Business and Persomal Wants.

Marine Iron Works. Chicago. Catalogue free.

Torbinss.-Lefere \& co. springtele, otio. U. © A. A. ninuqiry No. 1469.-For manufacturers of alumi
 water wheels. alcoot \& Co., Mt. Holly,N. J.

 For bridge erecting engines. J. S. Mundy, Newark, N. J.
 Chicaiko.
Inquiry \%o. 14 P4.- For machinery for making
oval wood dishes or vuiter crates. "Perfect
Ottawa, III ."
Inquiry No. 147.5.-Forcoin-mailing cards. Machine chain of all kinds. A. H. Bliss \& Co. North
Attleboro, Mass. Inquiry No. 1476.-For process of re-surfacing
postal cards. Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St.,
Chagrin Falls,
 Sawmill machinery and outftis manu
LaneMfg. Co.. Box 13, Montpelier, Vt. Inquiry No. 1478.-For manufacturers of brass
aud auminium castings for small model enfines. For Sheet Brass Stamping and small Castings, write
Badger Brass Mfg. Co., Kenosha, Wis. Inquiry No. 14.9.-For machinery for making
common cob pipes. Rigs that Run. Hydrocarbon system. Write St.
Louis Motor Carriage Co., St. Louis, Mo. Inquiry No. 1480.-For manufacturers of iron
and wire fencing. Ten days' trial given on Daus' Tip Top Duplicator.
Felix Daus Duplicator Co., 5 Hanover St., N. Y. city.

For Machine Tools of every description and for Ex-
perimental work call upon Garvin's, 144 Varick, cor. Spring Streets, N. Y.
Inquiry No. $1483 .-$ For manufacturers of brush-
making machinery. For SALE.-W Woodworking plant suitable for all
kinds of wood work for less than cost of machining
w. w. S. Holland, Pasadena, Cal. Inquiry No. 1484.- For manufacturers or dealers
in gum copal.
Designers and Designers and builders of automatic and special
machines of all kinds. Inventions perfected. T'he W.
A. Wilson Machine Company, Rochester, N. $\mathbf{~}$. Inquiry No. 1485 .-For machines for making but-
tons for the furniture trade. The celebrated "Hornsby-Akroyd" Patent Safety Oil
Engine is built by the De La Vergne Refrigerating Ma.

 Wanteb.-Men with moderate capitial to take exclu-
sive akency for sale of aluminium anas tips and kas novalities. Sample et sent on receipt of 25 cents in
stams. Gas stamps. Gas Tilp and Self-lighter Co., 298 Broadwas,
New York.
 and other foors for sor sale by Munn $\&$ Co., 661 Broad $\mathbf{m a y}$,
New York. Free on application.

"Inquiry No. N490- For the manufacturers "Automatic Banjos" With the siot attachment.

Catalogues and best export prices wanted from manu-
facturers of ofice, theater, bank and church furniture.
Have laree contracts on hand to supply a above, and prefer American manufactures. Please send by rexistered mail. F. K. Kurta, odessa, hussia.
 WANTEB-First-class man as superintendent of fac--
tiry mploynnan sonad. One thoroughty familiar with
ill lines of work entering into the construction of such

Inguiry No. 1495.-For address of parties making
rotary irushes.

hints to correspondents. Names and Addross must accompany all letters or
no attention wil
ve paid thereto. This
This
 Ref
 his turn.
Buyers wishing to purchase any article not adver-
tised in our columne will be furnished with
addresses of houses manufacturing or carrying

(8386) S. C. M. writes: In attempt ing to make the electric motor described in
"Experimental Science," ${ }_{I}$ ran up against Experimental science," I ran up against a
difficulty in that part described on page 501 where it tells you to space oft the armature core into twelve equal divisions, etc. Now, if
you use in each coil 8 convolutions of No. 18 you use in each coil 8 convolutions of No. 18
cotton-covered copper wire, each coil will be $1 / 2$ inch in width. Now I inclose diagram
showing that if the coils touch each other on the inner circle of the armature you can-
not get but 9 colls on the armature, the remaining space being not quite large enough for the tenth one. As the book is copyrighted
by you I thought I would refer the matter to you and ask for explanation of the difficulty.
The motor which you are building from plans
in "Experimental Science") was built exactly in "Experimental Science" was built exactly
as described before the book was printed, as was all the apparatus described in the book.
And the number of coils were put upon the And the number of coils were put upon the
armature which the book calls for. You should wind $191 / 2$ turns of No. 18 cotton
covered wire to the inch instead of 16 , as you state. The difficulty is that you
wound the coils with sufficient skill
(8387) H. S. asks: 1. Will you kindly explain in Notes and Queries how the dynamo of wound with No. 20 wire, which, according
to the rule of 520 square mils per ampere, would carry a little in excess of 3 amperes
only? A. S. P. Thompson, in "Dynamo-Elec tric Machinery, says: "Modern practice al lows rom 2,000 to 3,000 amperes per square
inch, in conductors of ring armatures, and even up to 4,000 amperes per square inch in
those of drum armatures coils , only about 2,000 amperes per square
inch." This will increase your 3 amperes to inch." This will increase your 3 amperes to or 10 amperes in all. 2. In following Sloane's
rules for designing armatures for a machine rules for designing armatures for a machine
to charge a 10 -volt storage battery I get an induction of 1 volt per 8 feet 4 inches with a core 3 inches by 4 inches. This is so
low as compared with Hering's assumption of 1-1.4 voits per foot, both of these cond1
tions being with a field (assumed) of 20,000 lines per square inch. Is is explainable simply
by the difference of size of machines? Different types of machines have different lengths per volt. We have seen one well-
bnown machine given at 12 feet 4 inches, and another at 1 foot 7 inches per volt. 3 . 1
have a motor built for use for centrifuga have a motor built for use for centrifuga
sedimentation work, fied wound with No. 13, armature with No. 16. This machine on 10 crease the speed to 2,000 . Can I do so by
cols winding the armature with coarser wire? As
it is now at $1,400 \mathrm{t}$. per m . it consumes about 2 amperes. A. Try the motor with
more pressure. It may speed more pressure. It may speed up without
over-heating. Try it with a resistance in shunt across the poles so as to increase the
current, which it will take at the same pres. the speed up to what you wish you will have to rewind with coarser wire.
(8388) U. S. W. asks: 1. Will the motor illustrated under Fig. 485 in "Experi-
mental Science" and run by a plunge battery mental Science" and run by a plunge battery
such as Fig. 394 be capable of furnishing power for an automobile on a small scale that will carry a person weighing not more
than 125 pounds? A. No. Motor cycles are provided with motors wo. Moth from 2 to to 4 horse
power. This gives power for ascending a power. $\begin{aligned} & \text { This } \\ & \text { steep } \\ & \text { gives }\end{aligned}$ power for ascending a
2. What determines a man power, and how is it measured? A. A man
power is not a definite quantity as a horse power is not a definte quantity as a horse
power is. It is variously estimated at from $1-10$ th to $1-7$ th of a horse power. The rate at which a man lifts his weight up a flight of
stairs power. A man lifting weights or shoveling
will furnish another mode
(8389) R. W. S. asks: 1. What is the Voltage of a Ruhmkorff induction coil giving force a spark $1 /$ inch long through air varies
with the form of the terminal. A longer spark can be thrown between points than between balls. From 16,000 to 18,000 volts may be
given as a probable mean value of voltage given as a probable mean value of voltage
for $3 / 2$-inch spark. 2 . What is the proper number of cells for such a coll to produce a
spark
arranged? A. Two or three bichromate cells
will work such a coil. They should be ar ranged in series. A proportionately larger number of cells of another sort, according to the voltage of the cells, is required.
(8390) J. A. R. writes: I have a 16 light 110-volt shunt-wound dynamo that ran or two months, giving good service. I started it up one night after standing idle for two or
three weeks. After running for ten minutes carrying 8 amperes at 110 volts and the lamps at apparently full candle power, the voltage ommenced to fall gradually until it reache zero, since which time the machine has been
as dead as the traditional "door nail." Re sorting to short-circuiting or "tickling" fails to energize. Exploring the field with a compass shows absolutely no polarity, the north
pole of the needle being feebly attracted alike to both poles of the machine. With an 8-
light machine (your Supplement No. 600) s an "exciter" I can raise the lamps to about 1/2 candle power, but it will not excite its friend who built the 8 -light machine and who has also rebuilt an Edison 3-kilowatt machine that had been destroyed in a fire, both of which have been doing good work for several years, I have been trying to solve the prob
lem, but have failed. Can you suggest a rem edy through your "Answers to Correspondents" column? A. Your machine behaves as if ther were a break in the field circuit ; but there are many other causes of failure to generate
They are fully stated, with the remedy, in Crocker and Wheeler's "Dynamo Tender" Hand-Book," price $\$ 1$ by mail.
(8391) C. H. L. asks: 1. I am mak ng a small electric motor to run with battery
Armature is of drum type, having 12 segments and is 2 inches diameter and $21 / 2$ inches long Fields are bi-polar, and "end on" toward armature. What size and how much wire must I use on each to make the motor safe to con-
nect to an ordinary 110 -volt light socket? I nect to an ordinary 110 -volt light socket? I ture. A. You cannot wind a motor to run with a battery and also connect with the 110 for one use only. 2. How shall I charge bichromate battery having a 1 -gallon cell carbon cylinder and porous cup? How much current will such a battery give, and for how long? A. The cell will have 1.8 volts pres
ure when freshly charged. The number of ure when freshly charged. The number of
mperes it will give depends upon the resist amperes it will give depends upon the resist-
ance of the external circuit. It will give about six hours of rather heavy use. Our
Supplement No. 792, price ten cents, gives all particulars for this battery.
(8392) A. S. C. asks: 1. Would likt to know whether there is any formula for de termining the proportion of the total number of lines of force found within a given distance bar electromagnets; and if there is such for mula, where it can be found. A. These fre matters of importance in designing dynamos and motors and are treated in books upon that subject. Among the best is Thompson's "DyAmerican Supplement, $\$ 7$. 2. Would also like to know what primary current, volts and amperes is generally calculated to be used to proauce a 1 -inch spark from coil? A. To throw
a spark through the air one inch requires rom 28,000 to 30,000 volts. The amperes are nappreciable, or at least a fraction of one
ampere. 3. Also, what size wire and how much and what current will make the strongest electromagnet with a core of annealed iron stovepipe wire, 1 inch in diameter and eight
inches long? A. Wind eight layers of No. inches long? A. Wind eight layers of No. 12
B. \& S . cotton-covered copper magnet wire upon the core. Shellac each layer well. Eight it to its full power. For battery and its con to its full power. For battery and its con nts.
(8393) J. B. J. asks: I have a fan motor which I wish to run on 10 or 12 salammoniac cells. The motor is $1 / 8 \mathrm{H} . \mathrm{P}$.; it is
designed to run on 110 volts, 1 ampere, 2,000 R. P. M. It is of the shunt-wound Riker type. I wish to know if the windings should be
changed. The field coils are of No. 38 wire, and the armature coils (24 in number) are of
No. 34 or No. 36 wire. A. The motor will equire to be rewound to run with a battery You would better refer to the builders as to
(8394) A. W. asks: How can I tell when Babbitt metal is hot enough to pour,
when it is heated, to pour small boxes, also when it is heated, to pour small boxes, also
large boxes? A. Babbitt metal should be poured just when it is perfectly fluid, which tirring with a stick. It should not be red hot, as then it shrinks and is liable to make blowholes. If it is to be poured on a wooden nal, it phace of an iron or steel core or jour freely. The different grades of Babbitt metal do not melt at the same temperature, so that
a little experience is required in using the different grades.
(8395) J. W. S. writes: Some four years ago I conceived the idea of restoring the
vacuum to Crookes tubes without repumping Knowing at the time that heat applied, especially at the cathode terminal, would facilitate the discharge of the current through the would not further seduce the vacuum, and
erhaps permanently reduce it. I took my and placed them in a hot oven, mounting them on wooden supports. I left them in the
oven for 15 or 20 minutes, and found on reoven for 15 or 20 minutes, and found on removing them that the vacuum was so very
much reduced that it took several hours' conmuch reduced that it took several hours con
tinuous running to render them effective Since then I have used this method continuously. I have taken tubes that have been so low that it required urought the to bring them back to effective work. Care must be used in placing the tubes in the oven; also in removing them.
(8396) G. S. writes: 1. I have a few questions here which I wish you would answer 1901. A. Your letter was received September

1. 3. The issue for September 7 was in print at that time, else you could not receive your number on its date. An answer to an inquiry should not be expected under two or thre
weeks. 2. Have you a Supplement telling how to make how to make a simple-construction yet effec
tive 110-volt dynamo, with illustrations of the work, and telling how to wind the magnets and the armature? A. Supplement No. 865 gives plans for a 110 -volt dynamo ; price ten cents. 3. Can you run incandescent lamps on the same circuit with an electric furnace. A. Yes. 4. How many volts does it take to run an electric stove? A. One can be operated upon
a current with any number of volts. 5. If a current with any number of volts. 5 . If
a dynamo gives 6 volts running it steady, how many amperes and ohms would it have. A. No one can tell. The amperes must be meas ured by an ampere meter. 6. Please name and explain the different ways in which dynamos are wound? A. Series, shunt and
compound wound. In the first the entire compound wound. In the first the entire current passes through the field coils on its way to the external circuit. In the second the current is divided, a small part going to external circuit. The third is a combination of the other two. 7. How many volts doe it take to run a 1 horse power motor? A. is measured by volts multiplied by Power which are watts volts multiplied by amperes, power. 8. Could you run an automobile at motor? motor? A. No. 9. How many volts does it take to make a watt? A. A watt is on
ampere flowing at a pressure of one volt.
(8397) E. P. H. asks: 1. Can a steel electromagnet be made as strong, or stronger
than a soft iron electromagnet of equal size than a soft iron electromagnet of equal size, current the same? A. The soft wrought-iro of whi be the stronger. 2 . What per cen of magnetism can a steel electromagnet be
made to retain? A. The same amount which the same steel would retain as a permanen magnet. 'The strength of a permanent magne varies greatiy with different sorts 3. Could a permanent field dynamo be mad more effective by putting a coil on fields
A. Yes 4 . If a solid steel ring be mag A. Yes. 4. If a solid steel ring be mag
netized by placing a coil continuously around netized by placing a coil continuously around
it, would any given point be + or - to an it, would any given point be + or - to an
adjacent point? A. There would be little or adjacent point? A. There would be little or
no external magnetism. The magnetic flux into the air 5 . ring and would not emerg ring be mag Yes. A dynamo with coils and pole pieces around a ring is such an arrangement. 6 . What is the action by which an iron bar
is driven out of a helix? A. It is repelled is driven out of a helix? A. It is repelled
by the currents which are set up in the bar by the currents which are set up in the bar
by the action of the main current. 7. Must the helix have a hollow iron core to ge MENT 762 and 763 , price ten cents each, for valuable articles upon this and similar experi ments. 8. In a double-expansion rotary stea engine can the cylinders be so proportioned as to each utilize 50 per cent of the available energy of steam? Or what is the nearest t equalization possible, and how should cyl inders be proportioned to obtain it? A. Fo an equal division of the power of a two-
cylinder rotary engine the expansion area of each cylinder should be in proportion to th initial and expansion areas of a theoretica cut-off. This may be obtained by dividin an indicator card diagram into two parts of equal area; when the position of the dividing line will represent the proportional areas the primary and secondary cylinders. 9. Why does a chicken bob its head while walking
A. The thighs of a bird's legs are within the skin of the body and are held very closely to its sides. Practically the only motion of its legs is one parallel to its backbone. The
longer axis of its body is horizontal and swings sidewise as the bird walks. This give a jerking motion to its neck in the othe direction in order to preserve the equilibrium as much as possible. In birds with long bodies and short legs like the goose this wa tate it by swinging the arms with the legs in walking. Swing the right arm forward whe the right leg is advanced and the left side in the same manner A man then waddles lik a duck. 10. Why does it peck corn from alternate sides? A. Because the corn is on a quick eye on each side of its head to and food. You may be sure she does not pick u corn on each side alternately nnless th We do not think any rule can be laid down

