4nctuky
Hints to correspondents.

$\xrightarrow{\substack{\text { inerals } \\ \text { marked } \\ \text { ment } \\ \text { or flar expelea. }}}$
(8314) R. V. asks: 1. If you know the voltage and amperage of a battery how do you
find the watt output? A. Multiply the volts by the amperes. 2. Are the field and armature of a motar common or magnet wire? Could
magnet wire be used? and secondarles of an induction coll be com-
mon or magnet wire mon or magnet wire? Could magnet wire be
used? A. Magnet wire is used. Magnet wire Used A. Magnet wire is used. Magnet wire
is simply ordinary copper wire covered with
one or two one or two layers of cotton thread so what
the wire of one turn or layer shall not thuch the wire of the adjacent turns or layers. In other words, magnet wire is Insulated wire;
common wire is uninsulated. Insulated wire common wire is uninsulated. Insulated wire
is used so that the electricty must go through the whole length of the coll round and round,
and not pass across to the other end of the coll directly.
(8315) G. H. DeL.: I wish to kill a number of pole-cats by means of electricity,
without damaging the fur. without damaging the fur. I have a 1,000 watt alternating current dynamo with 8-pole field
and 8-pole armature, but do not have any idea of its practical value for this purpose. The finished off with strips of zinc 4 inches wide and about $1 / 2$ inch apart, belng properly in-
sulated from each other, each alternating sulated from each other, each alternating
strip being connected for positive and negative poles. If this dynamo could be re-wound to do the work effectively, what would be your
idea as to field and armature winding, also speed required, and what would be the minimum current required to produce the desired voltage is. requred to krill a skunk. The dy-
namo may be all right for thls work as it is. namo may be all right for this work as it is.
We think the zincs should be wet with an alkall We think the zincs should be wet with an alisall
solution, caustic soda or potash, before the solution, caustic soda or potash, before the
animals are driven upon them. This will insure god contact between their feet and the
zincs. Then turn the current on by a switch and observe the result. We have no idea whatand observe the result. We have
ever as to the current required.
(8316) E. D. S. writes: In your issue of July 6, on page 12, "Notes and Querles,"
No. 8250, w. M. R. says he put a slotted core No. 8250, W. M. R. says he put a slotted core
armature in the -light dynamo, and succeeded In gettlng 50 volts at a speed of 1,660 per minute as against 2,200 for the armature as
usually constructed. To an amateur like myself it is interesting to note the difference in
speed due to the improved magnetic circult, speed due to the improved magnetic circult,
spen thinking there may be others interested in
and thls dynamo I would describe a change I made in the magnets of thls machine wilt very good
results. The armature was made exactly to results. The armature was made exactly to
size, and the iron wire core was used. The field was the Inverted horseshoe type with cirameter, with quite stout pole-pleces and yoke, and, of soft cast iron. The fields were shunt wound and took $\%$ of an ampere at 55 volts.
The machine ran cool and sparkless at full load, and wlth volts at 55 our speed was 1,250 per minute, or nearly 1,000 slower than the
speed for the other magnets. A. The change in the machine described byine from the orig. inal machine. His circular core 4 inches in diameter contains over 12.5 square inches of iron, whlle the core in the original design con-
talined about 8 inches of iron. Of course the tained about 8 inches of iron. Of course the
voltage is greatly raised by the change, or, in other words, the original voltage can be produced by about two-thirds the speed. If he
ran his machine up to full speed he would have ran his machine up to full
(8317) C. J. M. asks: 1. Can you tell me where a spring motor can be got, one that
would run a fan? A. Correspond with any of our advertisers who supply fans and motors. ber? I mean the soft pliable sheet rubber like that used for patching bicycle tires. A. Rubber overshoes were first made of the pure gum. This was fifty or more years ago, before the art of vulcanizing the rubber was invented by
Goodyear. They have been made within a few Goodyear. They have been made within a few
years again, but the public did not want them and they were not a success. They bind the are not durable. The kind ordinarily used are much better in every way. 3. What causes the green stuff that forms in a creek or any or stone or anything water runs on, and what
roof where condensed steam runs down. A. of plants, which grow from other plants just as higher plants do; only the method of their higher plants. The germ of the plant must have been taken to the roof by the wind or in
some other manner and there have grown in the warm water condensed from the steam.
(8318) W. J. B. asks: Suppose a hole tion. Elime earth and its center of gravitato the passage hole, the only force acting being that of gravi tation, will the ball pass beyond the center of gravitation? In what manner will it come an increasing velocity till it reaches the center of the earth. At that point it will have its reatest velocity and momentum. It cannot stop there. It will pass beyond the center of the earth as far as it has fallen to reach it; that is, it will go through the earth to
the other side and then fall back to its place of starting. This it will continue to do for ever under the conditions imposed. The moof a no different from that of the peravity alone as readily as any other falling body. A pendulum is a falling body, exactly like the supposed ball dropped into the earth. It falls it as it has fallen; just like the ball dropped into the earth. The mechanism of the clock is simply designed to restore to the pendulum cause of the friction of the air and other rictions in its motion. These the freely falling ball is by the conditions of the question, freed from. Hence it will move forever with-
(8319) H. G. M. asks: 1. Would like
to know a simple method of securing copper plates to carbon (solid), e. g. A. Electroplate the carbons with copper, and then solder the
copper plates to the electroplating. A firm copper plates to the electroplating. A firm
connection will be made. 2. How are copper connection will be made. 2. How are copper
connections secured to carbon brushes? A connections secured to carbon brushes? A
The carbon brushes are covered with copper by electroplating and the contact is made by set screw pressing a plate of copper against the carbon brush. 3. Can this be done by any satisfactorily.
(8320) J. W. A. proposes these prob lems: 1. A contracts to furnish B electric motive power 11 hours per day, 26 days per
month, at $\$ 2$ per month per horse power, to be measured by a Thompson recording meter, sold by General Electric Company, giving
readings on five dials in watt-hours readings on ive dials in watt-hours. (The meter readings to be multiplied by a constan
4.)
B motor. Kindly take an imaginary reading and show the method of ascertaining the number of horse power to be charged for at end of first month. A. Eleven hours per day for 26 days are 286 hours. One horse power hour is 746 watt-hours, since 746 watts are 1 elec the watt-po in watt-hours to herse the watt-meter in watt-hours to horse power
per month: Multiply the meter reading by the constant 4 and divide by 746. The quotient is horse power hours. Divide this quotient by
286 and you have the horse power per month 2. Please say which price is more advan tageous to A (the seller of power), $\$ 2$ per
month per horse power or 2 cents per 1,000 month per horse power or 2 cents per 1,000
watts. A. Two cents per 1,000 watts is a higher price than $\$ 2$ per month per horse days.
(8321) F. K. S. asks: 1 . On the use of storage cells what is meant by sulphating, Sulphating is the formation of sulphate A lead by the action of sulphuric acid upon the lead of the plates. This wastes the active material. Buckling is the bending of the plates by the charging and discharging, and different a different amount of space in its different
forms as oxide or peroxide of lead. The buckling sometimes bends the plates to such an extent that the positive and negative plates touch each other and produce a short circuit through which the electric current can pass
without going through the external line. You without going through the external line. You as Salomon's Accumulators, price $\$ 1.50$ by mail. 2 . Is it iecessary to use a voltmeter,
ammeter and polarity indicator? A. Yes, to observe the condition of the battery the cells are fully charged. 3. Is it advisable with regard to the running expenses to use
them? A. Yes, if you have a good and chea current for recharging. 4. About what would be the cost of charging a 15 ampere hour bat
tery of 6 cells? A. That depends answer to the last question. 5. Which make would you advise me to get. Can you tell me anything of a volt ammeter? A. There is no advertising done in this column. There are their goods. The firm you mention deals most ly with schools and this class of trade requires immediately after charging, and to charge immediately after discharging, and can they while, or are they to be used on a closed cir cuit untll discharged. A. No. They can ing takes place when standing.
(8322) H. C. S. asks: 1. Wishing to construct an experimental wireless telegraph
outfit, if possible, I would like to know what is the shortest length of spark that could be used to illustrate the principle, having you instruments the length of an ordinary room apart? Also if you have published a Supple MENT or can recommend a book containing a description of such an instrument? A. A coll
giving quarter-inch spark will send a message much farther than the length of a room. scribed in Supplement No. 160 , price ten cents. There is no description of the apparatus for wireless telegraphy which gives dimensions and drawings to scale so that one could make It from the plans. Of course, there are reasons for this. These inventions are new and those who have developed the instruments have patented them and are not anxlous to have
others work in the same line. We have published descriptions of coherers and colls, of the various parts, from time to time, s that one who had mechanical skill could make these parts from the descriptions and pictures can send pou SUPPLEMENTS Nos. 1318, 1319 1320, price ten cents each. These contain a series of articles on "Electric Waves," in
which a good description of a coherer is given, as well as many hints for making the various parts of an outfit. Fahle's "History of Wire 2. Have you a SUPPLEMENT or do you know of
a book showing the construction of a liquid air machine for amateurs? A. Sloane's "Liquid Air," price $\$ 2.50$. We must say that
the making of a liquid air apparatus is hardly the making of a liquid air apparatus is hardly
a task for an amateur. 3. Name books o SUPPLEMENTS for constructing a voltmeter from 0 to 120 and an ammeter from 0 to 15 . A. Supplement No. 1215, price ten cents, con tains exactly what you request.
(8323) W. E. S. asks: 1. Will a dy namo furnish the same spark for igniting gasolene engine when the circuit is broken as
the batteries will? A. Yes. 2. Can a dynamo be used in starting the engine without batteries? No, unless you have other power for runnin the dynamo than that of the gas engine. 3 Can a dynamo be used for igniting the engin for igniting a charge in a gas engine is usually a small machine built for this special work It is not adapted for lighting purposes. Cur rent from a lighting plant cou
ignite the gas for a gas engine.

NEW BOOKS, ETC.
Laboratory Instructions in General Chemistry. Arranged by Ernest A
Congdon, Ph. D., F. C. S. Philadel phia: P. Blakiston's Son \& Co. 1901.
The present work is intended to lllustrate a course of study in general chemistry. Much
of the material is original, having been devel oped in the course of ten years' experience in from other sources whave been modified and added to so that they might better meet the wants of students. The book is interleaved.
Les Industries Céramiques. E. S. Auscher et Ch. Quillard. Encyclopedie
Industrielle. Paris: J. B. Bailliere \& Fils. 1901. 16mo. Pp. 280. Price \$1.25.
The authors have produced a book which de
serves to take its place in the literature of ceramic industries. They have given formulas have reduced the number of these formulas as far as possible in order of that the formulas as not become too complex. The lllustrations in the book, although not very excellent examples of engraving, are nevertheless clear
the purpose of the technical reader
Das Gasglü̈llicht. Die Fabrikation der Gliuhneke ("Striimpfe"). Von Prof Dr. I. Castellani, Autroisirte Ueber
setzung und Bearbeitung von Dr. M L. Baczewski. Wien: A. Hartleben's Verlag. 1901. Pp. 121.
It has been the author's purpose to give a of the well-known incandescent gas light mantles. He has, therefore, carefully and making the mantles, the properties of the materials which enter into that process and the source of supply whence these materials
can be obtained. The work is the result of the author's long experience in the making of mantles.

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending

August 6, 1901,
AND EACH BEARINGTHAT DATE. [Soe note at end of list about copies of these patents.]
 679,907
680,091
679,945
680,028
680,191
680,114

 (ewiz cuex

ana

 ${ }^{2,0234}$

ふidici$\begin{array}{r}679,751 \\ \begin{array}{c}67971 \\ 67,762\end{array} \\ \hline\end{array}$679,772
679,84

 $+$

68,034
688, 680
685

 680,174

680,040
67,786
679,818
679,875

aiz2as

play b
Door check, c. H . 0

Dye Laska....g same, bue red........
Dye house conveyer, .i. Knott.........
(Continued on pave 110)
Continued on pave 1

殹en in in…

ana

Ban
Ban
Ban
Bar

