SCIENTIFIC AMERICAN ESTABLISHED 1845

MUNN & CO., - Editors and Proprietors

Published Weekly at

No. 361 Broadway, New York

TERMS TO SUBSCRIBERS

NEW, YORK, SATURDAY, JANUARY 11, 1902.

The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are *sharp*, the articles *short*, and the facts *authentic*, the contributions will receive special attention. Accepted articles will be paid for at regular space rates.

THE ALCOHOL MOTOR AND ITS POSSIBILITIES.

France imports all her petroleum. She also produces more alcohol than her citizens can use. Undoubtedly this state of affairs led patriotic French engineers to begin a series of experiments some two years ago for the praiseworthy purpose of using alcohol as a motive agent instead of foreign petroleum, and of filling the pockets of the impoverished peasant.

These experiments bore little fruit, largely because nothing was known of the behavior of alcohol when used in a motor. Two years ago in the Paris-Chantilly contest only one alcohol carriage succeeded in finishing. Perhaps the bad weather then prevailing had much to do with the failure of the other alcoholdriven vehicles. Nevertheless, the performance of the one successful carriage was so discouraging and the consumption of alcohol so inordinate that it was feared gasoline would never be supplanted. With the Paris-Rouen test the prospects brightened somewhat. Finally the Paris-Roubaix contest won for the alcohol motor a certain prestige which it will probably continue to hold.

Encouraged by these results and prompted by the desire to furnish chauffeurs with much-needed information on the efficiency of alcohol as a motive agent, the French Minister of Agriculture recently instituted a series of tests, the tabulated results of which will be found elsewhere in this issue. For the first time engineers are now supplied with accurate data which give them what they never had before — a trustworthy means of comparing alcohol with petroleum and other motive agents. For this reason alone the Minister of Agriculture's researches should receive their full meed of praise.

Compared with the gasoline motors, it cannot be denied that the alcohol engine seems at first distinctly inferior. When the price of alcohol and the greater consumption of fuel are considered, an automobilist is inclined to cling to his gasoline motor. Moreover, the alcool denaturé has a calculated thermic value of only 5,297 calories per kilogramme; while the calorific value of gasoline in 11,400. In order, therefore, to cheapen the alcohol and to increase its thermic value, rectified benzine is used as an enriching agent. Exactly what the proportions of the mixture of alcohol and benzine should be was no very easy matter to determine. It has now been definitely ascertained that a 50 per cent mixture (called "electrine"), the heat value of which is 7,479 calories per kilogramme, is most serviceable. In the tests referred to the effective utilization of the alcohol was divided by the product of the amount of alcohol consumed per horse power, and multiplied by the percentage of carbonizing liquids contained in the mixture. Consequently, the more alcohol and the less carbonizing liquid a motor consumed, the higher would it stand in the final lists. Many tests have shown that the consumption of 50 per cent carbureted alcohol is about equal to that of gasoline for the same power, despite the pronounced smoothness of unning under variable loads, trustworthiness of ignition, ease of starting, general excellence of construction and simplicity were all considered. For that reason motors which, from the tables, would seem to have consumed a very small amount of alcohol, are nevertheless rated very low; the road tests evidently revealed some defect.

The relative high efficiency of alcohol is attributed to the expansion of the water-vapor contained or produced in the alcohol at the moment of explosion. The expansion imparts elasticity to the motive agent and reduces the shock of the explosion. In order to utilize this excellent property still further, a German manufacturer recommends a mixture containing 20 per cent water, and claims that by its use he has reduced the consumption to 0.375 kilogrammes per horse power hour. In France still better results have been obtained. There the consumption has even been cut down to 0.272 kilogrammes per horse power hour.

As a result of the tests instituted by the Minister of Agriculture inventors will probably seek to improve the alcohol motor. For improvement there is certainly much room. The longer expansion of carbureted alcohol will require a motor longer in stroke and heavier than the gasoline engine. But for automobile use motors cannot be much increased either in volume or in weight. To devise a motor which will permit the most efficient utilization of alcohol without inordinately increasing the weight will be a rather nice problem to solve.

LARGE STATIONARY AND MARINE ENGINE UNITS.

On another page will be found a description of the powerful stationary engines for driving the alternators of the new Manhattan Elevated power house. These engines are the most powerful of their type extant, and greatly exceed the units built for the power house of the Metropolitan Street Railway Company, each of which has a rated horse power of 4,500 and a maximum of 6,000 horse power. The engines of the latter plant are of the vertical, cross-compound type, with cylinders 46 and 86 inches diameter by 60 inches stroke. There are eleven units, and the maximum horse power of the station is therefore 66,000. In the new Kingsbridge station of the Third Avenue Railway Company the engines will have a maximum rated horse power of 6,250, and as there will be sixteen of these the total horse power of the station will be 100,000. The Metropolitan and Kingsbridge engines are practically alike in type, although the former were built by the Allis-Chalmers Company and the latter by the Westinghouse Machine Company.

The magnificent engines of the Manhattan station at 74th Street are of a new type. Each unit is made up of two compound condensing engines, one at each end of a 34-inch shaft, at the center of which is carried a huge 42-foot alternator, of which the 32-foot revolving field weighs 185 tons, the whole alternator weighing 445½ tons.' The engine consists of two high-pressure cylinders of 44 inches diameter and two 88-inch low-pressure cylinders, the common stroke being 60 inches. With 150 pounds' boiler pressure and a speed of 75 revolutions per minute the engine will develop a maximum indicated horse power of 12,500.

These figures afford an interesting comparison with the largest marine engines extant, which are installed on the Hamburg-American steamer "Deutschland." Here the total horse power of 37,500 is developed by twin engines, 18,750 horse power being developed on each shaft. Each engine is therefore 50 per cent more powerful than the engines of the Manhattan plant. There are six cylinders working on four cranks, the two high-pressure cylinders being arranged in tandem above the two low-pressure cylinders. Steam at 225 pounds pressure is led from the boilers to two 36%-inch cylinders, from which it passes to a 73% inch first intermediate, then to a 104-inch second intermediate, and finally to two 108-inch low-pressure cylinders. Forced, hot draft is used at the furnaces, and the consumption of coal for all engines is 1.45 pounds per horse power per hour, or excluding the auxiliaries 1.3 pounds. It should be added that the stroke is 72 inches, and the speed of revolution at

are no strict limitations of space imposed. Economy of weight is not a prime consideration, and hence, compared with the engines of the "Deutschland," it will be found that the Manhattan units are much more liberal in apportionment of weights, and that in valves, condensers and other details there is an apparent clinging to old practice which would be conservatism in marine work, but is not so under the conditions which govern the operation of large stationary power plants. The marine engine is run at high pressure for five or six days consecutively, and is then turned over to a repair gang who have four or five days of uninterrupted work in which to give the engine a thorough overhaul ready for her next five days of running. No such thing is possible at a stationary plant, which must be run steadily day and night under variations of load such as never occur in marine practice.

AUTOMATIC CLOSING OF WATERTIGHT BULKHEADS

Although theoretically there is a large degree of safety secured by the complete subdivision of the interior of modern steamships by means of watertight bulkheads, the too frequent failure of this system to keep vessels afloat after collision would seem to suggest that the advantages are more theoretical than real. As a matter of fact, it will be found on investigation that where a well-divided ship has foundered the fault has been not in the system of subdivision so much as in the many perforations of the watertight bulkhead by doorways and passageways below the water-line. Although such openings are supposed to be guarded by watertight doors, it is evident that the value of the subdivision is finally and absolutely dependent upon the efficient oversight of these doors and the care that is taken to close them in the event of collision. Many naval architects have endeavored to overcome the difficulty by absolutely prohibiting the construction of watertight doors below the waterline; but this arrangement involves great inconvenience, especially in passenger ships, as all communication from compartment to compartment necessitates climbing to the upper deck and descending into the desired section of the ship. The compromise which seems best to meet all the conditions is that which permits of a certain number of watertight doors below the water-line, and the installation of a system by which they can all be automatically and simultaneously closed from a central station in case of collision. One of the most successful systems of this kind is that which has been installed on the "Kronprinz Wilhelm," which is known as the Dörr hydraulic watertight system. The central station is located on the bridge, and in the event of collision the officer first moves over a lever, which sets an electric bell ringing for twenty seconds at every bulkhead door. At the end of that period the lever releases the throttle wheel for starting the hydraulic closing cylinders, on turning which the doors are released and closed. When the door reaches the bottom of its seating it closes an electric circuit, and a corresponding glow-lamp in a plan of the bulkheads in the pilot-house is illuminated. The system appears to be thoroughly satisfactory, and is being applied to every vessel in the company's fieet.

THE FIRST IRON VESSEL IN GREAT BRITAIN. BY ANSLEY IRVINE.

It is interesting to note that it was as early as the year 1809 that Robert Dickenson, the eminent inventor, first suggested to the Admiralty a scheme by which the old wooden ships of the Royal Navy were to be gradually replaced by vessels built of iron, and thus make the English fieet incomparably stronger than any combination that could be brought together by foreign nations.

The proposed innovation was promised due consideration, and, in 1830, twenty-one years afterward, the conclusion arrived at by the Admiralty was that iron vessels would be practically useless in the line of action and totally unmanageable in a storm! Absurd as the assertion now appears, it was, nevertheless, ardently supported by Dr. Lardner, a scientific

difference between the theoretical calorific values of the two.

A critical examination of the tables which we publish on another page will show that in consumption the alcohol motor is more economical for higher than for smaller powers. To be sure, economy increases with the power in all motors. Nevertheless, it is certainly remarkable that a 14 horse power Gobron-Brillié two-cylinder motor, mounted on a 1,224-kilogramme carriage, should consume only 125.07 cubic centimeters of 50 per cent alcohol per ton-kilometer; while a voiturette weighing 490 kilogrammes and driven by a. single-cylinder 6 horse power motor should consume, under the same conditions, 155.4 cubic centimeters per ton-kilometer. Perhaps the most satisfactory figures are those tabulated for cars of 650 to 1,000 kilos and over. In this class the efficiencies seem to have been exceptionally high. In compiling the tables effective normal operation, regularity and 37,500 horse power about 80 per minute.

It will be noticed that there is a wide difference between the marine and stationary engine practice as exemplified in these, the two largest units ever built for their respective classes of work. The marine engine is characterized by high steam pressure, high piston speed, multiple expansion and great compactness, while the stationary engine uses what would be called in these days a low steam pressure, while the piston speed is relatively low, and multiple expansion is only carried to the point of compounding instead of the point of quadruple expansion as in the marine engine. Each type is well fitted for its particular duty, and the difference in practice is explained by the conditions imposed. In the case of the marine engine, space is limited, and it is therefore necessary to get the largest rate of horse power per unit of weight of engine. On the other hand, in the case of the stationary engine there authority, who said the idea was perfectly chimerical and that there was about as much chance of an iron boat reaching New York as there was of its voyage to the moon.

A fierce storm of invective and derision was waged against all who had the temerity to hold an opinion contrary to that of the Admiralty and its "scientific" supporters. But Thomas Wilson, a young Scotch boatbuilder, ignored the bigoted opposition, and, in 1816, commenced to build a boat of iron at Fasken. Scotland. She was named the "Vulcan." Her dimensions were 60 feet in length, 12 feet in breadth, and 5 feet in depth. All the plates, rivets, and angleirons were made over the anvil by Wilson and his blacksmith. The plates were fixed perpendicularly or boiler-fashion, not horizontally as in modern iron ships. The boat was specially constructed for the passenger service on the Monkland Canal, and plied between Port Dundas and Loch No. 16. JANUARY 11, 1902.

When the "Vulcan" was being built, Wilson was severely ridiculed by the craftsmen on the canalwhich ran close to his yard-who, when passing, would drop small pieces of iron into the water and sarcastically inquire if he expected his boat to "soum." And as soon as it became known in the neighborhood that an iron boat was being built, the villagers came down to the yard and gazed openmouthed at the phenomenon. In a short time deputations of the skeptically inclined began to intercept the builder on his way home and endeavor to point out the foolishness of the undertaking. When the "Vulcan" was nearing completion, Wilson was one morning surprised to find them coming down to the water's edge with pots and pans to try their buoyancy and once and for all convince themselves that iron would float.

After the boat was launched she proved so great a success that the representatives of the Forth and Clyde Company commissioned Wilson to build several other similar barges for their cargo and passenger traffic.

The "Vulcan," passing ultimately into other owners' hands, was broken up after being in use over sixty years. It is said she could have continued to do good service for many more years, so remarkably sound had she been built, but she was considered obsolete for trading purposes, having been superseded by more modern boats. Shortly after the "Vulcan" was launched Wilson accepted a post in the Forth and Clyde Canal Company, and for fifty years served them in the capacity of chief engineer, retiring on a handsome pension, which he lived to enjoy for many years. He died at his residence, Zetland Place, Grangemouth, on November 1, 1873, at the advanced age of 92.

CLARENCE KING. BY MARCUS BENJAMIN, PH.D.

Clarence King was born in Newport, R. I., January 6, 1842. His boyhood was passed in Newport, and as he grew older the long summer vacations were spent in camping out with youthful associates among the Green Mountains, where he led an open-air life of hunting and fishing, and at the same time absorbed a knowledge of natural history and botany.

His early fondness for natural history seems to have marked a decided predilection for scientific studies, and accordingly he entered the Sheffield Scientific School of Yale University, where he was graduated in 1862.

A year later, with James T. Gardiner, a college associate, he crossed the continent, traveling on horseback from the Missouri River to California, making careful geological observations during the journey. On reaching the Pacific slope he met Josiah D. Whitney, the eminent geologist, who was then conducting a survey of California; and accepting an appointment with that work, he continued with the survey until 1866. Of special interest were his paleontological studies, which furnished evidences on which rest the determination of the age of the gold-bearing rocks. It was at this time that he discovered and named Mount Whitney and Mount Tyndall, and on climbing these peaks found them to be the highest group discovered in California.

He returned to the East in the autumn of 1866, and then originated an elaborate plan for the complete geological section of the western Cordillera system at its widest expansion of the fortieth parallel. The Chief of Engineers and Secretary of War sanctioned the plan, and the necessary legislation in Congress was secured by the personal labors of Mr. King, who, early in 1867, was appointed to the charge of the survey.

Accompanied by a large and able staff of his own selection, and wholly civilian, he took the field in 1867, and for five years prosecuted the work in accordance with the original plans and instructions. It is impossible to describe the work which he did in any detail, but it has been admirably summarized as "a signal contribution to the material of science, establishing standards and methods of the highest order for

Scientific American

but little doubt that, if the swindle had remained unexposed for a short while longer, there would have been a rush to the supposed sources of wealth like that which followed the discovery of gold in California. The precise locality was kept secret for some months. and the impression prevailed that the diamond fields were in Arizona. The discovery that they were within the official limits of the Fortieth Parallel Survey was fortunately made by one of Mr. King's staff, and he immediately set out for the designated locality. The swindle had been skillfully prepared, even to the choice of a locality geologically favorable, and the "salting" had been so cunningly and artfully done that it had already deceived honest experts of much experience; but on the second day after his arrival Mr. King's suspicions were aroused, and he at once began a series of careful observations from which it clearly appeared that the gems were found in positions where nature alone could never have placed them, and were not to be found in places where, had the occurrence been genuine, the inevitable laws of nature must have carried them; that near every anthill found to contain gems might still be seen the storm-worn footprints of mankind, while anthills free from human tracks were also void of precious stones; and, finally and unquestionably, that some designing hand had "salted" the fields with deliberate and fraudulent intent. The public announcement of this result was followed by the immediate bursting of the bubble: but had this been delayed only a little while, it is certain that great disappointment, distress, and loss of money would have been suffered by many victims of the fraud.

In 1878 the various known surveys then in the field,

THE LATE CLARENCE KING.

organized under different departments of the government, were consolidated into the United States Geological Survey under the direction of the Secretary of the Interior, and the Directorship was offered to Mr. King by President Hayes. He accepted the office with the distinct understanding that he should remain only long enough to appoint its staff, organize its work, and guide its force into full activity, and, accordingly, in 1881, he withdrew from active work in order to devote himself to special geological investigations.

During the course of his labors on the geology of the western part of the United States, conclusions that the problem of the action of the forces that built the mountains of the continents had not been studied with sufficient closeness forced themselves upon him. He therefore undertook a series of laboratory experiments to determine the action of the primal constituents of the early globe under conditions of heat and pressure assumed to exist when the material of the earth was separated from the sun. The chemical and physical work required by these experiments was very expensive, and had not been completed at the time of Mr. King's death. Mr. King was a member of many scientific societies both in this country and abroad, and in 1876 was chosen a member of the National Academy of Sciences. He was a contributor to magazines and reviews and was the author of "Mountaineering in the Sierra Nevada" (Boston, 1871), an admirable book of travel which describes his life as an explorer in the unknown heights of the greatest of our American ranges. In recent years his health steadily failed, especially since the early winter of 1893, when he was for a time a sufferer from a mental difficulty, and during the cold months of the present winter he sought relief for pulmonary troubles in the dry climate of Arizona.

He was in Phœnix when the end came, and died there on December 24.

SCIENCE NOTES.

Mr. F. Bowden, president of the Cycle and Motor Trades Association, England, states that the cycle trade gives employment to over 100,000 people in that country, and is the means of distributing an enormous sum per week in wages. The average profit per bicycle made by the manufacturing companies during 1900 amounted to only \$2.16.

Acetylene gas lamps are being introduced into the omnibuses of London, in place of the disagreeable oil lamps which have hitherto been used. By this means the interior of the vehicle will be illumined by a bright white light. Contracts for 2,000 acetylene gas lamps for this purpose have been placed with the Phôs Company by the various omnibus companies, and the work of installing them upon the vehicles is proceeding rapidly.

The most ambitious attempt to navigate the air ever made, in the matter of expense certainly, is that of Count Zeppelin's dirigible balloon, familiar to our readers by illustrated articles. It is asserted in foreign exchanges that the shed at Lake Constance which contained it has been demolished and all employés dismissed; no more money being forthcoming to prosecute experiments, the air vessel itself will probably be broken up.

Statistics carefully compiled show that 9,000 persons went to Nome this season, and that 10,200 have returned or are returning, leaving about 4,000 in the district for the winter. There were 80 vessels, steam and sail, engaged in the Nome traffic, carrying from Seattle 55,000 tons of general freight. The estimated receipts for the transportation of freight and passengers are \$1,874,000, and the value of the freight shipped from Seattle \$5,500,000. About \$4,500,000 gold has been shipped from Nome this season.

The French Minister of Public Works has issued a decree prohibiting the railroad systems of France from working their men more than twelve hours out of twenty-four. Signalmen, switch tenders, trackmen and watchmen at duty on grade crossings must have an uninterrupted break for at least eight or nine hours. One hour is to be allowed in the middle of the day for meals, and each is to have one day or two half-days a month free, and employés are forbidden to work more than two months consecutively without taking at least one day's vacation. The railroad companies have ninety days in which to arrange for the practical working of the new decree.

In striking contrast with the financial failure of the recent Buffalo Exhibition, is the unqualified success that has attended the International Exhibition at Glasgow, Scotland. During the seven months it was open 11,496;220 people passed through the gatesdouble the number that attended the exhibition of 1888. The last day, was the most successful, the attendance numbering 173,266. The total receipts of the former exhibition were \$566,330, and a surplus of some \$200,000 resulted. The total receipts from the recent exhibition amount to approximately \$850,000, and it is anticipated that the profits will amount to \$400,000. Over 100,000 season tickets alone were disposed of. The only expressed dissatisfaction of a serious character was the absence of side shows-entertainments of the lighter character. As a digest of the industrial world, and particularly of Scotland, the exhibition has been generally regarded, if not the largest, as the most varied and representative exposition of the kind ever held.

Although Würtemburg is only a small state of little more than 2,000,000 inhabitants, and a revenue of less than \$20,000,000, it possesses one of the best controlled and thoroughly efficient systems of scientific education in the world. At Tübingen there is a State University, which has long been formed. Not only does it give the highest education, but does so cheaply. Below the university are a technical high school and a Royal building trades school, both at Stuttgart. At Rentlingen is a textile technical school; at Schwenning gen a school of mechanical industries. In other centers are three weaving schools, two weaving workshops, and a knitting school. In addition to these provisions there are 231 towns and villages provided with industrial improvement schools, the subjects being adapted to local exigencies. To spread the influence of this teaching, industrial courses of lectures and demonstrations are given wherever required in such subjects as bootmaking, metal-making, joinery, painting, braziers' work, etc. Women are not neglected. Eighteen improvement schools are provided, as well as a commercial college at Stuttgart, and two commercial improvement schools. All these institutions are replete with the most modern apparatus, etc., to insure sound teaching. The system is so excellent that foreign students are seeking to avail themselves of its advantages to such a considerable extent, that the authorities have had to impose special heavier conditions for foreigners.

the Geological Survey of the United States which followed in natural sequence."

Meanwhile an occurrence of unusual interest happened in which, fortunately, he took part. Early in 1872 much attention was called in this country and in Europe to the alleged discovery, somewhere in the far West, of new diamond fields of unparalleled richness. Large quantities of precious stones had been brought thence and judged by experts to have great value. Reports which received the confidence of capitalists were made in New York and San Francisco, setting forth the great importance of the new find, and resulted in the formation of several companies to exploit the field. As it afterward appeared, many thousands of dollars' worth of rough diamonds, rubies, emeralds, and other gems had been purchased in London, brought to the chosen locality and sown with a free hand on the ground or carefully stuck into anthills. Much excitement prevailed, and there can be