mental trees and shrubbery. It is embellished by statues, and is lighted at night by posts, the top of each being a mass of small incandescent lights, for the arc light is banished from the grounds except for illuminating outskirts of the reservation, the result being there are no excessively bright points to strike and offend the eye. The Grand Canal, which is over a mile in length, extends around the central group of large buildings, and is shown in several of our engravings. The outer bank of the Canal and the banks of the lagoons are sodded and set with trees and flowers, producing vistas of great beauty. The canals are crossed by many bridges, and statues, groups of statuary and fountains are distributed with a lavish hand. The buildings with their polychromatic decora tion compose admirably with the water, bridges, statuary, trees and flowers.

Even the attractions of the Midway in many cases fit in admirably with the architecture of the buildings This is especially the case with "Venice in America, which is composed of a number of replicas of Venetian palaces, shops, bridges and canals, and gondolas, with real gondoliers, can be engaged to make the circuit of the Canal. The "Topsy-Turvy House" is one of the oddest attractions on the grounds. It represents a house standing on its roof. The visitor enters through the roof and after going up or rather down several flights of stairs, he reaches the cellar, which is con verted into a roof garden. Even the flower-pots on the balcony are upside down. One of the most interesting exhibits is the 12 -inch breech-loading rifle on a disappearing carriage, which is in the rear of the Gov ernment Building. The government exhibit, as a whole, is remarkable for its completeness, and the visitors are sure to appreciate this fine example of -arican ordnance manufacture.

A pNeUmatic spring for vehicles.

The shocks to which a vehicle is subjected as it travels over an uneven road are absorbed in a novel way in an invention patented by William W. Humph reys, of Sheffield, Ill.
The two parallel reach-bars, connecting the front and rear axles, are concaved to receive two long pneu matic cushions, A, each closed at one end and provided with an air-valve at the other end. Curved saddle plates, B, are carried by the cushion-springs to sup port the vehicle-body, and are prevented from being accidentally displaced by means of bolts
When the cushions are inflated, the jolting of the vehicle is so thoroughly absorbed that only a gentle rocking motion is felt by the occupants. Automobiles
a new metal railway tie.
Perhaps no railway appliance contains so much promise for the future as the metallic tie; for the time will soon come when our fast-disappearing forests must necessitate the abandonment of the wooden sleeper for the more durable and stronge metal tie. The illustration which we present here with pictures one of the latest attempts which have been made to provide a metal tie which will answer the needs of the modern railway. The inventor of the tie is Mr. Chester Rabert, Coalburg, W. Va. Fig. 1 is a general view of the tie; Fig. 2 is an enlarge sectional view; Fig. 3 is an enlarged cross

a New metal railway tie.
section of the tie; Fig. 4 shows a split-wedge emsection of the tie; Fig. 4 shows a split-we ge em-
ployed ; Fig. 5 represents a novel washer serving to hold the rail in place; and Fig. 6 shows a method of securing the rail at any angle and at any point on the tie.
The tie is composed of interlocking upper and lower sheet-metal sections. The sections are so bent that the general outline of the tie in cross section, as shown in Fig. 3, shows a wide flat base and top, sharply re-entrant sides and corresponding vertical parallel side portions. Interposed between the side portions is a reinforcing block of metal, extending the entire length of the tie. The vertical portions and the block are firmly bolted or riveted together. By reason of the peculiar hollow form this construction combines great strength and lightness. Down ward strains upon the upper section of the tie are concentrate upon the reinforcing block.
Each rail, as shown in Fig. 2, is secured to the tie by a curved bolt extending through open ings in the top of the tie and seated in a saddle A (Fig. 2) ; the ends of the bolt pasis through washers, B, overlapping and securing the base of the rail. The rail is seate upon a piece of hard felt or other sound-deadening material. As shown in Fig. 5 the washers have a circular body portion designe to rest upon the upper face of the tie, and an extended lug or pro jection overlapping the edge of the rail-base The under surface of each washer is cut away beneath the lug portion to form a shoulder or abutment bearing against the edge of the rail base.
The curved bolt connecting the washers is seated in a groove formed in the under surface of the saddle A, and in a recess extending throughout the entir ength of the reinforcing-block. The saddle A and he lower opposing face of the top of the tie are an that arm interlocking connection is oothed, so that a firm interlocking connection is pro vided to prevent longitudinal movement of the sad dle. A split-wedge of the form shown in Fig. 4 is used to straddle the bolt and to pass between the central reinforcing-block and the saddle.
As shown in Fig. 5, the rail may cross the tie and be secure to it at any angle and at any point. It is necessary merely to make two openings in the top of the tie at the proper point for the passage of the curve bolt-a construction clearly serviceable for sidings and switches.
By reason of the serrated connection of the saddle and tie the rails may be transversely adjusted to the proper gage while the parts are loose. Upon tighten ing the bolt the saddle and rail are positively locke against movement transversely to the rail. This done, the wedge shown in Fig. 4 is driven home It will be seen that Mr. Rabert has invented a metallic tie which combines with the lightness of a abular structure, unusual stiffness, and provides an anyielding bearing at the point of greatest stress. The track gage can be simply and accurately adjusted by means which obviate the spreading of the rails and vet permit readjustment without removing the rails.
alcohol Motors.
In an address recently made by M. Oelers, a prominent engineer, before the German Distillers' Association upon the subject of alcohol motors, he brings out the following figures to show the cost per horse power hour for motors using gasoline, petroleum, illuminat ing gas, or alcohol, the figures being an average for several motors of each type, of the systems most used in Germany. According to these data, the gasoline motor consumes 0.77 pound per horse power hour representing a cost of $\$ 0.031$; a motor using ordinary petroleum, 0.88 pound, or $\$ 0.025$; an average gas motor costs $\$ 0.021$ per horse power hour; the alcohol motor uses 0.98 pound, or $\$ 0.026$. 't he conclusions brought out by M. Oelers are that the alcohol motor runs at a less cost than the gasoline motor, at about the same cost as the petroleum motor, but at a somewhat greater cost than the gas motor. He concludes that alcohol will no doubt render great services in agriculture for engines and tractors, as well as for auto mobiles.

\section*{Education of German children in Foreign

Countries

Countries

Consul Hill, of Amsterdam, March 19. 1901, reports that, in a recent German appropriation bill, provision has been made for subventions for 125 schools for the German education of German children in foreign countries. For a school at Constantinople, $\$ 7,140$ is allowe ; for three schools at Buenos Ayres, $\$ 4,284$; for one at Galatz, $\$ 2.665$; and $\$ 2,380$ for a high burghal school and $\$ 238$ for a deacon school at Antwerp. A high school for girls at Brussels also receives $\$ 2,380$. Four schools at Bucharest together receive $\$ 2,380$ A school at Pretoria is granted $\$ 1,428$ and one at Johannesburg, $\$ 2,522.80$. There are 29 German schools in Brazil, 12 in China, 12 in the British colonies, 12 in Roumania, 11 in Egypt, etc.

A SUPPLEMENTAL SEAT FOR VEHICLES

Among the patents lately issued in the United States is a third seat for two-seated vehicles, the invention of Nelson Marsh of Bernardston, Mass. The seat is of Nelt to Marsh, bolte to a etachable skeleton-frame constructe with a horizontal part resting on the seat cushion. A down wardly-extending hook part receives the rear end of the cushion. A firm support is provided by a cross bar resting on the cushion.

As shown in our illustration, the supplemental seat is place in the middle of the main seat in an ele

A DETACHABLE THIRD SEAT FOR VEHICLES
vated position so that it will interfere but little with the occupants of the main seat.

The current supplement

The current Supplement. No. 1327, might be calle a Pan-American number, as the Buffalo Fair occupies a considerable portion of the paper, and is illustrated by nine engravings showing many of the principal buildings and the remarkable decorative sculpture. The article was prepared after a recent visit to Buffalo The article was prepared after a recent visit to Buffalo
by one of our staff especially for this purpose. "Sig by one of our staff especially for this purpose. "Sig-
naling to Mars" is by Sir Robert Ball. "Syntonic Wireless Telegraphy" is a resumr of Marconi's recent lecture on the subject. "The Distribution and Con version of Received Currents" is by Henry Gordon Stott, and is accompanied by eleven engravings. "The Citizen: His Schools, His Industries, His Life," is by Prof. R. H. Thurston. "Blackfoot Amusements" is by John McLean.

