of small pieces of timber that are discarded for building purposes. One might gather some faint idea of the gambling business in this country from the statement that some half a million of these dice boxes annually come from Maine's mills. They are shipped to all parts of the country. Backgammon, checker boards, domino boxes, and all conceivable kinds of games and boxes are made in great quantities. The same mill will have machinery for making half a dozen different kinds of novelties. There is one novelty mill in Oxford county which manufactures fifty different varieties of novelties. It is by such combinations that large pro fits are made. The wood which is nothing but waste after the large boxes are made is utilized for toothpicks, skewers and similar articles. In this way all the trimmings find some use.
Wooden bicycle rims are important articles of the novelty mills, and tables, desks, sleds, swings, and toys by the million swell the total output each year. Christ mas toys have in recent years been made great features of the mills. This trade promises to become one of the most important. The millions of wooden toys which are sold at Christmas time can be made at the novelty mills far cheaper than in almost any other part of the world. Machinery is being made and per fected every year for cutting cut toys for children, and instead of being "made in Germany," we may soon see "from the Maine woods" stamped on all our wooden toys and Noah's Arks. Recently efforts have been suc cessfully made to paint these toys by machinery so that the cheap hand labor of Germany and Switzerland can be offset. The possibilities in this direction are very promising, and mill owners are carefully studying new methods of manufacture by machinery which will bring the cost down to the lowest figures. The supply of waste timber is almost inexhaustible, and it re mains for the inventors and manufacturers to find means of utilizing it in commercial ways. So far Yankee genius has been very successful, and within a decade the output of the novelty mills may be doubled several times over

One of the most important steps to establish aerial telegraphy stations at a distance from the coast and thus communicate with approaching ships is to be shortly carried out. The floating station will be placed in the open sea at the point 49 deg .40 min . north lati tude and 8 deg. west longitude by an English com pany which has been recently formed at Liverpool. This point is 110 miles west of Cape Lizard, and the station will be in constant communication with the latter point. As the distance is within the limits of good operation there is no doubt that the messages will be regularly and accurately received. The vesse which is to be anchored here will serve different pur oses. It will be equipped as an electric fireship, a telegraph and postal station, a life-saving post and also as a supply station which will furnish food, coal etc., to ships which are in need. The vessel will also be of value as representing an advance maritime post for England. There may be some difficulty in the way of anchoring such a vessel, as the ocean depth in this locality reaches 400 feet. The ship will need
to be of a considerable tonnage in order to carry out the requirements, as well as to resist the force of the Atlantic during the winter season. In this exposed situation the vessel will certainly be subject to some rough treatment.

a textile novelty.

The great forward strides which Germany is makng, not only in the chemical and electrical industries, but in almost all technical branches, deserve the carefulest attention of American manufacturers.
The object of the following lines is to call the at tention of American textile manufacturers to a new industry which has recently been started in Germany and which offers considerable prospects and possibilities, i. e., the wood-pulp or cellulose tissues made by the Patentspinnerei Actiengesellschaft at Altdamm near Stettin.
The spinning of wood-pulp or cellulose is the patented invention of Mr. Gustav Türk, manager of the cellulose works at Walsun on the Rhine, and the wellknown inventor Dr. Carl Kellner, of Vienna.
The spinning process is a comparatively simple one The fibrous materials are first treated in the usual manner, for instance in the rag engine, i. e., they are first macerated or decomposed and thereuporr passed through a specially constructed machine, resembling the sieve-cylinder machine used for paper making.
The novel feature of this machine, however, is that the fibrous material suspended in water is not worked on the whole breadth of the sieve-roll so as to form a broad gauze, as is usual in paper making, but is immediately separated in strips of suitable breadth, which form a thread of rowing after being rolled up. Thus the gauze divider which was necessary hitherto is entirely avoided.
The sieve-roll of this apparatus is such that narrow strips of material acting as a sieve, such as wire gauze, alternate with strips of solid material

In consequence of this construction of the sieve-roll, the fibrous or pulpy material adheres only to the strips of wire gauze. The continuous movement of the water in the vat contributes to remove all fibers extending beyond the edges of the wire-gauze strips, the thickness of the strips of fibrous material adhering thereto is thereby increased toward the edge, while the revolving movement of the sieve-roll tends to lay the fibers of the fibrous material in a longitudinal direction parallel to one another.

The strips formed in this manner are then taken off the sieve-roll in the usual manner by means of a band of felt and brought between pressure-rollers, where the water is squeezed out of the same. The strips of paper or fibrous material adhere to the smooth upper roller. They are then taken off this roller and passed between two sets of rubbers moving to and fro, where they are rolled up in their length.
These rowings aie then passed to the fliers, where they are treated in the usual manner.
As will be seen, the process is a continuous and very simple one. In this manner fiber of only 2 to 8 millimeters length can easily be spun into yarns of considerable strength
Another advantage of this process is the simpliciiy with which the dyeing can be effected.
For this purpose it is only necessary to put the dye into the vat containing the water in which the fibrous material is suspended; in this way every single fiber will be dyed before the rowing is made therefrom, and therefore the whole complicated and costly dyeing and drying process is considerably simplified.

If it is taken into consideration that the process itself is considerably cheaper than the usual method of making yarn, that even the shortest animal or vegetable fibers can thereby be easily spun into yarn, and that the price of best quality of wood-pulp is only about one-third of that of ordinary cotton, the advan

The objection might be raised that yarn of fibrous materials of only 2 to 8 millimeters length cannot be strong or fine enough; however, this objection is futile as there are quite a considerable number of textile fabrics where the strength and thinness of the single threads are of not so much importance as the handsome color, pliability, comparative strength and cheap price, such as carpets, draperies, furniture covers, etc. Besides, in the case of wood-pulp, the strength of the yarns can easily be increased by submitting them to a chemical treatment, and finally, if such short fibered yarns are used as wefts in combination with cotton or linen threads as warp, every single fiber will be tied down at least three times by the warp, and therefore such tissues will be almost as strong and durable as pure cotton and linen fabrics.
Doubtless yarn made according to this process will in the future replace to a considerable extent woolen, linen, cotton and especially jute yarns, especially in the cheaper grades of tissues and for such tissues where pliability and hanisome color are of main importance.

THE DE BRADSKY AIRSHIP AND THE TRAGIC END OF ITS INVENTOR.
by the parts correspondent of the scientific american.
Following hard upon the untimely death of M. Severo comes another sad aeronautical accident. The lattest unfortunate is the Baron de Bradsky Laboun, who only recently completed an airship of his own design at the Lachambre establishment.
The De Bradsky airship ascended from Vaugiraud, a Parisian suburb, early on the morning of October 12, for a trial trip. After apparently satisfying himself that the contrivance was safe, De Bradsky cast off the rope which held him captive to the ground, and started southward at a height of about 350 feet. The propellers, of which there were two, seemed to work well. But the rudder seemed not as responsive as it should be. About half an hour after the ascent the balloon had returned to its starting point, and then gradually rose higher and higher until it disappeared. Later the Prefect of Police received a dispatch stating that the airship had fallen at St . Denis, $51 / 2$ miles from Paris, and that its two occupants were killed. The balloon car fell at Stain, the wire ropes connecting it with the balloon having been broken. The gas-bag was constructed of light Japan silk. It had a total length of 110 feet and a capacity of 1,010 cubic yards. It was not of the usual elliptical shape, but approached more nearly the form used by Count

THE FRAME OF DE BRADSKY'S AIRSHIP.
tions per minute. The ascensional screw, of similar de sign, was 8 feet in diameter and made 350 revolutions. A single motor was used to drive both screws. Each latter had a clutch by which it was thrown n or off. The motor was placed in the center of the
and below the middle a horizontal ascensional screw. Both screws were composed of a steel irame and silk canvas. Their form resembled somewhat that of a bird's wing. The propeller had two blades and meas ured 13 feet in diameter. It revolved at 300 revolu-
mas the motor, and on the right the main shaft of the motor carried the friction clutch, F, which was worked by a lever for throwing or ${ }^{t h}$ aiddle shaft, S. At $b b$ were the bearings for the $\quad \ldots$. The shaft, S carried at the end a pinion whick saged with a large spur gear of b. onze on the end of the outer shaft, S^{\prime}, passing to the end and supported on five bearings. The latter were ball-1 arings of a type devised by the inventor in order to give an easy transmission. The bearings were supported from the corners of the triangular frame by means of piano wires provided with tighteners. On the other side of the motor was the mechanism for the lower screw First came a friction clutch, C, also controlled by a handle. The shaft of the ascensional screw was connected to the horizontal shaft by a special gearing inclosed in an aluminium box, B. The bearings, b, supported the shaft at the top and bottom of the frame. To control both screws from the platform, the handles, $h h^{\prime}$, were brought together. The aeronauts' platform was next the motor and had a solid flooring of basket work. Space was provided for two aeronauts. One improvement was a long cross-arm which was placed a few feet from the propeller. The wires supporting the frame at this point were attached to the outer end of the arm instead of to the frame itself, as in the latter case they were in danger of becoming entangled in the helice
A gasoline motor of the Buchet type was used, hav-

Zeppelin, as it was mainly cylindrical, pointed at one end and round at the other. Its diameter was 21 feet. The balloon was divided into three nearly equal parts by two internal partitions, independent of each other. At the rear end was the rudder of about 3 square yards surface, made of a light steel frame covered with silk canvas. The rudder was operated by cords which passed down into the car The supports for the car were attached to frame of light wore attached to a frame of light wood which passed along the whole length of the balloon, being fixed to the can-
vas. To this frame were secured vas. To this frame were secured
the piano wires that held the car the piano wires that held the car to the balloon. The car or framelow the body. This frame was very rigid and at the same time not too rigid and at the same time not too heavy. De Bradsky used a light steel tube throughout. The total
length of the framework, counting length of the framework, counting the propeller was 55 feet; its height about 4 feet and its greatest width the same. The motor and the aeronaut's platform were placed in the central part, which was the widest portion, and from here the frame tapered to a point at either end. The middle section was rectangular, but this became triangular in the tapered parts. The steel tubes used for the frame varied from 1 inch to $1 / 2$ inch in diameter and were about 0.04 inch thick. The construction was also braced by double steel wires which were tightly stretched. At the rear end of the frame was the propeller

THE MOTOR AND MECHANISM OF DE BRADSKY'S AIRSHIP.
ing a capacity of 16 horse power. The motor had four cylinders, cooled by water jackets, mounted on a cylindrical crank-box in aluminium, which contained also the flywheels. The second diagram shows the disposition of the petrol motor system. Beside the motor, M, are the two carbureters, $C C^{\prime}$, of the float and atomizer type, fed by gasoline tank, G, which is fixed to the upper part of the frame. At H is a valve with a handle and dial by which the aeronaut can vary the gasoline supply. B shows the position of the batteries and induction coil and I the spark-break of the motor. On the other side is the water-cooling system, which comprises the water tank, W, and the radiating tube, T, placed near the rear of the frame. The radiator was made especially light and the water supply reduced to a minimum. The gasoline and water reservoirs contained each about 3 gallons. One feature of great value was the arrangement for preventing sparks from the motor from reaching the balloon or igniting the hydrogen which should leak out. This was no doubt the cause of M. Severo's catastrope, and succeeding constructors will be especially careful as to this point. The exhaust gases from the cylinders escaped into muffling tubes, M, of sheet irnn about 3 inches in diameter and 18 inches long. Each cylinder had a separate tube which had its outer end pierced with small holes. The total
weight of the car fully equipped, including the pro pellers, gasoline for the motor and water supply, was about 852 गunds. The airship had two guide ropes, whose posit . il be observed. The heavier of these was attached ard the front of the balloon, while the lighter rope yas suspended from the framework.

Most of the Parisian experts agree that this aeron autical tragedy was due to De Bradsky himself. One expert claimed that the ascensional screw was at fault, the pertursing influence of which would have sufficed to paralyze both the propelling screw and the rudder, even if the motor had been strong enough to resist the light breeze from the southwest. The as censional screw turned vertically under the car at the rate previously mentioned, and caused the airship to swing around at the rate of one turn per minute. Under these circumstances the propelling screw and rudder were powerless. From the Place de l'Opéra it was plainly visible that under the influence of this horizontal screw the axis of the balloon, obliged to turn by the resistance of the air, ceased to be paral

NEW YORK-BOSTON AUTOMOBILE RELIABILITY TEST by the scientific american's official observer.
After six days of dusty traveling, sixty-eight out of seventy-five automobiles that left New York on Oc tober 9 arrived again at the starting point at 4 P . M. on Wednesday, the 15 th , some twenty without having made any stops other than those on the schedule, and the rest with but one or two stops and very few break downs. Although the roads and weather condition were much better than those encountered last year in the New York-Rochester test, this alone does not explain the much better showing recently made by the automobiles. In the former test, but 50 per cent of automobiles. In the former test, but 50 per cent of less than 10 per cent failed to do so. This large in crease of successful contestants is the direct result of improvements in American machines.
The breakdown that occurred on the Knox machine at the beginning of the second day's run, as noted in our last issue, was repaired by the operator and oisserver with the aid of one local assistant, and, after

Among the new gasoline cars that had but little trouble on the journey was Mr. A. L. Riker's tonneau machine, which we illustrate. Its only accident was the breaking of four bolts in the differential gear, just after entering the Hartford control on the homeward trip. This necessitated a delay of four hours to obtain some new ones, after which the machine proceeded to New Haven without any other delays. The car behaved remarkably well for a new one. It has several novel features which we hope to illustrate later. The percentage of steam carriages that participated in the trial was quite small; but most of the machines of this type made a very creditable performance. There were five White carriages entered, four of which are believed to have made no penalized stops. These are shown in one of our illustrations. The condenser fitted on the front of each carriage gives it a radius of 150 miles with one filling of water. The ad vantages of the steam carriages for mounting hills were clearly shown, and their running on the level was smooth and even. The Stearns stanhope we also

Stearns steam Stanhope with Tubular wheels.

The Riker Gasoline Touring Car.

White Steam Stanhopes and Delivery Wagon, Showing Condensers Arranged in Front.

The Neftel Gasoline-Electric Automubile.

THE NEW YORK-BOSTON AUTOMOBILE RELIABILITY TEST.
lel with the axis of the car, and in consequence the steel wires which fastened the car to the balloon were subjected to a torsional strain which they could not subjected to a torsional strain which they could not
withstand. When the balloon was completely inflated, and the network of the steel wires completely stretched, little danger was to be anticipated. But when the balloon lost gas and its silk envelope became flabby, the steel wires from which the car was suspended were subjected to unequal strains and were easily enough twisted and broken one after another at the point at which they were fastened near the gas bag. Lachambre, the constructor of the airship, states that he had no confidence in the mechanical construction of the airship. Nevertheless, he says that the balloon had points of merit and marked a real progress in airship design. The defects were that the car was too light and that the motor and guiding screw were too weak, in Lachambre's opinion.

The army rifle competition held at Fort Sheridan, shows that the scores made this year have never been oxceeded except during 1892 and 1893.
six hours' delay, a second start was made from New Haven shortly after 6 P. M. Hartford, 42 miles distant, was reached in three hours, which was the schedule time; and Springfield, the terminus of the day's journey, was entered at the end of a two and one-quarter hours' run, just after midnight. The next morning at 9 o'clock this machine started with the others, and had no further stops or mishaps throughout the rest of the tour. The other two Knox cars, which were new, had no trouble whatever. The test has therefore demonstrated once more that the singie cylinder air-cooled motor of as much as 8 horse power is a success; and that larger waterless gasoline motors can be built by simply increasing the number of cylinders, is a natural deduction. Another car driven ly an air-cooled motor was the Franklin, which weighs 1,125 pounds, and was equipped with a quadruplecylinder, 8 horse power motor of the ordinary flange type. This motor also made a very creditable performance, and brought the vehicle through with but one penalized stop. It was the only other representative of the air-cooled class of motors in the test.
depict is another steam car that is said to have made a perfect score. It was about the only machine equipped with tubular steel wheels, most of the others having wheels of wire or wood

A touring car of decided novelty is seen in the lower right-hand illustration. It is a combination gas oline-electric machine, the invention of Mr. Knight Neftel. It has a set of sixty-four storage battery cells oi 75 ampere-hour capacity. This is sufficient capacity to propel the car about fifteen miles. An 8 horsepower gasoline motor coupled to a dynamo and placed in the front end of the car generates sufficient current to run the car on a level road and charge the batteries at the same time. When a hill is mounted, the battery discharges and furnishes the extra power. by employing this arrangement, a mechanical transmission is dispensed with, and an electrical car with portable charg ing plant is obtained. The motor is started by throwing a couple of switches, which cause the dynamo, then acting as a motor, to turn it over. The control of the car is entirely electrical, and, although the machine weighs 3,500 pounds, it can be handred with the
greatest ease. Unfortunately it was ditched at West port, Conn., when turning out for a wagon; and the water-cooling coils becoming damaged, together with trouble with the pump, caused the owner to drop out of the test after he reached New Haven.

The absence of electric vehicles was distinctly notice able. None of the manufacturers tried to demonstrate the feasibility of these machines for long-distance travel, although in view of the recent statements of some of them concerning runs of 75 or 80 miles on charge, one would expect to see some attempts made at covering this distance daily for a week, especially since an hour and a half was allowed each noon for re charging.

The tour was a most delightful one, in every way, and it showed as never before the ease with which 100 miles a day can be traveled in a modern automo bile. With almost any of the present machines the chance of serious accident appears to be slight, since but few cars had a breakdown occur which could not be repaired in a short time with what local aid could be obtained.

KING CHARLES I. BRIDGE ACROSS THE DANUBE.

After the great Russian Roumanian-Turkish war 1877-78, Roumania regained a territory which in former days she had lost, Dobrogea, lying between the Black Sea, the Danube and Bulgaria. For military and commercial reasons it was necessary to place this province in communication with the metropolis. A few years after the war Dobrogea had grown to be an important part of Roumania; its towns were greatly improved, especially Constantza, the most important town of the new province, which was destined to be come a great Black Sea port. Besides its political and striategical importance, Constantza early presented it seif to the Roumanian government as an excellent seaport for maritime commerce, especially during the hard winter, when the Danube was frozen and the large river ports like Galatz and Braila are inacces sible because of the dangers to which ships are exposed from the ice. It was, therefore determined to build a railroad connecting Roumania with Constantza a work which involved a difficult and costly crossing of the River Danube. At the inception of the work the Roumanian government instituted an international competition to secure plans for the bridge. The re sult was unsatisfactory and no contract was given out to any private firm, the Roumanian governmen deciding to have the designs executed by its own engi neers. The matter was put into the hands of Mr. A Saligny, Chief Engineer, who with the assistance o Mr. T. Baiulescu was responsible for the whole work

The Danube at this point, as will be seen from the map, separates into two branches, the Danube and the Borcea. Between them lies a submerged island 13 kit ometers in width. The main branch is only 620 meters wide and 7 meters deep, but at high water the rive rises 7 meters above the ordinary level and covers the island as far as the Borcea with 2 meters of water. The current runs 2 meters a second, and the fall of water is about 18,000 cubic meters for the principal branch and 26,000 cubic meters in all. On this account the crossing involved the construction of a main bridge across the Danube, another over the Borcea, and the building of a viaduct across the island and the sub merged country lying between the two branches.
In detail the crossing consisted first of the main bridge over the Danube, 748.28 meters in length, followed by 912.75 meters of viaduct, which carries the crossing to the island. Then follow 4,126 meters of embankment, 1,455 feet of viaduct, 6,086 meters of embankment and 400 meters of viaduct, which brings the crossing to the Borcea bridge. The latter has a total length of 420 meters, and from the bridge to the mainland is another short viaduct, 150 meters in length. The main crossing, the King Charles I. bridge over the Danube, as will be seen from our engraving is an exceedingly handsome structure. It is carried on four stone piers and consists of two main canti levers 240 meters in length and three trussed bowstring girders 90 meters in length. The depth of the girders is proportionate to the moments of the bridge, and its greatest depth, which is, of course, over the piers, is 32 meters. The webs of the girders are built up of inclined members, and the bridge is of the through type, that is, the floor is supported on the lower chords. The plane of the trusses is inclined, 1 to 10 from the vertical, after the manner followed in the construction of the great cantilever bridge over the Firth of Forth, Scotland. The width enter to center, of the trusses is 9 meters at the lower chords and 2.63 meters center to center over the piers The most interesting feature of the bridge, next to its great length, is the foundations for the King Charles I. bridge, which on account of the great depth at which rock was found, namely 31 meters below mean water level, involved some very difficult foundation work. The foundation caissons were sunk by the corn pressed air method. The caissons were of steel with
double walls and, in spite of the abnormally high pressure under which work had to be carried on, no serious accident occurred on any of the piers, notwithstanding that there was a rise of the water level at times of 10 meters above low water mark. It will be noticed that, as in all Continental bridges, particular attention has been paid to the architectural features, and as usual with very good effect. The Cernavoda pier is the great monumental portal of the bridge. It is built of Italian granite on a massive and dignifiei design, and is flanked by two colossal bronze figures representing two Roumanian soldiers "Dorobanti" in commemoration of the army corps which was the first to see active service in a war which resulted in the recovery of Dobrogea by the Roumanian people. The stretch of viaduct 912.75 meters long between the Charles I. bridge and the island consists of fifteen deck trusses 60.85 meters in length, carried on stone piers. Then follow 4,126 meters of stone embankment and 1,455 feet of viaduct over the ground at Balta. These viaducts are through structures 42.80 meters in length. The next stretch of crossing consists of 6,086 meters of embankment followed by 400 meters of viaduct, the latter made up of eight deck trusses, 50 meters in length. The Borcea crossing consists of a single cantilever having a center span of 140 meters and two connecting bowstring girders 90 meters in length, the cantilever arms being each 50 feet in length, thus making three clear spans of 140 meters. The approach on the Fetesti side consists of three 50-meter spans

In a work of this size the total quantities neces sarily reached a very large figure. There are 110,207 cubic meters of masonry, while the total weight of the steel superstructure and caissons was 16,823 tons. The total cubical contents of the earth-work in the whole crossing is $2,950,000$ cubic meters. The cost or the work completed was $\$ 7,000,000$. The subsequent

Map Showing in Full Black Line Location of the Bridge Across the Danube and the Borcea
results since the opening of the bridge have fully justified the confidence which led to the undertaking by the Roumanian people of this great engineering work; for Roumanian commerce has been directed to the Black Sea port of Constantza, and several new and important lines of steamships have been inaugurated with excellent results.

World's Production of Coal in 1901
The forthcoming volume of the Mineral Resources of the United States for the calendar year 1901, United States Geological Survey, estimates the world's pro duction of coal in 1901 at $866,165,540$ short tons. The three great coal-producing countries of the world are the United States, Great Britain and Germany. The output of these three countries combined makes up 81.61 per cent of the world's total. Austria-Hungary comes fourth, France is fifth, Belgium sixth, and Russia seventh. The last country, notwithstanding its vast area, produces only about 6 per cent as much coal as the United States. The three countries which lead in the production of coal are the three countries that lead in industrial development. Prior to 1899 Great Britain led among the world's coal producers, but during 1899, 1900 and 1901 the United States has made such remarkable increases in coal production, due principally to the unprecedented activity in the iron and steel and in other metal trades, that we no stand far in the lead of all competitors, with a produc ion in 1901 exceeding that of Great Britain by 47, 965,938 short tons, or 19 per cent. Up to the close of 900 the coal production of Great Britain and her col onies, if taken together, still exceeded that of the United States, the excess in 1900 being $3,368,825$ short tons; but the enormous output of the coal mines of this country last year exceeded by about $26,000,000$ short ons the entire output of Great Britain and her de pendencies, including India and the Transvaal.

Of the output of coal in 1901, the United States produced 33.86 per cent, Great Britain and her dependencies 30.86 per cent, and Germany 19.42 per cent or, combined, 84.14 per cent of the total production.

The failure of the electric vehicle trials of the Automobile Club of Great Britain to take place, owing to lack of competitors, would seem to indicate that in the United Kingdom at least the electric automobile has retrograded during the last two years. At that time a successful test of electric vehicles was held under very adverse conditions. This year, after a committee had spent considerable time perfecting rules and classifying vehicles under the heads of town and country machines, the tests for the former of which were extremely easy, but one firm was willing to enter the contest, and so it had to be abandoned. This result is pretty much in line with what occurs in this country when a chance is given electric vehicle manufacturers to demonstrate what their vehicles can do in a well-conducted, impartial test, such as the recent reliability trials, for example. It ought to be an easy matter for a machine equipped with a battery capable of. propelling it 118 miles on smooth asphalt streets, as it is claimed that one of the National Electric Vehicle Company's runabouts did recently, to cover fifty miles of country roads per charge, and keep this up twice daily for a week, yet neither this nor any other company saw fit to enter one of its carriages in the test.
The last of the main generators and engines intended to be installed in the power plant of the Mersey Tunnel Railway are about to be shipped from the Westinghouse Works at East Pittsburg. These generators are of the railway type (1,200 kilowatts, 650 volts, 90 revolutions per minute) and are to be direct-connected to vertical cross-compound Westing-house-Corliss engines of 1,500 horse power each. The power house lighting and the electric light of all stations, sidings, etc., will be supplied from a separate generating plant comprising two compound-wound generators, each having a capacity of 200 kilowatts at 650 volts, direct-connected to Westinghouse com pound engines and running at a weed of 250 revolu pound engines and runing at speed of 250 revolutions per minte. have an aggregate output of about 6,600 horse power $-6,000$ horse power for the railway proper, and 600 horse power for lighting. The Westinghouse electropneumatic system of train control is to be used, and the cars will be equipped with Westinghouse highspeed air-brakes. The rolling stock will consist of sixty cars, each about 60 feet in length. The trains will be formed of five cars each, the first and last cars of a train being motor-cars equipped with four 100 horse power motors each.

In demonstrating the ionic charges of the atmosphere, H. Ebert describes some simple and instructive experiments. A plate of tinned iron two square meters in area is supported four meters above the earth's surface on insulating pillars planted on the top of a slope seventy meters high overlooking the River Isar. In clear weather the plate was first connected to earth acquiring a negative charge, then being disconnected and left to itself for some time so as to acquire the potential of the surrounding air. It was then earthed through a galvanometer, and showed a current pro ceeding from the plate to the earth. The charges acquired vary within wide limits by the weather, being largest in fine and smallest in foggy or damp weather. This shows that the connection of negative ions from the atmosphere of the earth varies in accordance with their mobility in the atmosphere. A rough estimate of the quantity of electricity thus conveyed on a fine day gives about 300,000 electrostatic units per square kilometer per minute.-Physikalische Zeitschrift.

Wireless Telegraphy for Yachtsmen.

The Marconi Wireless Telegraph Company of America has secured a site for a station at Eaton's Neck, Long Island, where a station will be installed, the first of a series along the Sound, and the territory adjacent to it, which will be operated for the convenience o yachtsmen. While the service will not begin until next season, several of the best known yachtsmen in America, who are identified with vast business inter ests, have already made arrangements to have their craft equipped with Marconi apparatus. The Sound service and the stations on the ocean side at Cape Cod, Sagaponack and Babylon will make it possible for yacht owners cruising in these waters to keep in communication with New York whenever necessary.

Beconstruction of the "Philadelphia."

The "Philadelphia," one of the original "White Squadron," is being remocieled at the Puget Sound navy yard. The vessel is to be completely re-equipped in every respect. When she is launched again she wil be a vessel of which the navy may be justly proud At least a year and a half, or perhaps two years, wil be required to remodel her completely.

Engineering Notes.

The Baltimore \& Ohio Railroad Company has built four miles of line in Pennsylvania, which is believed to be the crookedest railroad in the United States. This little road will extend from Boswell, Pa., to Friedens on the Somerset \& Cambria branch of the Baltimore \& Ohio. The air-line distance is about five miles, but the peculiar conformation of the country makes it necessary to loop a number of hills in order to get an easy grade. The new road doubles on itself four times, and at one point, after making a loop of about five miles, the road comes back to within 300 feet of itself on a grade 50 feet lower.

The southern press dilates upon a new plow, the in vention of which is accredited to Dr. Gatling, famous for the gun that bears his name. Dr. Gatling has devised a motor plow driven by a gasoline engine. The truck is said to be constructed like the trucks of traction engines, except that the steam boiler is displaced by a strong platform on which is mounted the motor connected with the traction gearing. A set of disk plows is attached to this truck, and these plows can be made to run at any depth or any angle required. It is estimated that with this machine one man can plow from thirty to thirty-five acres in one day.

The city of Bahia, which is situated on the coast of Brazil, South America, has a population of about 200,000 inhabitants who are housed in 17,000 dwellings. The water supply for these people has been furnished by a local company ever since 1852. It is brought from the nearby mountains, and thus far the expenditure for the works, including the pipe system, fire plugs, etc., has amounted to $\$ 1,500,000$. According to the Municipal Journal and Engineer, the supply is not adequate to the needs of the city, and for a long time negotiations have been going on between the company and the city for the purpose of increasing the supply. The monopoly has been renewed for a period of forty five years and some valuable franchises and privileges have been awarded the company. On the expiration of this contract the city will have the option to buy the company's plant at the valuation of expert engineers. Every dwelling in Bahia must use water, and the municipal officials of the city regulate the price. For the average dwelling for 422 quarts a day, ten cents is charged; twenty-one quarts of water is furnished to the public fountains and hydrants, at a low price. The improvements contemplated by the company will cost in the neighborhood of $\$ 600,000$, but owing to the financial crisis prevailing in Brazil, the company has been unable to obtain the money required to complete the water system and therefore desires to sell its plant and privileges. The price asked is $\$ 1,100,000$. It is estimated that the earning power of the water works, when completed in accordance with the new contract, will be $\$ 300,000$ a year, and the company purchasing its rights will doubtless be awarded a contract for establishing a drainage system in the city and for furnishing the houses with sanitary plumbing.
One of the original iocomotives, writes a correspondent of the London Railway News, built by George Stephenson in 1822 for the opening of the line of the Hetton Colliery, near Durham (England), between their works, a few miles northwest of Durham, and the shipping staiths on the Wear at Sunderland, is still employed hauling the trucks at Hetton, and is now, aiter eighty years' continuous service, claimed to be the "oldest working locomotive in the world." The principal dimensions of this "old-timer" are: Di ameter of the cylinders, $103 / 4$ inches; piston stroke, 24 inches; diameter of the wheels, 3 feet. The weight of the engine is 15 tons, and it has a haulage capacity of about 129 tons at a speed of 10 miles an hour on a fairly level track. Its general design (excepting the cab) remains as originally constructed, while some parts, notably the steam dome, are actually purtions of the engine as constructed in 1822. After this lons, and faithful service, it is not surprising to learn that the engine is at last becoming unequal to the everincreasing demands made upon it, and the ditectors of the Hetton Colliery, therefore, and with commendable appropriateness, shortly intend to withdraw the relic from Hetton, and it will in the course of a few weeks find a permanent resting-place at the Durham College of Science, Newcastle-on-Tyne, where it will be preserved to this and future generations as a worthy example of the earlicst period of locomotive engineering. It may be noted here that Stephenson's "No. 1 Locomotion," built for the opening of the Stockton and Darlington Railroad in 1825, continued in working on "the first public railway" until 1850, when it passed into the hands of Messrs. Pease \& Partners, by whom it was used for colliery purposes until 1857, at which time it was placed on a pedestal for exhibition at Darlington Station, where it is to be seen to-day, so that not only in point of date of construction, but also as regards years of "active service," must the engine used at the opening of the first public railway give place to that constructed for the Hetton line by George Stephenson fourscore years ago.

TWO NEW INCANDESCENT GAS BURNERS

Two important improvements in incandescent gas burners are herewith illustrated. The burners are de signed to insure a perfect mixture of the air and gas and at the same time use but a minimum of gas in the mixture. The arrangement causes a proper burn ing of the mixture, producing a complete and brilliant incandescence of the mantle and hence a light of great strength, brilliancy and softness. The burner shown at the right is adapted for ordinary use in rooms of limited size; that on the left is intended for street lighting or the illumination of halls, large rooms and the like. The former type is adapted to be placed upon the tip of an ordinary gas supply pipe. The supply pipe is covered by a cap having a small outlet opening which admits gas into the mixing cham ber just above. This chamber is provided with aper tures in its side wall, as shown in the small detailed view. A nut having an internal thread is adapted to be screwed down over these apertures. By adjusting this nut the apertures may be more or less uncovered to admit more or less air into the mixing chamber. A tube extends upward from this chamber, and is surrounded near its upper end by an annular chamber having large inlet openings to admit the air. On the bottom of this chamber is a sleeve extending downward over the tube referred to, and provided with a spiral engaging a corresponding spiral on the tube, so that by turning the sleeve the annular chamber is raised past the upper end of the tube and more or less air is admitted thereto. From the top of the chamber a conducting pipe extends to the main mixing cham ber. This is provided with two wire screens spaced a

suitable distance apart. The gas and air in passing through the fine meshes of these screens become thoroughly mixed, forming an easily combustible mixture which, when ignited, renders the mantle incandescent and produces a powerful light that combines brilliancy with softness. Since so small an amount of gas is admitted into the burner, it is evident that great economy of gas is had.
The second type of incandescent burner, which is illustrated on the left, embodies certain novel features by which it is adapted to produce a much more powerful light. The gas supply is connected to a service pipe, preferably made in the shape of an elongated loop. A feed pipe extends upward from the bottom of this loop, and enters a mixing chamber. Mounted on the top of the feed pipe is a slide-valve controlled by a thumb screw, as shown in the small detail. An inlet port in the mixing chamber is formed by a small opening in the top of the feed pipe, which registers with a similar opening in the slide-valve. By moving this valve inward or outward, the inlet port is more or less closed, and thus the flow of gas may be regulated to a nicety. The mixing chamber is provided with openings for the admission of air which thoroughly mixes with the gas in passing up the long con ducting tube to the burner. The burner is provided with a screen of fine mesh which minutely divides the mixture and prepares it to be properly burnt in the mantle. The chimney carrier is provided with open ings which admit air to the outer surface of the man tle, thus insuring high incandescence. A tube with a flaring bottom rests upon the top of the chimney and provided with lugs mounted to slide on the side arms of the service pipe. The tube is provided with
openings at the top to permit the escape of the products of combustion. The purpose of the tube is to create a draft and cause the air and gas to be forced up under additional pressure, thus affording a brilliant light. When it is desired to remove the chimney, this tube may be raised out of the way by pulling the cord or chain fastened thereto, which passes up over a pair of pulleys and hangs down within easy reach.

Just below the mixing chamber is a valve carrying on the valve-stem the usual lever, from the ends of which the operating chains depend. From a point immediately below this valve a pilot pipe leads upward and projects through the screen at the top of the burner. A branch from this pipe extends upward to the top of the mantle. By this means when the valve is closed, two small flames continue to be fed by the pilot pipes, and when the valve is again opened the gaseous mixture is again ignited by these flames, both from the top and bottom of the mantle. The pilot pipe is made in two sections which are joined together by a coupling within the mixing chamber. By this arrangement the parts may be readily disconnected to give access to the regulating valve in the mixing chamber.
Patents on these improved burners have recently been granted to Mr. James Buchanan, of 203 Broadway, New York.

The Finding of the Revolutionary Prison ship 'Jersey."
In building a section of the new ways for the construction of the battleship "Connecticut" at the Brooklyn navy yard, the famous English prison ship "Jersey" was discovered. She was one of six prison ships user during the Revolution. Probably built somewhere around the year 1720 , she saw some thirty years of service, fought many a battle and was then condemned to be used as a receiving vessel for American prisoners of war.
Of the six prison ships, the "Jersey" was by far the worst. She was a kind of floating Black Hole of Calcutta, and in her damp, leaky hold half-starved Amer. ican patriots perished miserably. In her palmy days the "Jersey" had a crew of about 400 men, huddled together as crews were in those days. How appalling were the conditions to which American prisoners were subjected may be gathered from the fact that 1,200 prisoners were kept on board almost constantly. One historian says: "She was never cleansed, and lay in that conditior seven years. No fires warmed har occupants in winter, no screen sheltered them from the August sun, no physician visited the sick, no clergyman consoled the dying there. She remained throughout the contest a center of sickness and death, always replenished with new victims. The bones of her dead, estimated at 11,000 , lie buried on the Brooklyn shore." When the war ended, the "Jersey" was burned at her moorings.

For years historical societies and government officials have tried to locate the ship. The half-burned hull lies in about two fathoms of mud and water about 500 feet from the dock. Unless the hull is ramoved the battleship "Connecticut" must be built directly over it. Whether the hulk will be raised seems doubt ful. About $\$ 500$ would be required, and the delay in the construction of the battleship would be consider able. The ways are already behind time as it is. Interest in the old ship reached its height when, some years ago, the skeletons of 300 men were found in the yard. That these were the remains of the men who had died in the "Jersey" was definitely established. The bones were afterward buried in Fort Greene Park with impressive ceremonies.

The Current Supplement

The current Supplement, No. 1399, contains a wide range of interesting articles. The first article deals with a novel block signaling system in which electric semaphores are used. Mr. S. D. Mott explains a novel plan of mechanical aerial flight or air suspension based on well-known ascertained facts. The machine for this purpose he terms an "aerodrome." For manufacturers and exporters an explanation of the business opportunities in Portuguese colonies should be valuable. The coal strike has brought home to the dwellers of large cities the need of some device whereby it is possible to burn soft coal without smoke Therefore an article on a locomotive stoker which has been successfully used on railways should prove of interest. The value of alcohol as a fuel has been more than once commented upon in these columns. A fur ther discussion of the subject will be found in the current Supplement, the occasion for which is the International Alcohol Exposition of Lighting and Heating Apparatus, recently held in Paris.

Mr. Frank H. Mason. our Consul-General at Berlin, tells much of the German processes and machinery for briquette manufacture. Dr. Peter T. Austen concludes his paper on the "Chemical Factor in Human Prog ress." The usual Trade Suggestions from the United States Consuls as well as Trade Notes and Recipes are also published

THE ROWLAND MULTIPLEX SYSTEM OF PAGE

 PRINTING TELEGRAPHY.To the constantly-increasing list of page-printing telegraphs must now be added that of the late Prof Henry A. Rowland, one of America's most brilliant physicists. The invention is based upon new electrophysical principles, and for that reason merits the con sideration of scientific telegraph engineers.
In the Rowland system an alternating current is employed which is altered in a number of different ways, any one of which is used for sending signals over a line. In Fig. 1 an alternating current is diagrammatic ally shown, which has had certain of its waves modified in six different ways. The minus half-wave 2 at E has been reversed; minus half-wave 4 at A has been cut out; the positive half-wave at B has been cut out; the two half-waves at C and D have been increased in height; and at F a positive half-wave has been turned into a negative half-wave. If the alternating current were traced on a chemical treated paper, these modifications of its half-waves could be interpreted as six different signals. In the Rowland system, such cut-out positive and negative half-waves are employed. A signal, however, is made to consist of a pair of cut-out half-waves which are not adjacent. It, therefore, happens that wave groups can be formed, which are a very important feature of the invention. The halfwaves can be divided into groups, A, B, C, D and X,

1,920 signals can pass over the line in a single minute Professor Rowland developed his system so that numerals, letters of the alphabet, and some extra signs are automatically printed in such a manner that each operator by writing on an ordinary Remington keyboard prints at the end of the line on a page eight inches wide. The pages of printed matter have the general appearance of an ordinary sheet of typewritten mat ter. Forty words per minute is an ordinary speed for a practised operator, so that altogether eight operators can print over an ordinary telegraph line at the rate of 320 words per minute

As in all systems of telegraphy, it is essential that certain parts of the rotating mechanism at each end of the line shall operate in unison. At first sight it might seem that since an alternating current is em ployed in the Rowland system, synchronism could be easily secured simply by passing the current through a small single-phase motor. But experience has shown that this is not sufficient on account of a phenomenon which engineers call the "pumping" of two machines which otherwise run synchronously. This "pumping" must be entirely eliminated. By employing a device called a mechanical "damper," Prof. Rowland succeeded in securing wonderfully perfect synchronism. Fig. 3 shows the method which he employed. Fixed to the shaft, S, of a single-phase alternating-current motor of small size is an aluminium wheel, A, in which is cut a
ing with the passage of 52 waves over the line, or at intervals of about one-quarter of a second. The locking device which times the depression of the keys is called the "clapper," and unlocks the keys four times per second, that is, each operator can cut out four different special combinations, and so send four different signals over the line in one second. Each of the four keyboards can cut out only waves of the group which is assigned to it. The manner in which this is done can best be explained by reference to Fig. 4. The four keyboards are represented by $K_{1}, K_{2}, K_{3}, K_{4}$. Each keyboard is supplied with eleven insulated contact springs $1,2,3$, etc. To the frame of each keyboard is attached the negative terminal of a direct current 110 -volt circuit. When any one of the 41 keys, belonging to a keyboard, is depressed, contact is made with some two of the 11 contact springs. The contacts made will be the combination which corresponds to the letter marked on the key. C is a so-called commutator or "sunflower." It is similar in construction to the commutator of a small dynamo and has 52 segments insulated from one another. There are four sets of segments, which are connected respectively to the eleven contact springs of the keyboards, $K_{1}, K_{2}, K_{3}, K_{4}$. The remaining eight segments are some of them entirely insulated, while others are connected to devices for cutting out waves used for automatic signals, but which are not shown in the diagram. In other words, the segments are divided up

Main Line Relay.

Printer, Showing Combination Commutator and Distributing Relays.

Keyboard, Home Recorder, Transmitter (Main Line) and Sending Commutator.

the Rowland multiplex page-printing telegraph

leaving an extra half-wave between each group. If out of each group two or more of its half-waves be cut, a signal can be made to consist, not of one cutout halfwave, but of a combination of half-waves cut out from a group. For example, if the half waves 1 and 3 are cut out from group A, this could be interpreted to mean one thing; while if the half-waves 1 and 4 were cut out, this combination would mean another thing. In practice the signals are made up by cutting out any two half-waves not adjacent. From a group of 11 halfwaves, it is possible to obtain a total of 45 different signals, any one of which can be sent over the line during a time in which the current makes 11 alternations. The system in practice makes use of five groups of waves with one extra half-wave between each group.
Prof. Rowland found that he could employ profitably about 208 alternations of the current per second. Hence, 52 half-waves, illustrated in Fig. 2, will pass over the line in one-quarter of a second; or in other words, any group of waves will be repeated four times each second. Thus four operators utilizing the groups, A, B, C, and D, can send four different signals each quarter of a second. Hence 960 different signals can be transmitteả over the line in one direction in one minute, following one another so rapidly that the four different operators apparently send their signals simultaneously. It follows that the system is, therefore, a multiplex system. Its total capacity for one wire is four different signals each way in one-quarter of a second. Or in other words,
small channel, C, filled with mercury. If the speed of the rapidly-revolving shaft and its wheel be subjected to oscillating increase and decrease, the mercury, on the other hand, will tend by its inertia to revolve at a uniform velocity. A friction is, therefore, produced between the mercury and the walls of the aluminium channel when their speeds are unlike. The oscillation or "pumping" is thereby dampened, and the rotation of the shaft becomes smooth and uniform. The device is simple but effective. Without it perfect synchronism would be impossible.
The synchronizer itself consists of a small alter nating single-phase, four-pole motor of special design. The armature is made of four flat coils without iron and has a diameter of about three inches. Synchronism is maintained by local currents. The line current of from 30 to 70 milliamperes has only one function to perform, and that is to keep the two tongues of a polarized relay of a special design in constant vibration. In a novel method of making contacts one of these tongues is made to complete the local circuits which print the characters, while the other tongues serve to send positive and negative local currents through the coils of the synchronizer in a manner to preserve the synchronism.
The operation of cutting out the waves for transmit ting the cutout wave signals over the line is performed on ordinary Remington keyboards, so constructed that the keys can be depressed only at intervals correspond-

A Transmitting Keyboard.

Synchronizer, Receiving Commutator, and One Printer.

so as to correspond with the groups of half-waves shown in Fig. 2. The group A is connected to the contact springs of keyboard K_{1}, the group B to the contact springs of keyboard K_{2}, etc. Corresponding to the halfwaves between the groups, A, B, C, etc., there are insulated segments which are shown in cross-section in the diagram. A brush or trailer, t, travels around the commutator C in synchronism with the dynamo $D a$ being geared to its shaft. This trailer passes from the center of one segment to the center of the next, while the current from the dynamo $D a$, makes half a wave. When the brush is at the middle point of a segment, the current from the dynamo is supposed to be passing through zero value.
If the key be now depressed on keyboard, K_{1}, contact with the frame of this keyboard will be made with two of the contact springs, as, say, 7 and 11. When the trailer, sweeping around the commutator, reaches seg ment 11 , which is connected to contact spring 11, the current from the 110 -volt circuit flows momentarily from the positive pole through the coil, C, of transmitter, $T a$, to the trailer, t; from there to the segment 11, thence to the contact spring 11, to the frame of the keyboard and back to the negative terminal. This current causes the transmitter, $T a$, to draw back its armature, A, and thus break the dynamo circuit at P which goes to the relay and line, and at the same time the line is connected at N_{1} to earth. Immediately, when the trailer passes off from segment 11 the spring

Scientific American
S_{1}, pulls the armature A back, completing the line circuit with the dynamo, D. Thus, a half-wave of group A (see Fig. 2) has been cut out of the line circuit. When the trailer arrives at segment 7, the same operation is repeated, because the contacts which are made at the keyboard continue for a period equal at least to the time that the trailer takes to pass over the 11 segments which are con nected to that keyboard. In like manner the operators on keyboards K_{2}, K_{3}, K_{4} can cut out, by depressing some one key, any two waves from the groups of eleven which belong to them. An insulated segment is placed between each two groups of eleven waves, so that, in case the last half-wave of one group and the first half-wave of another group are cut out, there will be an interval of a half-wave between these occurrences. This is found to be necessary for the proper operation of the main line relay at the receiving sta tion.

From the manner in which these half-waves are cut and the signal sent over the line, it is evident that each operator works independently of the other, and that no conflict between the signals which are sent by each can possibly occur. It is likewise evident that four entirely different and independent signals can be sent in one direction in the one-quarter second during which the trailer passes around the commutator. Thus it becomes clear how eight different and totally independent signals can be sent over the line in one-quarter of a second or 1920 a minute.

The operation of cutting out the waves at the other end of the line is precisely the same. The signals which are sent over the line appear at the distant end merely as two momentary pauses in the otherwise constant vibration of the tongues of the main line relay. It now becomes necessary to show how these transient signals are trans lated into a readable record and then into printed characters. Since the two ends of the line are in all respects alike, any description will apply to the one as well as to the other.
Referring to Fig. $5, L$ is the main line, and $R A$ the

main line polarized relay. This relay has two insulated tongues which vibuate sychronously with the alternating current waves arriving over the line, L. The tongue $t s$ controls the synchronizer, S, which operates in the manner described above. The tongue, $t p$,

THE ROWLAND SYSTEM OF PAGE PRINTING TELEGRAPHY
has the functions to be described. C is a "receiving" commutator, practically identical in construction with the "sending" commutator. Sweeping around this commutator, which has 52 segments, there is a brush, or trailer, tr. This trailer is connected by gearing to the rotating synchronizer, S, but with a speed reduction of 13 to 1 . The commutator may be rotated through a small angle, giving an adjustment, so that when the trailer, $t \mathrm{r}$, is in the center of a segment the
relay tongue, $\boldsymbol{k p}$, is at that instant against either a lefthand or a right-hand contact. R is a resistance of several hundred ohms, to the terminals of which is connected a 110 -volt direct-current circuit. A is a bank of small polarized relays, called the "selecting" relays. There are, in reality, four such banks of 11 relays each. Only one bank, however, is here shown. Each of these four banks corresponds to a keyboard at the sending end of the line. One terminal of each of these relay coils is connected to a segment in one of the groups of 11 segments of the commutator, \boldsymbol{C}. The other terminals or "tails" of all the coils of all the relays are connected with the insulated tongue $t p$ of the main line relay, $R A$. As the tongue of this relay vibrates between its contact points and the trailer travels over the commutator segments, synchronously with the vibrating tongue, the 44 relays will receive, in succession, momentary currents through their coils. The relays $1,3,5$, etc., of each bank will receive a current through their coils in one direction, and the relays $2,4,6$, etc., a current in the opposite direction. Thus, the tongues of the relays of even number would receive an impulse in one direction, and those of an odd number in the opposite direction. The windings, however, of relays of odd numbers are reversed, and this makes the tongues of all the relays receive, in succession, an impulse in the same direction as the trailer passes over the segments of the commutator to which they are attached. Thus, while the current on the line is unmodified, the tongues of all the "selecting" relays will receive an impulse in the same direction once each time the trailer makes a complete revolution. These repeated im-
pulses, together with the magnetism in the tongues of the relays, hold them against their back-stops and away from the contact points, A, B, C, etc.
The cutout wave on the line will now be indicated in the following manner. When the wave is cut out, the main line relay tongue, $t p$, will at that instant cease tn vibrate and will remain against the contact point which the previous wave had carried it. The trai in the meantime passes on to a segment such that, in

Transmitting a Message.

A Group of Keyboards. Main Line Relay and Transmitter to the Right.
THE ROWLAND MULTIPLEX PAGE-PRINTING TELEGRAPH.
the main line relay tongue had been carried over, the selecting relay attached to that segment wouid have received an impulse to take it against its back-stop. Now, however, this selecting relay will receive a cur rent through its coils in a reverse direction to what it would have received had the main line relay tongue continued to vibrate. Its tongue will, therefore, be thrown against its contact point, and will remain there until the trailer has made a complete revolution. When the trailer returns to the segment to which the relay is attached, unless some wave is again cut out, the relay will receive an impulse which will return its tongue to its backstop again. Thus, waves which are cut out at the far end of the line are reproduced at the near end by the tongues of the selecting relays which correspond to the wave cut out, being thrown against their contact points, A, B, C, etc., and there remaining during one revolution of the trailer. As each of the four key boards at the far end of the line operates a correspond ing bank of 11 selecting relays at the near end, the depression of any key of the keyboard, which cuts out two waves, will cause two relay tongues in the bank corresponding to that keyboard to be thrown agains their contact points. A practised observer could read ily interpret the cutout wave signals sent over the line by merely observing the movements of the tongues of the selecting relays. Tongues 1 and 3 sent over might be interpreted to mean A. 1 and 4 to mean B, etc., through the 45 possible combinations given above But in the present system these signals are automat ically translated into ordinary figures and letters of the alphabet which are printed upon a sheet of paper eight inches wide. It now only remains to show how this is accomplished.
The page-printer, by which the 41 different characters are printed in type, comprises essentially a light type-wheel of steel, about 2 inches in diameter, on the circumference of which 41 characters are engraved This type-wheel revolves continuously at the end of a horizontal shaft which turns synchronously with the trailer. A light paper carriage carries the paper fed from a roll beneath the type-wheel when new lines are made. Devices are employed for thrusting the paper forward to make lines, and sideways to space letters Back carriage devices return the paper to a position where a new line of print is to start. A small printing magnet operates a hammer which strikes the paper up against the lower side of the wheel rim, at the moment when the character to be printed has turned to its proper position above the hammer. A set of four polarized relays, called "distributing" relays, serve the purpose of making contacts at proper mo ments for sending current to the printing magnet to print, to a liner magnet to line the paper, to a spacer magnet to move the paper sideways, and to a back mag. net which allows the carriage to return the paper to the proper position when beginning a new line.

In keyboards of the latest page-printers, contacts are electrically made. Fifty-six waves are divided into fcur groups. Of the waves in each group eleven are used for the printing; one wave in one of the groups is used for finding the letter; and three waves, one taken from each of the remaining groups, are reserved for purposes of signaling. The signaling can be effected in a number of ways. Morse instruments, one at each end of the line, can be worked duplex at a slow speed. It is preferable, however, to place at each end of the line, in addition to the four page-printers, a small page-printer, both of which print simultaneously at the rate of fifteen words a minute each. While the eight printers of the duplex system are in operation with the transmission of telegrams, the two stations can correspond with each other regarding business of the office, for the purpose of correcting errors. The system may, therefore, be called with propriety, a "decaplex" system. In the later machines an additional important feature has been embodied whereby it is rendered possible to record at the sending station all messages which are transmitted.

It is claimed that the octoplex system can transmit to greater distances without relaying than other multiplex systems hitherto known. It has been successfully oper ated under government tests over a line of 550 miles, it is anticipated that it will work perfectly without relaying between New York and Chicago. Methods were however, devised by Prof. Rowland for automatically relaying the messages.

Whatever may be the various applications of the Rowland system, and they are many, the octoplex capacity can be distributed in any convenient manner that is, in place of having 8 operators, and a speed of 40 words per minute each, the number of operators can be doubled and the speed of each halved; or any num ber of operators can be employed with the limitation that the aggregate speed of the apparatus shall not exceed that of the eight operators at 40 words. In cases where branch lines radiate from a central, these lines may be 300 miles or longer. Or in cases of slightly different apparatus, placed at the terminal of the branch, these branches may have any length up to the maximum of the system. Way station lines may have any length up to 300 miles.

In this description it has been attempted only to give a bare outline of the features of Prof. Rowland's re markable invention. Much more might be said of the many ingenious devices used and the new mechanical features employed. Throughout the apparatus is the practical embodiment of beautiful physical principles and mechanical devices. One very important charac teristic is the natural way in which the system divides itself into distinct units. If one unit becomes deitself into distinct units. If one unit becomes de-
ranged, another may be immediately substituted withranged, another may be immediately substituted with-
out stopping the operation of the rest of the apparatus

SUBSTITUTES FOR COAL IN HEATING AND COOKING Although the strike in the anthracite coal fields is happily ended, it will take a few months to bring the supply up to the demands of the public, and consequently the price of hard coal is likely to remain at

A Type of White Flame Wick Heater.

a figure which will cause the majority of the "housekeeping" public to look around for a cheaper fuel than coal at anywhere from $\$ 9$ to $\$ 12$ a ton. The Scrextific American has investigated the problem with results which are tabulated below

1. Electricity can hardly be considered as a factor for two reasons; first because but a very small proportion of the populace are situated so as to be able to have the current delivered to their houses, second because the cost of heating by electricity would be so very high as to preclude the possibility of its general adoption.
2. Soft coal, apart from its very high price and the difficulties in the way of getting it, requires such radi cally different treatment from hard coal in order to burn it, that its adoption as a substitute for anthra-

Range 0il Burner in Which the 0il is Fed by Gravity.
cite will necessarily be limited. In burning soft coal it must be remembered that, because of the much greater quantity of gas contained in it, care must be taken not to overload the fire box. In starting the fire, the grate must not be filled more than half full, and the fire must be replenished a little at a time. Air must be permitted to reach the fire from above as well as from below, and this may be accomplished by opening the broiling door or by slightly opening one of the lids at the back of the stove.

Owing to the large amount of unconsumed carbon
which passes into the chimney, the latter will require careful attention, since the flues-at least in modern houses-are usually built for the burning of hard coal, and being of rather small area, they are very likely to become choked with soot. If the chimney should catch fire, the fire may be quickly extinguished by throwing a handful of common roll sulphur upon the glowing coals in the grate, closing down all the operiings to the stove and covering the top of the chimney. The gas produced by burning sulphur-sulphur di oxide-does not combine with carbon, and therefore the fire in the chimney will be quickly put out. The chimney must be kept closed up until well cooled.

Chimneys which are provided with a hole at the bottom for cleaning purposes may be easily cleaned by dropping a pailful of pebbles down from above. These carry most of the soot down with them to the bottom, whence the matter is easily removed. The main precautions to be observed are to maintain a moderate fire, and to put on only small quantities of coal at a time.
3. Gas seems but a broken reed to lean upon, since the companies are utterly dependent upon the coal supply. Moreover, for heating a house from a basement furnace gas is very expensive. A talk with a representative of one of the largest gas stove manufacturers brought out the fact that when used in a hot-air furnace-a furnace by the way specially constructed to burn gasit would cost as much to heat a house by gas as it would to heat it with a coal furnace burning coal at $\$ 20$ per ton, and this, taken in connection with the cost of installation of the special furnace, would preclude the adoption of this means of heating to any appreciable extent.
The economy which the gas cooking stove exhibits when compared with an ordinary range is entirely dependent upon the fact that in cooking with the gas stove nearly the whole of the heat produced by the gas is utilized, whereas with the range much of the heat produced is used to raise to a high temperature a large mass of iron; further, a fire once started in a range must burn for a considerable time after one is through cooking, while the consumption of fuel in the gas stove ceases directly you are through. It will therefore be quite evident that though the range burns by far the less expensive fuel, such a great proportion of the fuel energy is wasted that the gas stove is able te show an economy of operation just as long as the heat is required concentrated upon a particular place, and as, long as the time during which the heat is actually required is comparatively small. The problem of house heating does not, however, conform to either of these conditions. In this case the heating of a large mass oĩ metal is a positive advantage, as it gives a greater radiating surface, and since the heat must also be constantly maintained it is quite evident that the range, using as it does the cheaper fuel, is the more economical.
4. Oil stoves being entirely independent of the coal supply for the production of their fuel, naturally present a more promising field for investigation than anything we have thus far considered. They may be roughly divided into two classes; first, those which use a wick, and burn with a white or yellow flame, and second, the wickless or blue flame oil stoves. The latter are to be recommended as the more efficient heaters. An understanding of the principles of combustion will make this last point clear.

The process of combustion is in a chemical sense nothing more than the union of the oxygen of the atmosphere with some material for which it has such an affinity or attraction that the union is accompanied with light and heat. Now, kerosene is composed largely of two substances, hydrogen and carbon, for both of which oxygen has an attraction, though hydrogen combines at a much lower temperature than does carbon.

In lighting an ordinary kerosene lamp or wick oil stove this is what takes place: You apply a match to the wick, which is saturated with kerosene; the heat vaporizes a little of the oil, the hydrogen in the oil combines with the oxygen of the air, and the heat produced by this union heats the carbon of the kerosene white hot, and thus we get the familiar whitishyellow flame of the kerosene lamp. The carbon does not, however, thoroughly combine with the oxygen, and in consequence a great deal of the heating possibilities of the flame is lost, though the flame serves as a fair illuminator.

In the blue-flame oil heater a different condition of affairs exists. The kerosene, which is stored in a res. ervoir, is permitted to flow slowly into a vaporizing device, from which it passes to a burner. In one of the stoves shown the vaporizing device is a circular trough, made of cast iron, which is heated to a very high temperature. This vaporizes the kerosene and the vapor thus produced is compelled to pass between two walls of red hot metal while at the same time heated air is caused to act upon it. The temperature to which the vapor is raised by this means is so great that both the hydrogen and carbon are compelled to combine
with the oxygen, and, the united energy of combination of hydrogen and carbon in combination with oxygen being greater than that of hydrogen and oxygen in combination without the carbon, the flame is much hotter. Since the carbon of the kerosene is completely burned

Blue-Flame Wickless Heating Oil Stove.
instead of being merely heated white hot, there is but little illumination with this flame

The wickless stoves burn about 22 hours per gallon of kerosene per burner.
In buying a blue-flame oil stove care should be taken to secure one in which provision has been made to avoid "flooding" the burner. The simplest method of attaining this result is shown in the accompanying sketch. In this the main reservoir-which by the way may be detached from the stove and filled while the stove is in action-is so arranged that the opening of its valve dips just below the surface of the oil. When

Another Type of Blue-Flame Stove. Radiators May be Removed and Cooking Section Used.
the consumption of oil by the burner causes the level of oil in M to fall far enough to unseal the valve of J, oil rushes from J into M until the level is restored. In actual practice the working is so delicately adjusted that the oil comes from J a drop or two at a time, so that the level in M is practically constant; and since this level is below the upper edge of the oil chamber in the burner there is no possibility of an overflow even though the valve Q be carelessly left open.
There is one type of oil burner which under present conditions promises to have considerable influence upon the situation. We present an illustration of two

Detail of Range Burner, Showing Vaporizing Coil and Reflector Lamp.
of this type. One of these has a burner which is intended to be placed directly in the firebox of a range or furnace with a view of acting as an economical substitute for the ordinary coal fire. The burner, which is made in Philadelphia, has been in use in that city for sufficient time to demonstrate its worth. An expert with whom the writer talked declared that this burner was one of the best he had seen tried during the whole of an experience of ten or twelve years. The burner consists of a coil of $5 / 8$-inch outside diameter iron tube affixed as shown in the adjoining cut, to a cast-iron trough. The vertical plate E, thickened where the flame strike it, is so placed that the flame impingin upon it is reflected back on the coil. There is an ex ceedingly fine hole (No. 70 drill gage) through which the vapor from the kerosene is forced.
The burner is placed in the range so that the supply pipe B is vertical with the inlet downward, the outlet being connected by an iron pipe to a tank in which kerosene is stored under an air pressure of 3 to 10 pounds per square inch. The oil supply to the burner is regulated by a needle valve.
To start the burner in operation the needle valve is opened, upon which, the pressure in the oil tank forces kerosene into the coil, finally forcing a fine spray from the hole at A, and this oil dripping from the turns of the coil falls upon a sheet of asbestos, which is in the trough, and is soaked up. The needle valve is then closed and a match applied to the asbestos. The oil in this, catching fire, heats the coil and in a short time-perhaps 60 seconds-the coil becomes so hot that the kerosene in it is vaporized and forced in this condition through the hole at A. Catching fire as it issues, it produces an intense heat which impinges cn the plate E and the turn of the coil. The coil thus becomes exceedingly hot, and as the needle vaive is again opened a fresh supply of kerosene flows into the coil to be converted into vapor. Thus the flame is maintained. The burner owing to the very small hole used burns but little kerosene-about 1 gallon in 10 hours at 10 pounds pressure. Five pounds pressure is, however, ample for cooking stove work. Air pressure is obtained by means of a small pump attached to the reservoir, and the amount is indicated by a gage.
We also present illustration of a blue-flame burner adapted for use in the firebox of an ordinary kitchen range, which is similar in principle and general operation to the burner just described, except that the airpump is dispensed with, and the pressure necessary to feed the oil is obtained by placing the tank of oil at a sufficient height above the burner to secure a flow of the oil by gravity. The oil is.led through a needle valve which is placed just outside of the fire door, into a small iron rectangular box placed just within the fire door, where it is vaporized by the heat of the burner. From the vaporizer a pipe leads the vaporized oil to a length of horizontal pipe which ex tends, as shown, above a perforated cast iron box. At the two ends of this horizontal pipe and on its under side are two fine pin holes, through which the vapor issues in a fine jet and burns with the characteristic hot blue flame. The force of the hot blue flame. The force of the jet drives the hot flame down through a couple of inch-and-a-half holes, located in the top of the iron box immediately below the jets. The flame and hot products of combustion fill the perforated box and pass out through the perforations, raising it to a red heat, and producing a sufficient amount of heat for the general cooking purposes of the stove.
To start the stove it is only necessary to thrust two pieces of ordinary newspaper into the holes in the box, open the needle valve and allow the oil to drip upon the paper. When the latter is saturated, it is lighted by a match, and the heat of the burning paper will in a few minutes vaporize the oil in the pipe and start the regular blue flame action of the burner.

Sawdust Fuel Briquettes.

Sawdust in cake form appears to have been used as fuel in Germany with rather prom ising results. United States Consul A. L. Frankenthal, writing a short time ago from Berne, Switzerland, says that the sawdust cakes are octagon shaped, $61 / 2$ inches long, $31 / 2$ inches wide and three-quarters of an inch thick, weighing about half a pound each. In the district surrounding the factory where these cakes were made the schools were heated by them, the combustion leaving very little ash and proceeding without a large flame. No binding ingredient is said to be used, the sawdust being simply dried and pressed into the desired briquette shape, and owing thus to the absence of tarry or oily substances there is no
smoke in burning. The weight of such a briquette in dicates the heavy pressure under which it takes its shape, and the edges look like polished oak; in fact, it is heavier than a piece of hardwood of the same size. is heavier than a piece of hardwood of the same size. ceeded the supply of sawdust obtainable in the vicinity of the factory, and shiploads were, therefore, procured

Blue-Flame Burner, Showing Cast Iron Trough, Regulating Valve, and Cylindrical Case.
from Sweden and cartloads from distant manufactor ies. Sawdust, which previously could be had for the asking, commanded a market price as soon as it was known that a certain factory could make use of it. Even then it was profitable to manufacture the briquettes; but, unfortunately, the factory was destroyed by fire and operations came to a standstill. Making sawdust briquettes of this kind would, therefore, seem to be worth inquiring into further.

A Statue to Pasteur

On August 5 a statue erected to the memory of Pas teur was unveiled at Dolê. the birthplace of the great chemist. The following account of the ceremony is given by the French correspondent of the Chemist and Druggist: Nineteen years ago, on July 14, 1883, the Doloise municipality commemorated the fact by placing a marble slab on the

etail of Automatic Oil Feed and Blue-Flame Burner.
modest house where he was born on December 27, 1822, in the Rue des Tanneurs, now called Rue Pasteur. For the inauguration of the statue the townspeople had made extensive preparations, and all the local notabilities, including the members of Parliament, were present. The government was represented by M. Trouillot, Minister of Commerce, who made the distribution of medals and decorations that is customary here on such occasions. He afterward proceeded to the ceremony of unveiling the monument, and made an interesting speech, in which he traced the life of Pasteur. The Minister referred
to it as an incessant struggle

Range Burner in Operation, Showing Oil Tank and Air Pump.

a novel rotary enaine

Among the many recent developments in rotary engines one worthy of special notice is that shown in the accompanying illustrations. A patent on this engine has recently been granted to Oliver C. Jones, of the United States Navy, residing at 315 Carson Street, -Manayunk, Philadelphia, Pa. Mr. Jones' engine embodies some very novel features of construction. The peculiar arrangement enables him to drive his engine in oither direction and to utilize the steam force under continuous impact or, with certain cut-off devices, to work the engine expansively for such periods of its operation as may be desired.
The general view of the engine is broken away to show the piston, A, and one of the reciprocating abutments, N, which co-act with the piston to turn the main shaft. The cylin der or casing is provided with two offset por tions at each side in which the abutments, N are permitted to rock. The abutments are con nected in pairs to two shafts journaled respectively in boxings at either side of the cylinder Projecting from each abutment is a tailpiece P, these tail-pieces working in cavities formed in the boxings. The cavities are each divided by a horizontal strip into an upper and lowe compartment. The ports which lead therein have connection with the steam pipes, D and E, through pipes, K and L, respectively. It will be noticed that pipe K leads to the upper compartment and pipe L to the lower compartment in the right-hand boxing, while the reverse holds true at the left. A four-way valve M is provided, whereby either one of the pipes D and E may be connected to the steam supply, while the other is connected with the exhaust As shown, this valve is turned to supply pipe D with live steam, and pipe E communicates with the exhaust. Reference to the sectional view at the right will explain the course of the steam into the cylinder. This section is taken longitudinally through the engine shaft and the piston A formed thereon. Within the elongated box through which the shaft, A, extends are two annular channels formed by the chamber rings, R. These rings have an H -shaped cross section, and the webs or horizontal portions are perforated at various points along their extent. The inlet pipe D connects with the chamber at the left, and the exhaust pipe E connects with that at the right. Two ports lead from these steam chambers to the piston; one, the inlet port, communicating to the right-hand face of the piston, as shown in the general view; and the other, the exhaust port, leading to the left-hand face. When live steam is admitted into pipe D, a portion of the steam is led through the pipes K into their respective compartments where, acting on the tail-pieces, P, it swings the abutments on the left upward and rocks those on the right downward. The upper right-hand abutment, and the lower left-hand abut ment are thus rocked into engagement with the piston, while the other two abutments take up positions out of the path of the piston within their respective off set recesses in the cylinde casing. Steam entering the cylinder through port C expands and forces the pis ton to the left. As the pis ton passes beyond the end of the upper left-hand abut ment, steam flows into the recess back of the same and forces it downward. The piston will then engage the lower left-hand abutment and aided by the steam pressure just referred to will rock the two abutments downward. After the pis ton passes the lower abut ment, the two abutments will rock back under steam pressure on the lower left hand tail-piece P, to the up per position. While rocking to this position, the lowe abutment rides along the steam-feeding face of the piston. A number of grooves are formed on each face of the piston just above the ports B and C These grooves serve as by passes which in this cas permit the steam to pass
downward below the lower left-hand abutment and, entering the offset recess, to press on this abutment and accelerate its return. The operations above described now take place on the right hand, the motions of the abutments, however, being reversed. Thus the piston is continuously rotated in one direction. When it is desired to reverse the engine, the valve M is turned, admitting steam through pipe E to port B. The abut ments are also rocked to reverse position by steam
finger-cams G and H. With the steam feeding into the engine through pipe D, as shown, the shoes which close the port B are inert elements, and may be raised, if desired. The other shoes, however, should be allowed to bear on the shaft, so as to alternately cover and uncover the feed port, C. The steam is thus greatiy economized, the piston being driven by the expansion of the steam, while the inlet port is closed. The periods at which the port is closed may be varied according to the size and number of shoes employed.

A NEW TYPE OF ROTARY ENGINE.
entering through pipes L. Thus the piston is caused to rotate in the opposite direction. Suitable packings are provided throughout in order to make the parts all thoroughly steam-tight, and the novel methods of arranging these strips form a very important feature of the invention, which limited space does not permit us to describe.
Bearing on the engine shaft within the steam chambers formed by the rings R, ara several cut-off shoes F. which are adapted to close the ports B and C during part of their rotation. The cut-off shoes are shown in detail, in one of our sectional views. The shoes may be lifted out of engagement with the shaft by

section showing course of envelopes through the machine

A MACHINE FOR SEALING ENVELOPES.

ENVELOPE-SEALING MACHINE.

A machine which gives promise of great usefulness has recently been invented by Mr. Harry E. Gavitt, of Topeka, Kans. This apparatus is adapted to receive unsealed envelopes, moisten and fold their flaps and then firmly press the flaps to sealed position. Our illustrations show one of these machines in operation. On the extreme right will be seen the gage plate, back of which are placed the unsealed envelopes with flaps upturned. As many as fifty envelopes of mixed thicknesses may be placed in the hopper, but only one at a time will be fed forward automatically into the machine. This is regulated by the spring gage plate which is self-adjusting, allowing a wider or narrower entrance to the machine, according to the thickness of the envelopes to be sealed. The envelopes are fed forward by a roller in the floor of the hopper and by a traveling belt which forms one side of the same. Just beyond the hopper is a moistening device consisting of a roller covered with canvas, which receives the moisture from a sponge and deposits it on the gummed flap of the envelope. From this point the envelope is fed forward between two belts under the folding device, which consists of a metal sheet twisted laterally and rearwardly in such a manner as to bend the flap down before it passes under the flap holder. The latter is a piece of sheet metal, forming an inverted U in cross section, by which the flap is held in folded position, but is not pressed against the envelope. The feeder-belt at this point, which bears against the folding side of the envelope, is narrow, so as to clear the flap which is turned over. The next feeder-belt, however, has a width equal to that of the envelope, and in feeding past this the flap is firmly pressed into sealing position before being discharged from the machine. The reason for delaying the sealing action by introducing a flap-holding device is to permit the mucilage to thoroughly absorb the moisture and to become properly softened before the flap is pressed against the envelope. The sponge which supplies the moistening roller is situated in a receptacle adjacent thereto. Water is fed to the sponge from a reservoir situated above, and a can is provided at the rear of the machine into which any surplus moisture is drained. The feed and pressing rollers are driven by chain and sprocket gearing from a pair of bevel gears which are rotated by the driving pulley. The long belt, however, which is situated nearer the front of the machine is driven by frictional engagement (or chain and sprocket) with the shorter belts against which it is pressed by spiral springs. These springs, which are clearly shown in a sectional view of the machine, are self adjusting for envelopes of unusual thickness. The machine will seal from 8,000 to 15 , 000 envelopes per hour of any ordinary bulk, mixed sizes, and especially adjusted will seal envelopes at about the same rate up to one-half inch in thickness.

The United States Naval Department is about to ask for bids for the construction of a floating drydock for the Philippines. It will be built here and floated to its desti nation, and will be of sufficient capacity to raise a 16 , 000 -ton battleship. The available amount is $\$ 1,250$, 000.

RECENTLY PATENTED INVENTIONS.

Agricultural Machinery

COMBINED HARROW AND SEED PLANTER.-A. C. PalMer, West Union, lowa. In this machine the seed-planting
mechanism may be combined with harrow devices or the latter may be used separately thus saving the farmer the expense of buy of seed to be planted in the soil to the best advantage. The mechanisms are so arranged that the machine may be turned in a narrow space at the end of the row. An improve dropping mechanism is provided and also means for throwing the dropping mechanis out of service

Electrical Contrivance

STARTING DEVICE FOR ELECTRIC MOTORS.-T. M. Pusey, Kennett Square, Pa vices for starting electric motors, the object being to provide a simple automatic means for regulating the flow of current in starting the
machine, and thus prevent burning out. This machine, and thed by means of out. This wound with two coils. One of these coils which is wound to high resistance acts to raise the core as the speed of the motor in-
creases and thus cuts out the resistance in the rheostat.
ELECTRIC MOTOR OR GENERATOR.J. A. Titzel, Sr., Franklin, Pa. Mr. Titzel's invention relates to electric devices capable of use either as motors or as generators and has for its object to provide a construction
by which a strong, and uniform magnetic field is obtained, so that the apparatus would be very efficient in either of its capacities.
STOPAGE BATTERY, H. P. Kine good, Ind. The design of this storage battery is neat and compact and of such form as to combine the highest efficiency with the great est economy of space. The battery plates are protected to some extent by their form and are arranged to be conveniently housed in an ordinary battery ja
ALARM DEVICE FOR TANKS.-M. KU bitziy and R. B. Stewart, New York, N. Y These inventors have produced an economic
form of electric alarm, especially adapted for form of electric alarm, espectaly adapted for tubs, and other receptacles, to indicate when the water or other liquid therein has risen to a predetermined level and thus tend to pre vent an overflow from such receptacle.

Mechanical Devices.

ESCAPEMENT FOR TIMEPIECES.-F. H VorgT Philadelphia, Pa. The object of this invention is to provide certain improvements
in escapements for watches, clocks and other timepieces whereby the action of the escape ment is rendered more positive and the fric tion of the working parts is reduced to a min imum to insure long accurate life of the es capement.
SAWING APPARATUS.-J. A. BRines, Fresno, Cal. The apparatus comprises an es-
sentially U-shaped frame around which an sentially U-shaped frame around which an
endless saw is adapted to travel. The frame endless saw is adapted to travel. The frame
is adapted to swing from a center, so as to is adapted to swing from a center, so as to
bring the saw into proper sawing position. The saw is driven by a motor. The operator may permit the frame to drop sill until the log is cut entirely through.

Valve mechanism.-Ole Swensen, Sr, Cresco, Iowa. Means are provided in this in and permitting the valve to be reground with out necessitating its removal from its mount ing. The valve is provided with two stems,
one of which is hollow, and which serves to raise and lower he valve from the seat, to rotate the valve the other which serves to rotate
and grind its surface on the seat.
dumping Vehicle.-G. R. Werner Colby, Kans. This dumping vehicle belongs particularly to that class used in connection
with a grain header. The invention provides a device of this character which will operate to dump the grain on the ground in even rows. so that the grain will be in convenient shape for drying out before stacking.
APPARATUS FOR USE IN RAISIN WRECKS.-T. Johrson and C. Jacobson Chinook, Wash. The invention belongs to that class of apparatus employed for raising wrecks in which hoisting devices are applied
to some form of float and connected with chain to some form or foat and connected with chains wreck. This improved form of apparatus may be easily manipulated and is adapted to main tain its position upon the float.

Cotton-press.-w. h. Mecon, Coium bia, La. This cotton-press is provided with a frame in an improved manner. Improved reversing means are provided for driving the tions.

BORING ANL TENONING MACHINE.-A . Koch, Montezuma, Iowa. The invention chine which is of simple and durable construc ion and may be easily manipulated to accu rately form tenons on the ends of whee
spokes and to bore fellies and other articles.

TURN-TABLE FOR USE IN MINES.--W ington, Md. These inventors have provided an pparatus by which the shaft cars may b with ease and rapidity, so that the transfer of the mined product is unnecessary. In , car once loaded in the gallery or the shaft track and hauled out of the mine

Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each the invention. and date of this paper.

Business and Personal Zuants.

READ THIS COLUNN CAREFULLY-YO.

Marine Iron works. Chicago. Catalogue free.
Meminy No 3.:30.-Fror paries to

Inauiry No. 3288e.-For makers of headed wir
Dies, tools, models. Am. Hardeware Co.. Ottawa. III.
Inquiry No. 3283.-For makers of dust pans.

rooklyn.

Inquiry No. 328. 4 . - For the manufacturers of
combined shirt and coliar ironer.
Handle \& Spoke Mchy. Ober Mfg. Co.. 10 Bell St
Chagrin Falls, O.
Inquiry No. 3.285. - For makers of oil burners for
furnaces, heaters, etc.
Sawmill machinery and outtits manufactured by the
Inquiry No. 3286.-For makers of mills for grind-
ing wood.
Sheet, bar. rod or wire. cut, formed, any shape
etal stamping Company, Niagara Falls, N. Y.
Inquiry No. 3287.-For dealers in Kieselgubr.
Machine Work of every description. Jobbing and re
Machine Work of every description. Jobbing and r
pairing. The Garvin Machine Co., 149 Varick, cor pring Sts., N. Y.
Inquiry No. 3
Mines.
Manu Manufacturers of patent articles, dies. stampin
tools. light machinery. Quadriga Manufacturing Com pany. 18 south Canal Street, Chicago.
Inquiry No.
in wire netting.
The largest manufacturer in the world of merry-ge unds, shooting galleries and hand organs. For price
nd terms write to C. W. Parker, Abilene. Kan. Inquiry No. 3290.-For a machine for shellin
peas by hand power. We manufacture anything in metal. Patented articles, netal stamping, dies, screw mach. wo
Metal Novelty Works, 43 Canal Street, Chicago.
Inquiry No. 3291.-For dealers and manufactur
The ceicorated "Hornsby-Akroyd" Patent Safety Oi mine Co
Inquiry No. 3292.-For manufacturers or dealers
in machine for manufacturing indurated fiber wire
from wood puip. W ANTED.-First-class machinery draughtsman. One Suffolk, Loug Island, N.
Inguiry No. 3:93.-For manufacturers of sugar
WANTED.-Engineer, carrying first-class license, to ake charge of power plant and general power machiner
in factory. Must be experienced man. Salary $\$ 25$ to $\$ 30$ Inquiry No. 3294. - For manufacturers or deaiers
in rubber noveities, such as ballonns, rubber balls, etc. Gasoline Automobile Batteries. William Roche's ar as any other battery of same weight. William New York, N. Y., U. S. A.
Inquiry No. 3295.-For an electro-plating outit.
Wanted.-Capable instructor in scientific studie Salary $\$ 1,800$ per annum. Must be first a man of char-
acter. Fair knowledge of science. Address John Brisben Walker by letter only. with references, Room 180 Ines Building, New York,
ruit inid jam ja. 3296.-For machinery for making tin Wavted.-Paries to carry out and pay all expenses
in patenting automatic pump for pneumatic tires in patenting automatic pum
Half interest given. Address

J. H. M. Michon.

Itaniry No. 397.
Incaniry No. 3295.-For manutacturess
 Inguiny No. 3300.-For manutacturers of self

Inquiry No. 3304.-For manufacturers of collar

Inquiry No. 3316 .
ture of steel freight cars.
Inquiry No. 3310\%.-Fer manufacturers of wooden

 Notes
 and Queries.

HINTS TO CORRESPONDENTS

References to former articles or answers should give date of opaper and page or number of question. Inquiries not answered in reasonable time should b repated; correspondents will bear in mind that some answers require not a little rease sold
 some answers reauiren not a lititear in eseaind that though we endeavor to reply to all either by letter or in this department each mut

his turn.
$\begin{gathered}\text { Buyers wishing to purchase any article not adver- } \\ \text { tised in our columns will be furnished with } \\ \text { addresses of houses manufacturing or carrying }\end{gathered}$
hat
Special amie ition Information on matares. of personal

(8722) K. T. asks: 1. Is it possible to synchronize a dynamo and a motor, the latter run by the former, with reliability as to smal
variations of speed! A. The single-phase mo variations of speed? A. The single-phase mo-
tor must closely synchronize with the dynamo motors need not do so. 2. If so, will you give directions for building a simple and inex pensive model to illustrate the fact: For my
purpose the minimum speed would be about purpose the minimum speed would be about
600 revolutions a minute and the maximum 2,400 . The sensitivity ought to be such tha sy small variation of speed in the dynamo
is transmitted to the motor with reasonable is transmitted to the motor with reasonable
accuracy. A. The simplest model you can
have to illustrate this is two similar machines, ne driven as a dynamo and the other turned by it as a motor. 3 . Can a 110 -volt direct
current readily be transformed to a 52 -volt alternating of any frequency, and how, with he least expense: A. A direct-current 110
volt is readily transformed into an alternating volt is readily transformed into an alternating
current of 52 volts pressure by a rotary conpurpose. 4. Can a 100 -volt direct current be used for heating metals by immersing in
water, and how? A. A 110-volt direct curren is not of a pressure high enough to heat metals quickly in water, as in the water pail
corge: 220 volts are needed. Salt water. orge; 220 volts are needed. Salt water is the electrode, while the iron attached to the pole is inserted into
stantly made red hot.
(8723) W. A. B. asks for a formula or glaze or glazing used in the manufacture
of candies and crackers. A. Boil sugar and water to a point just before it will pull out
tringy between the fingers. Dip in this soution.
(8724) W. M. C. says: I have a brass coil boiler, in which there is a great deal of
sediment and scale and which is steaming poorly; please advise me what preparation clear the sediment and incrustation in your boiler by injecting a strong solution of caustic oda, say 10 per cent of the contents of the while steam is up, and repeat for a few days.
(8725) C. R. says: If I were to take a cannon 3 inches in diameter and 1 inch bore
and fit a screw cap firmly on the mouth it, and then explode a piece of guncotton with in, while the cap is screwed on: 1. Would
the cannon burst? A. Plugging up a cannon charged with guncotton is a dangerous ex
perinent. The charge would burst the perinent. The charge would burst the can
non or blow out at the vent. 2. After upon unscrewing the cap: A. There will be no danger in opening the canno
after explosion if it did not open itself. : Do you think the heat generated within the cannon would be sufficient to melt an iron or
brass screw $1 / \pm$ inch or $1 / 8$ inch in diameter? melt the screw
(8726) C. G. asks: How can I remove nitric acid stains from a blue cloth coat and having been dropped on the cloth and pressed with a smoothing iron. causing the part of
the cloth where the acid dropped and was pressed to turn yellow. A. The stain caused by nitric acid on blue cloth can be removed by the immediute use of ammonia. in case the acid
was weak. Strong acid will usually give a nitric acid nothing can be done.
(8727) A. K B wants a receipt for anning corn that will make it keep in tir make it keep? A. It is necessary to cook the corn sufficiently to destroy all bacteria that would produce fermentation. Seal while still
ot. so that no air can gain access to the hot, so that no air can gain access to the
corn. Salicylic acid is commonly used as a preservative: the failure to secure good re-
sults has probably been due to the fact salicylic acid does not dissolve readily in cold water, and hence it may have separated out Borax, and especially boracic acid, are used most largely to-day. The bulk of testimony seems to Indicate that moderate amounts of hese produce no injurious effects upon th
human organism, but seenn to be thoroughly eliminated through the action of the kidneys.

INDEX OF INVENTIONS
 For which Letters Patent of the United States were Issued for the Week Ending October 14, 1902

ANDEACHBEARINGTHATDATE.

Notain

16.0
711,94
711,164
$71,1,051$
711,051

${ }_{111,247}$

711,151
711,29
711,217
711,106
711,251
 711,241

$\underset{\substack{711,276 \\ 711,288}}{\substack{188 \\ \hline}}$

Foot and Power and furret nathes, rlam HAVETHELATEST IPRROVEMENTS

BOGART GAS ENGINES
 and upwarat, 5000
ARRAR $\&$ TREFTS Steam Engine \&
Boiler Works....

If You W
it., Cheap
aneant the Best Lathe and Drill GHUGKS

" WOLVERINE" Gas and Gasoline Engines STHationarr and Marine. Marinetuas Enge only reversib
It is the lightest engine forket it gineer. Absolutely safe. Mfd. by
WOLVERINE MOTOR WORKS, 12 Huron Street,
Grand Rapids, Mich

WELLDRILLING Machines
 Strong, simple and durable. Any mechanic
operate them easily. Send for catalog.

THE MIDGET DYNAMO OR MOTOR
 As motormidia

[^0] ROLLER BEARING Mota ariplyg Iachie

Apple Economical Gas Engine Igniters

$$
3
$$

ACETYLENE GAS AND CARBIDE OF

Dr. Deimel Underwear

True Dr. Deimel Underwear is of word "Linen-Mesh" famous wherever underwear is worn. All who want the genuine article, the one which gives freedom, comfort and protection each and every day of the year, winter and summer, spring and fall, will get the Dr. Deimel Underwear.

THE NAME AND TRADE MARK are the SAFEGUARDS TO GO BY For catalogue and samples of material address
The Deimel Linen-Mesh Co.,

Sanfrancisco, cale,

ROTARY ENGINES.-ARTICLES ON

THE

Consumers' Oil Burner

Consumers' Oil Burner
A-Orifice for flame. ${ }^{\text {B-Oil }}$ inlet. C - Screw
joint to pan. D Heating coil or retort.
Flame deflecting plate.

FOR DOMESTIC USE

Cheaper and Better than Coal or Gas

USES REGULAR KEROSENE

One Gallon of Oil will give full heat ing capacity for 12 hours at a cost of 8 cents

This is cheaper than coal at the normal price. Turns the oil into gas, not vapor. No possibility of explosion. The only burner that will not carbonize. Fully approved by Fire Underwriters.

The Consumers' Oil Burner is the latest and only absolutely practical apparatus for using ordinary kerosene for cooking and heating purposes in the very-day household.

It has all the advantages of gas, and the additional valuable feature of fitting the regular range now in use, whereby it heats the water-back as well as doing the regular cooking

It is as quickly lighted and easily regulated as gas; maintains a steady, even heat in the oven, while i^{+}is instantly available for broiling steak or toasting bread, and no deadening of your fire. A recent test in New York for eight days, large boarding house by the Inventon I. 93 gallons of kerosene for eight hours' cooking per day, using two burners, under i9 pounds pressure, whereas the normal pressure for house use is io pounds.

For further information, terms, etc., address

The CONSUMERS' OIL BURNER CO.

540 Drexel Building
PHILADELPHIA, PA.
Territory can be arranged for and exhibits given to responsible parties.
A YEAR'S CIGARS FREE


``` your money back
```



``` \(\square\)
```


M,
M,

GASOLINE

ENGPNES

 THIE CLIFTON MOTOR WORKS.

MAXIMUM POWER-MINIMUM COST.

It's Just as Nice

moran flexible joint

A.W. PABER

on from mas 1ivers, extracting, A. s. Ham.
II seprating apparatus, E. Mi. Thacier.

${ }_{711,38}^{7,28}$
E

American Success Series

" Improvement the order of the age"
A fortnight of type cleaning saved year by each operato
of the great Success, The Smith Premier Typewriter

American Success Series in Book Form.-At the end of this year, the Smith Premier Typewriter

The Smith Premier Typewriter Co., n. צ. Y.. v. vis.s. A.

ENGINEER'S POCKET-BOOK

By CHARLES H. HASWELL

A pocket-book of tables, rules and formulas pertaining to mechanics, mathematics, and physics, including areas, squares, cubes and roots, etc.; logar ithms, hydraulics, hydrodynamics, steam and the steam-engine, naval archi tecture, masonry, steam-vessels, mills, etc.; limes, motars, cements, etc.; ortho
graphy of technical words and terms, etc., etc. Sixty-fourth edition. xlvi., 982 pages.
something the mechanic and the engineer it is simply indispensable; like their tools, it is
something they need to have always at hand for use.
I cannot find words to express my admiration of the skill and industry displayed in producing the same. To you belongs the honor of having presented to the world
book containing more positive information than was ever before published.-Extract from a Letter from CAPt. J. Ericsson, the celebrated Engineer.
12 mo

> Leather Pocket-Book Form

HARPER \& BROTHERS, Franklin Square, New York.

NOW READY $\ldots=$

Twenty-Third Edition
Revised and Greatly Enlarged. Experimental Science 1,100 Pages. 900 Illustrations. Cloth Bound, Postpaid, $\$ 5.00$. Half Morocco, Postpaid, 7.00. Or Volumes Sold Separately: Half Morocco, $\$ 4.00$ per Volume.

C $\begin{gathered}\text { XPERIMENTAL SCIENCE is so well known to many of our } \\ \text { readers that it is hardly neessary now to give a description of } \\ \text { this work. Mr. Hopkins decided some months ano that it would } \\ \text { be necessary to prepare a new edition of thit }\end{gathered}$ be necessary to prepare a new edition of this work in order that
the many wonderful discoveries of modern tinles might be fully
described in its pages. Since the last edition was published wonderful descrine ints in wireiess telegraphy, for example, have been, made. It in
developments
was necessary, therefore, that a good deal of new matter should be was necessary, therefore, that a good deal of new matter should be
addded to the work in order to make it thoroughly up. to date, and with
this object in view some 200 pages have been added. On account of the increased size of the work it has been necessary to divide it into two
volumes, handsomely bound in buckram. It may be interesting to note
the following additions that have been made to these volumes: the following additions that have been made to these volumes:
Volume 1 contains in addition to a large number of simple. well
illustrated experiments a full description of a inustrated experiments a full description of a $1 / 4$ H. Pe exectric motor
made expressly for illustration in this edition of "EXPERIMENTAI
ScIENCE." It is an ENCLOED
 ing a current capable of operating three 16-candle power, 110 volt incan-
descent lampsp. The construction of the machine is perfect enough to
admit of enarging or reducing its size if desired. besides new articles of of great importance. general subject of electricity
among these the subject of of
alternate current machinery is treated. Wireless Telegraphy and Tele-
 of the Stars are all thoroughly illustrated and described.
The unprecedented sale of this work shows conclusively that it is the book of the age for
teachers, students, experimenters and all others who desire a general knowledge of Physics or Natu-

MUNN \& CO.,

NEW SUBSCRIPTION
OFFER.
O5.75 sent now was new suberrition to
51.75 sent now as a new subscription to
the 1903 volume of The Companion wil entitie you to tane the issuesoof the than en for
the remaining weeks of 1902 FREE.

 It will entitte you to the 52 issues of The reading by the most popuar writers. | $\begin{array}{c}\text { Send this slip or the name of this publica- } \\ \text { tion with your remittance. } \\ \mathbf{I n 9}\end{array}$ |
| :--- |

We will send Free to any address Illustrated
Prospectus of the rigo3 volume with
Sample Copies of the Paper THE YOUTH'S COMPANLON, Boston, Mass.

Practical Pointers
For Patentees
ntaining Valuable Information and Advice on
THE SALE OF PATENTS. An Elucidatiun of the Best Methods Employed by the
Most successfu Inventorsin Manding Their Inventions. By F. A. CRESEE, M. E.
144 Pages.
Cloth.

THIS is the most practical, up.to-date book pub-
lished in the interest of Pateneees, setting forth
the best methods employed by the most suceess-
 some of the most successiul Inventors of the day.
It ivives exattlv that information and hadvice about
handing patents that should be possessed by every In-
 yentions. It contains no advert isements of any descrip.
tion a and is published in the intereets of the P tentee

WILARDSTEELRANGS 25.00

 AgeNTS WANTED.
$619-21$
RESTFUL SLEEP
In Camp, on the Yacht and at Home.
"Perfection" Air Mattresses,
cushovs and Plutows.

Style 61. Camp Matress with Pillow attached. Clean and Odorless, will not absorb moisture. Send for 1llustrated Catalogue. MECHANICAL FABRIC CO., PROVIDENCE, R. I.

Electrical Scientific Novelties,
 Thousands of unsolicited testimonials to prove
that they are safe practical, udrable, and the most
amusing
and
 THE CARLISLE \& FINCH CO.

TH3E. Clifton Avenue | 233 E. Clifton Avenue, |
| :--- |
| Largest Mfrs. Electrical ${ }^{-}$CINCINNATI, 0. |

THE RELIABILITY OF THE WHITE

has been proved beyond question.

Two White Delivery Wagong (the only delivery wagons ever completing an
adurance contest), also praved their reliability by coming through without mishap. These remarkable results immediately following the English endurance run-
in which the White was one of the two machines out of seventy to make a perfect

 WHITE SEWING MACHINE CO. (Automobile Department), Cleveland, Ohio

ELECTRICAL ENGINEERING TAUGHT BY MAIL.
 We TRIEAL ENGEAN ARE

AGOOD YNYESTMMENT
 Thetilinimp

I Can Sell Your Real Estate

Be Your Own Printer

DARKENING
 CLOUDS

To the Widow and Children, the
future is dark with clouds, if the future is dark with clouds, if the bread-winner dies without making
provision for his family. A Life
Tricy in the Traweless Company provides support and shelter, and is frequently the means of taking care of the mortgage on the house.
You cannot afford to neglect the
safeguards of the Travelers Insurane safeguards of the Traveler
Company's Life Policies.
The Accident Policies of the Travelers guarantee a weekly income in
case of disability from accident. There are other important benefits.

Agents in every town; or write
The TRAVELERS INSURANCE COMPANY

Hartford, Conn.
(Founded 188.)

LABELS.
"Champagne velve. Beer,;"............................ Champagne Velvet Beer,", for bottled
beer, Terre, Haute Brewing Co....
out Tarden, for cigars, American Lith-
ographic Co.

 La Perlosa,", for cigars, American Litho

Hearn \& Jones "Sugar Exchange standard,"," for syrup, Hearn \& Jones "Velvet Beer,", for bottled beer, Terre Haute Brewing Co. "Verus," for hair tonic, Rose Company

PRINTS

 A printed copy of the specicication and drawing
of any patent in the foregoing list, or any patent
 number of the patent desired and the date
given. Address Mun \& Co., 361 Broadway, Ne
Yorr. ventonarian for antents may now be obtained by the invention anamed in the fore
gong list. For terms and further particula
gidress Mor address Munn \& Co., 361 Broadway, New York.

EW B00KS, ETC

lished annually withements. Pub plements. New York: Lewis, Scrib ner \& Company. 1902. Lewis, Sc Our present industrial expansion renders the
publication of a wcrk such "as publication of a work such as "Foreign Trade
Requirements," timely. In order to pass a Requirements," timely. In order to pass
critical opinion upon the work. it would critical opinion upon the work, it would be
necessary to use it some time as a reference
book But a careful examination convince book. But a careful examination convinces
us that its pages are replete with matter which should be of extreme value to the ex-
porter. The information contained in the book is carefully classified, condensed and arranged Tr the following sections: Trade Conditions, Laws, Transportation Facilities of the World Coins and Currencies of the World, Miscellane-
ous, Cable Rates to all Countries. Weights and Measures of Foreign Countries, and Commer
dagnosis by Means of the Blood. By
Robert Lincoln Watkins, M.D. New York and London: The Physician Book Publishing Co. 1902. 8vo.
Pp. 388 . Pp. 388. Price $\$ 5$.
Physicians are apt to look rather askance examinations of the blood in diagnosing a work of the character such as Dr. Watkin
has written should refute alt doubts of the efficacy of blood diagnosis. The system which
Dr. Watkins describes is one which he ha evolved himself. The work is, therefore, eminently original in its character, and for that reason extremely valuable. So far as we
know, no similar work has appeared in medical know, no similar work has appeared in medical
literature. In order to elucidate his text, the author has introduced a very full series of reproductions from photographs taken by himreprod
Trades Waste: Its Treatment and UtiLization. By W. Naylor. London
Charles
Griffin \& Co., Ltd. Philadelphia: J. B. Lippincott Co. 1902. 8 vo . Pp. xv, 267 . Price $\$ 6.50$.
This is the first publication of any length which is devoted to the subject of trades waste, as a whole. Although the work bears more the character of a compilation than of original research, it is, nevertheless, of rare merit. The
fact that it contains almost everything that fact that it contains almost everything that
is worth knowing on trades waste is in itself sufficient commendation.
List of References on Reciprocity Books, Articles in Periodicals, Con-
gressional Documents. Compiled gressional direction of A. P. C. Griffin. Washington: Government Printing Office. 1902. Pp. 38.
The Badger Pharmacist. Published in the interests of pharmacy in Wiscon-
sin. By the students of the School of Pharmacy of the State University Madison, Wisconsin. 1900. Pp. 292.
Coal, Lignite and Asphalt Rocks. Bulletin of the University of Texas. No.
15. Issued semi-monthly. Pp. 138.

I ICOORPORATE IN NEW JERSEY

 rom 14 to 3 H P for Marine Stationary Auto Biegle Lowest prices. STEFFEY MFG. Co.,. 2720 Brown St., Philadelphia, Pa.
 EVANS
VacuumCap

 K余 Magical Apparatus.
 VOLNEY W. MASON \& CO. Friction Pulleys, Clutches \& Elevators PROVIDENCE, r.

WANTED by prominenand best introdicod frim on

The Best Thing on Wheels all roads are alike to The OLDSMOBILE

RUNS EVER YWHERE
Nothing to Watch but the Road Ahead. OLDS MOTOR WORES, DETRE IS RIGHT

解

 Experimental \& Model Work NOVELTIES \& PATENTED ARTICLES

"THIS BEATS NEW JERSEY.

MODEL and EXPERIMENTAL WORK
 EXPERT MODEL MAKES, Mad. No. Pateras

APATENT GIVES you an exclusive right to your invention for a term of seventeen years. You can sell, lease, mortgage it, assign portions of it, and grant licenses to manufacture under it. Our Patent system is responsible for much of our industrial progress and our success in competing in the markets of the world. The value of a successful Patent is in no degree commensurate with the almost nominal cost of obtaining it. In order to obtain a Patent it is necessary to employ a Patent Attorney to prepare the specifications and draw the claims. This is a special branch of the legal profession which can only be conducted successfully by experts. For nearly sixty years we have acted as solicitors for thousands of clients in all parts of the world. Our vast experience enables us to prepare and prosecute Patent cases and Trade Marks at a minimum of expense. Our work is of one quality and the rates are the same to rich and poor. Our unbiased opinion freely given. We are happy to consult with you in person or by letter as to the probable patentability of your invention.

Hand Book on Patents, Trade Marks, Etc., Sent on Application.
MUNN Ω CO., Solicitors of atents, 361 BR

VAY, NEW YORK.

THE NEW WINTON

Beyond question the most luxurious and
complete hish grade automobile ever mancomplete high grade a
ufactured in America.
It will be in the hands of agents and at
our branch depots in a very few weeks. our branch depots in a very few weeks.
Twenty H. P. motor, new body desimn, etc. If interested in knowing more, write us.

THE WINTON MOTOR CARRIAGE CO., Factory and General Offices, Cleveland, o., U.S.A.
NEw York
CHICAGO
Boston WIY DON'T YOU BUY A....

CRUDE ASBESTOS DIRECT FROM MINES \begin{tabular}{|c|c|}
\hline PREPARED

ASBESTOS FIBRE

 OFFICE, ST.PAUL BUILDING

\hline $\begin{array}{l}\text { ASBESTOS FIBRE } \\
\text { for Manufacturers use }\end{array}$ \& OFFICE, ST. PAUL BUILDING

\hline
\end{tabular}

Orient Motor Cycle.

The Most Powerful Motor Bicycle in the World. W ALTHAM MFG. CO.. Waltham, Mass
PIEIMETILLUBRICATES CHARTER ENGINE
 Stationaries. Portables, Sawing outits, ops ict
 Charter gas engine co.. Box I48. Sterling. ill The TANDEM Gas Engine 10, $15,20,25$ and 50 . H. P. . sives in stock at
bargain prices. Stationary use only.
Northern Engiteering Works. 641 Atwaier St., Detroit, Mich.
NEW EMGIAND WAICHES

THE NEW ENGLAND WATCH CO. $37 \& \underset{\text { New York }}{39}$ Maiden Lane 131 Wabash Ave
Chicago. Claus spreckels Building, San Francisco.
deiter RIVETT LATHE 5 Noup-to-date manufacturer ceat 2. GOLD MEDAL PAN-AMERICAN EXPOSITION. Faneuil Watch Tory Company, BRIGHTON, E JSTON, MASS., U. S. A.

THE AMERICAN $\mathbf{\$ 4 0} \mathbf{4}$ TYPEWRITER
 Meets every requirement. Send for cataiogue and
special trial offer. Mention SCIENTIFIC AMERICAN. \$60 less than other high-grade machines.

MERICAN TYPEWRITER CO., 267 B'way, NewYork Cit

Bhe "BBB" Wire Rope is superior to all otber wire ropes in its constrnction and
lay of strands. It wears longer than others because it ש

WANTED

There's a chance for a live man in every town of 10,000
inhabitantsor orer to doubie his present income easily
and inabitants or over to doubie his present income easily
and quicly if willin to open an exhibition parlor or
store for the display and sale of "Keyless Clocks" They are self-winding, run for a year, and are just
being introduced to the public. The old style clocks are going out of date-these new style will be preferre
everrwhere. Able parties having $\$ 500$ or over to inves
should write us at once.

THE UNITED STATES CLOCK CO New York City.

RECORDING INSTRUMENTS
Pressur Pressure Gauges, Vacuum Gauges. Volt-
meters, Amperemeters, Wattmeters, and
Thermometers, make continuous records harmometerse,meters, wattmeters, and
Day and Ninght. Will pay for the records
very instral
 SILVER MEDAL PARIS EXPOSITION. QUIET RUNNING Is only ONE of the adrantages to
beganeed
busing New Process Pinions

 Tthe new process rawhide co.. - Syrause, N. r.

THE GRIFFIN MILLS which we have sold for this purpose will produce 50,000 barrels of Portland cement a day, or over $15,000,000$ barrels a year. No other mill approaches such a record, because no other mills begin to work as cheaply or as satisfactorily. Writo for our illustrated descriptive catalogue.

BRADLEY PUIVERIZER CO. BOSTON.NEW YORK.CHICAGO.

BECOME A PHYSICAL DIRECTOR FRe

FOR MEN AND WOMEN

THE MAC LEVY INSTITUTE OF PHYSICAL CULTURE, Corres. Dept. S, Hotel St. George, Brooklyn, N.Y.

Paint or Whitewash the
Easy=Economical Way Save 90%
Hook's Pneumatic Coating Prachine
Equals Twenty Men With Brushes Equals Twenty Men With Brushes -
will paint or whitewash in one-tenth the time it takes by hand, with better results
as to appearance and durability; cleaner as to appearance and durability; cleaner
than brush-work; no scaffolds nor ladders than brush-work; no ccaffolds nor ladders required. No one spending $\$ 35.00$ for paint-
ing or whitewashing can afford not to have ing or whitewashing can afford not to have
this wonderful labor-saving device. Anythis wonderful abor-saving device. Any-
one can operate it. Figure out the saving in labor. " STAY-THERE" PAINT A substitute for oil paint at one-fifth the cost. Better and as cheapas as whitewash.
Out twenty frut page book tells the tale. We shall ap-
preciate your enuuiry. F. E. HOOK, Il-27 Hook Blag.. Hudson, Mich., U. S. A.

[^0]: LbRIDGE ELECTRIICAL MANUFACTUUING COMPANY

