could hardly be surpassed for accuracy and effectiveness. Because of opposition on the part of the Sergeant-at-Arms the plan was never tried at the State House, but is now about to be carried out at the Harvard College Observatory. Signals will be operated simultaneously in Cambridge and in Boston.

Such is the facility with which the electric current can be controlled by automatic devices that, telegraphic communication with an observatory having been once established, signals could be given at frequent intervals, for example, every five minutes, during the evening, instead of once a day, as in the case of the time-ball. It is, of course, essential that the telegraphic signals, in order to be of value, should come directly from an astronomical observatory, as it is only at such an institution that the time can be determined and kept with the necessary degree of accuracy. Three distinct plans are possible under the proposed system, as follows:

1. The signal could be given once each evening at a prearranged hour as, for example, nine o'clock. The lights, which would be burning before the appointed time, would be turned off by hand at about fifteen seconds before nine. The controlling switch would then be connected with a telegraphic instrument operated from the observatory. At precisely nine o'clock a signal from the observatory would release the switch, causing the lights to flash into full brilliancy. This method, which is similar to that employed for the time-ball, would require the services of an attendant. It would have an advantage over the timeball in that the radius of visibility would be much greater.

2. Auxiliary clockwork located near the lights could be made to turn them off a few seconds before the appointed time, and in so doing, connect them with the observatory instrument which would light them again at the proper instant, the entire operation being repeated at intervals of five minutes. By this plan the apparatus would be entirely automatic, and would require no attendant.

3. A specially constructed relay could be operated by the observatory circuit, causing a momentary interruption of the lamp current in response to every signal received from the observatory. Most observatory clocks give signals continuously, at intervals of one or two seconds, a pause preceding the sixtieth second to mark the minute. The Harvard signals, which have been extensively copied elsewhere, are given every two seconds, one beat being omitted before each minute, and twelve beats every five minutes. Thus, a person having the time within thirty seconds can correct his timepiece by waiting for the pause marking the minute. If the error of the timepiece is not known within thirty seconds but is known to be within two and one-half minutes, it is necessary only to wait for the long pause marking the fifth minute. Tests made at the laboratory of the Harvard College Observatory have shown this method to be remarkably effective; and it is probable that the signals to be established in Boston and Cambridge will be operated upon this plan.

It is evident that the new system is applicable to any number of lamps. A single lamp may be used for local purposes, in the street, or at the entrance of a public building, or several hundred lamps may be employed, giving a powerful light which can be seen for many miles. When the radius of visibility of such a light is considered in connection with the frequency with which the signals can be given, some idea of the efficiency of the system may be obtained. Moreover, it is not necessary that an expensive plant should be established especially for the purpose. The towers and domes of many large buildings are already illuminated for spectacular purposes. The equipment thus used could be utilized at triffing expense without materially altering their construction. A signal established at some point in New York harbor as, for example, on the Statue of Liberty, would be of inestimable value to the shipping interests, and would become a most striking and interesting landmark.

It may be argued that lights can never take the place of the time-ball, as they cannot be seen by day. drick. The paper is one of the most important which has appeared on the subject of acoustics for years. The many illustrations presented do much to elucidate the text. Dr. Perrine concludes his interesting account of the power plants of the Pacific Coast. Striking illustrations accompany his description. Dr. Soper tells of the sanitary measures to be adopted after floods. The Hon. Carroll D. Wright writes interestingly of the use of statistics. The usual trade notes and consular matter will be found in their accustomed places.

THE MODERN USE OF ELECTRICITY IN PRINTING. BY FRANK C. PERKINS.

It is certainly surprising to note to what extent electricity is now used in the leading printing establishments of this country, as well as in Europe. It is with a deep feeling of pleasure when one steps from the old-fashioned belt-driven pressroom into the modern, clean, bright, well-lighted, motor-driven pressroom of an up-to-date printing plant. The dark, ill-smelling, poorly-ventilated, dingy basement printing shop is now radically changed, it being noted that electricity has been the wonder worker, and is now supplying current for lighting the various departments with brilliant arc and incandescent lamps. The foul odors are dissipated and driven out of the workrooms by powerful electric fans and motor-driven exhaust blowers; the fast-flying belts which endanger life and limb, with the numerous countershafts and pulleys, have disappeared, and in their place are to be found separate motor-driven machines of every type and kind known to the modern printing trade.

In the typesetting room the electric motor is geared to the linotype machine, and the composition is accomplished with great accuracy and dispatch; the typecasting machines are operated by dust-proof electric motors, and direct-connected routers and metal saws are at work, saving power and economizing space and increasing the product in a given time. The electroplating branch has always been an important application of electricity in the printing industry.

In the pressroom the motors are connected to the various machines either by belting, by gears, or by being directly connected to the press, the latter being accomplished in many cases by simply removing the tight and loose pulleys, which were used for driving by belts from the main shafting, the motor simply being substituted.

The advantages of direct connection are many, including noiseless running, simplicity of construction, reduction of losses from friction, and slippage of belts, while the space in the pressroom required is less and the life of the motor is greatly increased, largely due to its slow speed. The automatic folders are frequently driven by the electric current, and the modern paper cutter is also operated in this way with great reliability and safety, it being possible to stop the cutting machine instantly if desired.

In the binding department there is probably as great a field for the electrically driven machine as any in the entire printing establishment. The embossing presses of the latest types, as well as the binding machinery, cutting machines, stitching machines, and graining machines, are electrically driven, producing a great saving in power, which is used only in proportion to the work done. It is not necessary to supply power for the whole plant when only one or more machines are working, as the moment the operator breaks the circuit the motor stops and all of the expense immediately drops off. With shafts, pulleys, and belting this is not the case, as there is a continual loss due to the friction in operation of same when there is no load, and the losses due to slip of belt are continually varying from month to month, due to variation of tightness of belt, arc of contact, and smoothness of the pulley faces. On account of the settling of floors and walls, the line shafting is bound to get out of alignment more or less, which also is a great source of loss. The entire belt transmission system is continually becoming clogged and covered with dirt, grease, and flying dust, while the motor-driven machines result in greater cleanliness, a saving in the cost of insurance on account of decreased danger from fire, and a greater amount of light due to the entire absence of these overhead obstructions. Electric heaters are now being installed in many binderies, and electric motors can be adopted with great economy and many advantages by every printing establishment in the country, and there are a large number now fully equipped with this system of driving. The work of the printing press is bound to be more or less intermittent, which always results in a saving in motor-driven machinery, this being largely due in this class of work on account of the necessity for stopping to "make ready." It is also true that for the preliminary impressions the press must be run very slowly, and frequently started and stopped, and this cannot be so well accomplished by mechanical drive, although later the speed may be increased to a maximum limit, turning off thousands of impressions in a short time.

ton, D. C., is thoroughly equipped with electricallydriven machines operated by General Electric motors; and many of the leading newspapers and magazines have had their plants equipped with Lundell, Northern and Bullock machines, these types of motors having been extensively used for direct connection, as well as by gearing and belt driving, to most of the high-grade presses, cutting machines, routers, stitching machings, and other devices used in an up-to-date printing establishment.

It is not always the high speed of a press which produces the greatest amount of work, but the one which can be kept operating continuously at a comparatively rapid rate without a great number of stoppages, from various difficulties, a great amount of time being lost.

The breaking of belts and other faults due to bad power transmission causing delays require a greater speed from the press to make up, while a moderate speed under continual operation means greater economy, increased output, and less wear upon the machinery.

It is very easy in many cases to equip an old printing establishment with electrically-driven presses without discarding existing valuable apparatus. In these cases it is found very convenient and desirable to use a short, endless belt to connect the motor with the press, the standard press pulley being used, and no changes are required on the press. This method frequently allows placing the motor under the press, and no valuable space is thus occupied. The geared outfits and direct-connected outfits are, of course, the most substantial, the latter being really the ideal method, although the cost is considerably higher, as very slowspeed motors are required.

The direct-connected outfits have the armature of the motor attached directly to the driving shaft of the press without the interposition of gears or other transmitting mediums. The armature must, therefore, run at the required speed of the press shaft, which is usually very much lower than that of the ordinary electric motor.

The accompanying illustrations on our front page show several German direct-connected motors built by Schuckert & Co. of Nurnberg operating high-speed presses of the Frankenthal type.

The first cost of the motors for the geared and belted outfits are much lower than the direct-connected type, and the first cost of electrically operating with any type of motor is, of course, more than the old belting and shafting transmission. The advantages to be gained by the former over the latter, even at the added cost, are well worth the increased expense, on account of the saving of the great friction losses, economy of floor space, noiseless running, and greater reliability and safety.

The cost of equipping a printing plant is greater, as the use of the booster teaser, in addition to the motor, increases the expense of the electrical machinery by that amount; but as in the case of the advantages of the direct-connected, slow-speed motor over the highspeed belted or geared motor, the increased first cost is more than made up in the saving in current and other features.

Bird's Eye Maple.

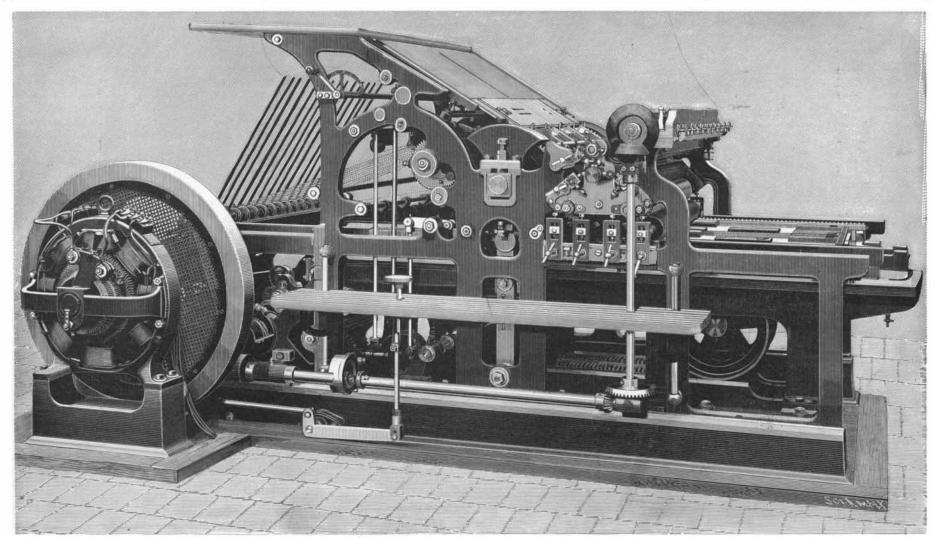
What is bird's eye maple? That is a question which just now seems to be baffling not only people who use furniture made of this particular wood, but even woodworkers themselves. In a recent number of a woodworking magazine an article was published which stated that bird's eye maple was not a peculiar maple, but simply ordinary maple cut in a certain way. In a recent issue of the New York Sun that statement is refuted. It is there stated, on the authority of a woodworker, that bird's eye maple and curly maple are both cut only from the logs of the rock maple tree. Acer saccharinum, in which a beautiful lustrous grain is produced by the sinuous course of the fibers. This tree is not at all the common hard maple. It is a hard maple, but is full of little gnarls called eyes. Men looking for bird's eye maple logs go through the standing timber and pick out the bird's eye maple trees, paying for them from \$30 to \$50 a thousand

Experience seems to show that the use of a standard time signal at midday is largely a matter of habit, arising probably from the old custom of ringing bells at noon. For most purposes almost any other time would answer equally well. The new system is not, however, designed to necessarily supersede the timeball, but may, if desired, be used as a separate and supplementary service, having far greater efficiency. WILLARD P. GERRISH.

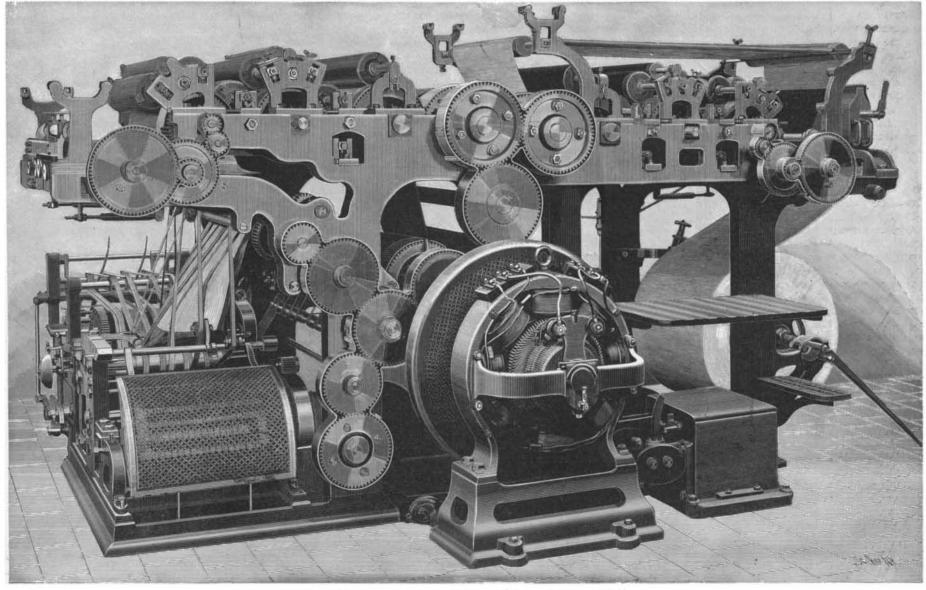
Harvard College Observatory, Cambridge, Mass., May 23, 1902.

The Current Supplement.

The leading article of the current SUPPLEMENT, No. 1380, is devoted to a discussion of the occurrence and distribution of corundum in North Carolina and Georgia. The article is accompanied by four illustrations. Results of a most careful research in experimental phonetics are told by Prof. John G. McKen-


The Bureau of Engraving and Printing at Washing-

feet in the woods. Ordinary hard maple logs are worth only from \$6 to \$7 a thousand feet. It would be impossible to cut a piece of veneer with eyes in it from a common hard maple log, and would be equally impossible to cut a bird's eye maple log, no matter how you cut it, so that it would not show the eyes.


·····

The first sod of the new dock at Avonmouth, Gloucestershire, England, on which the sum of \$10,-000,000 is about to be spent, was turned on the afternoon of March 5 by the Prince of Wales. It is hoped that a portion of the American traffic formerly enjoyed by the port of Bristol will be recovered by the building of the new dock. In 1893 the corporation of Bristol presented a bill to Parliament asking for power to build a new dock at Avonmouth, large enough to accommodate at one time three of the largest Atlantic liners then afloat. After nine years of earnest effort, work has now begun.

High-Speed Press Driven by Direct-Current Motor.

Motor Direct-Connected to a German High-Speed Rotary Press. **THE MODERN USES OF ELECTRICITY IN PRINTING.**—[See page 415.]