mountain ranges ten miles in height measuring from the top of the highest mountain to the deepest abyss of the ocean. Many changes have occurred in the past millions of years since the dry land appeared, and doubtless many of the mountains were much higher; but nature is ever carrying on a fierce warfare, and slowly and imperceptibly the heights are leveled, the mountain peaks denuded, and the dry land washed down the great river courses into the sea; and theoretically, given sufficient time, assuming that no elevation occurs, the entire earth may disappear.

This wear and tear of nature is accomplished in many ways, and is productive of interesting results. Frost, snow, wind and rain are the principal erosive agents which are chiseling, cutting, grinding and wearing away the surface of the earth. The elements are all levelers, and the tendency is to reduce the mighty monuments of nature and level them in the dust. In the accomplishment of this, many remarkable natural monuments are made, splendid in their dignity and grandeur. Instances are found in the Garden of the Gods, in Colorado, where pillars, towers, monoliths, arches, gateways, titanic newel posts and forms and shapes of every possible kind and design are seen-the work of frost and rain.

But it is further west that the most striking effects of erosion are found. In the region to the west of Salt Lake, and from there on, in what was formerly known as the Great American Desert, every overland passenger has been entertained by the weird and picturesque works of nature. Let but the fancy lead, and the eye rests upon cities, cathedrals, towers, minarets in the splendid buttes which rise everywhere along the line of public travel. They now appear silent and alone, gigantic monuments, or again in groups and clusters, rising on the horizon like ships upon the ocean; and it is not difficult to people these fantastic dwellings and imagine them the centers of human life. When the sun descends it paints them in marvelous hues-red, vermilion, yellow, and finally merging into purple and black in the quickening gloom. These strange forms, appealing so strongly to the imagination, are but the remains of past mountains, hills and plateaus. Rain floods have cut into and disintegrated them until all that remains is the core, or a harder portion that defies the elements and stands lofty and alone, a monument telling the story of the wear and tear of nature.

In New Mexico and Arizona there is still more striking evidence of this destruction. One should see it immediately after a contemplation of New England or the Middle States, where the country apparently has not changed materially in many centuries. The contrast is remarkable; the scenery bleak, rocky, barren, but with a charm peculiarly its own, a fascination few can resist. It is the land of the butte, and the lofty isolated mesa, the home of the washout, the cloudburst and violent outbreaks on the part of the elements, which in many regions appear to have wrecked the very face of the earth. Lofty buttes rise here and there, showing that in the past they have been the surface of a more or less level mesa which has been cut and worn by interminable floods until the very surface of the earth seems to have been washed away for hundreds of feet leaving the gigantic buttes, often acres in extent, to tell the story. Many of these are occupied by the native Indians who formerly used them as vantage points, and, when warfare and pillage are things of the past, still live there from mere force of habit.
One of the most interesting of the largest buttes is the famous Enchanted Mesa, which has been written up as a novelty by many modern writers and over which much discussion has occurred. This mesa is a type of extreme isolation and abruptness, the talus being so steep that ascent is extremely difficult to the average climber. This butte was inhabited ages ago, as all similar commanding positions, in all probability, have been, but, according to tradition, the means of descent were washed away by one of the cloudbursts, which made the mesa originally, and so it became uninhabitable.
A typical butte is well shown in the accompanying illustration-a rock pillar at Acoma, New Mexico, photographed by G. Wharton James. Harder than the rest of its surroundings, it has resisted the foods and rains of centuries, and stands, a gigantic monument to the resisting quality of certain portions of the sur face. This pillar is merely a diminutive Enchanted Mesa. It may have been acres in extent at some early age, dwindling away with each successive year, the
pillar being the heart or core of a sometime lofty and isolated mesa.
In the famous fossil forest of the Southwest the fossil trees often form interesting columns which have defied the elements. In Fig. 2 a pillar in this region is seen; not the trunk of a tree, but a column of shale piled layer upon layer which for some reason has resisted the elements and stands alone. Its base is fast disappearing, the talus even in the photograph being seen to be crossed and lined by the torrents which have poured down its sides and which ultimately will carry it entirely away, distributing it over the surface; and finally the column itself, weakened and under-

THE SIMMS WAR-CAR

mined, will topple over and be reduced to its original composition of dust or gravel. Around the base of this pillar are seen the sections of fossil trees which have rolled down the slopes, tellingta remarkable story of some change which has, wilped oupt a great forest and devastated the land. In Mextco, not far from the island of Tiburon, there is a region undergoing a similar change and turning into a desert. The water is giving out; sand covers the land, butinit are found countless mesquite trees protruding here and there, showing that within the century the region has been well forested, as forests"go in Mexico. But the land has been blasted, and the travelei over its burning and desolate areas may observe the actual ctrange of a once fertile country into the typical desert.

An Interenting Discovery.

The German explorers in Babylon have made an unusually nteresting discovery. Inscribed tablets of clay are oommon enough, and examples of them are to be found in the principal museums of Europe. But

SERPOLLET'S RECORD-BREAKING STEAM RACER.

in the excavations at Nischan-el-aswad 400 tablets have been discovered, many of which are of a novel character. Several may be considered as of the bellesIettres class, says the Architect. They were evidently used for teaching, and therefore may be regarded as presenting examples of the Classic literature of Babylon. Some served as a dictionary, and on that account will be interesting to philologists. "There is also a hymn which was chapted during the processions in honor of the god Mardik, whòse temple has been brought to light by the German explorers. In another part of the same district the Temple of Adar or Ninev, the protector of physicians, has been discovered.

Automobile Department

THE NICE RACES.

Among the principal automobile events at Nice were the mile and the kilometer (0.62 mile) dash, the latter for the Henri de Rothschild Cup. These two events were run at the same time, and the automobiles. after starting were chronometered at the kilometer and when required, at the mile points. The kilometer dash has been of especial interest this year owing to the record made by M. Serpollet of the kilometer in $294-5$ seconds, and also of the general high speeds which were reached. M. Serpollet used a racing machine of special form, which willt be observed in the engraving. It is a 12 horse power steam machine of the flash-tube boiler type, somewhat modified as to details. The front is formed of a sheet-iron cone which lessens the air resistance. The inventor considers that at such high speeds it is more essential to diminish the air resistance than toincrease the power of the machine. Most of the racers used the machines which had been prepared for the Nice-Abbazia long-distance run, and it was interesting to see how these behaved on a short speed test. The best time for the mile was made by Osmont on a singlecylinder De Dion motocycle, which covered the distance in $574-5$ seconds. The Mercedes 40 horse power machine built by the Daimler Company carried off the honors of the automobile class and the Darracq 20 horse power for the light automobiles.
The kilometer dash for the Henri de Rothschild Cup included automobiles from 1,430 to ,200 pounds' weight, with two places occupied. The cup, a handsome work of art now on exhibition at the Nice Club, was won in 1901 by M. Serpollet, the time being $354-5$ seconds.

THE SIMMS ARMORED WAR-CAR.

Vickers' Sons \& Maxim, the well-known English armament manufacturers, have built a war-car, the invention of Mr. Frederick R. Simms, an expert who has devoted many years' experiments to this particular subject.
In general appearance the car can be described as a "mobile conning tower." It measures 17 feet in. length, by 6 feet 2 inches in width over all, and has. been designed to carry a maximum weight of 12 tons, though the actual weight to be carried will rarely exceed 6 tons. It consists of a rectangular frame constructed of heavy steel channels of U section. It is built with the intention of combining the maximum strength with the minimum of weight.
The special frame on which the motor, and speed differentiating gears are supported, is mounted on the car frame, and is built of Mannesmann steel tubes, the motor frame being supported to the main frame of the vehicle by suitable brackets and stays. The car is propelled by means of a 16 horse power four-cylinder light hydrocarbon motor of the Daimler type, fitted with the Simms-Bosch magneto-electric ignition and timing gear, with constantlevel fioat-feed carbureter and governor acting on the exhaust valves. The bore of the cylinder is 90 millimeters, the stroke is 130 millimeters, and the compression 60 pounds per square inch. The motor is placed in the center of the car deck.
Petroleum of a specific gravity of 0.680 to 0.700 is the fuel used, but ordinary common kerosene of a specific gravity of 0.860 can also be burned if desired.
The cooling is effected by means of the Cannstatt marine type cooler-a copper tank containing about 5,000 copper tubes, through which air is. induced by means of a fan rotated by the engine. The circulation of the air-cooled water between the cooler and the engine is kept up by means of a rotary gear driven pump. The water capacity of the cooler is four gallons, which is considered to be sufficient for at least 1,000 working hours. The engine runs normally at 750 revolutions per minute, but when the accelerator, with which it is equipped, is brought into action by means of a foot lever the velocity can be increased to 1,000 revolutions or more per minute.
The transmission of power is effected by means of a friction cone direct through a short end of shafting to the speed-changing gear, the female cone being developed as the flywheel of the engine, the male part being movable, and operated by means of a foot lever

