THE CULTIVATION OF COCOA IN THE WEAT INDIA ISLANDS.
To the active young man possessed of a limited amount of capital, who is looking for an occupation as well as investment, in the Lesser Antilles or in many parts of Venezuela, the cultivation of cocoa is at the present time the most inviting of the agricultural pursuits. The island of Trinidad, which is the one most familiar to the writer, produces cocoa of a quality second to none, and only equaled by that grown in the vicinity of Caracas, and always irings the highest price in the London market. Considerable patience is required to grow it from the seedlings, as it takes five or six years of cultivation before there is a harvest worth mentioning, and seven or eight years before a full crop can be realized, but when the trees are once full grown they will continue to bear fruit for an almost indefinite time.

Cocoa has been grown on this island, as early as 1700 , in considerable quantities, and there is so much of its area under cocoa cultivation that it is always possible to purchase bearing plantations at a price that would make a paying investment for the man who will give his own time to the management. Want of proper care seems to be the cause of more failures than the lack of the trees to produce paying quantities, or the market price of the product.

The cocoa tree seems to flourish best in the rich and well-watered soil along the banks of the many ravines that traverse the uplands of the island, where they are more or less protected from the violent storms. The small plants are reared in nursery grounds until they are ten or twelve inches high, when they are planted in rows like a northern fruit orchard. The cocoa tree must always be protected from the powerful rays of the tropical sun, that seems to blast the fruit. When young, they are shaded by growing bananas or plantains adjacent to the young tree; these grow very rapidly and furnish the required protection, as well as a source of some profit, while the cocoa is too small to bear. But it is necessary to provide for a future shade-for the cocoa after three or four years outgrows the banana-and for this purpose a tree known as the "Bois Immortel" (sometimes called the "Mother of the Cocoa") is planted at the same time as the cocoa tree; this is a tall tree with high and spreading branches that form a sort of canopy over the entire cocoa plantation and give it the required shade, making it resemble an open forest. The Immortels are shown in the illustration immediately behind the dry-houses, with the smaller cocoa trees underneath. The coffee tree, which is much smaller than the cocoa, is often grown in small quantities among the cocoa.

The cultivation of cocoa consists largely of draining the land, keeping down the undergrowth of bush and weeds, and trimming the trees. The flowers occur in clusters on the main branches and on the trunk of the trees, usually only one of each cluster reaching maturity. The fruit, which is seen in the illustration, is a hard pod six or seven inches long, resembling a cucumber, growing from the trunk or large branches, and looks very much as though it were artificially attached. Buds, blossoms and fruit, in all stages, oc. and fruit, in all stages, occur side by side, and ripened fruit is harvested at all times of the year. The main crop, however, matures in the dry season and is usually harvested in February; only small quantities ripening during the remainder of the year.
The pods each contain
five rows of seeds or beans, quite similar to a large thick Lima bean, embedded in a pink, acid pulp. These seeds are the cocoa beans of commerce. The harvesting consists of cutting off the mature pods by means of a knife on a long bamboo pole, gathering

COCOA DRY-HOUSES IN TRINIDAD-MIXING THE BEANS.
tect them from the rain and dews, and are kept wheeled back on the extended tracks when the sun is shining. As soon as the beans reach the dry-house they are placed in the "sweat box" or pit, where they are closed up tight and allowed to ferment for some
COCOA DRY-HOUSES IN TRINIDAD-MIXING THE BEANS.
them into heaps on the ground, where they are al lowed to lie for about twenty-four hours. They are then cut open with a cutlass, the seeds and pulp coming out in a mass; these are carried to the dry house. The dry-house consists of a smooth, tight

COCOA PODS ON THE TREE

floor, or platform, set on posts at a height of four or five feet above the ground to allow a free circulation of air underneath. A light iron T-rail is spiked on each side near the edge and extending one-half the length of the floor beyond each end; a corrugated iron roof, with its eaves level with the floor, covers the platform. This is carried on a frame, divided in the middle of the floor, mounted on small car wheels traveling on the rails. The drying of the beans is accomplished on this floor by spreading them over it and exposing them to the sun. The roobs are to pro as the effects produced as the effects produced by the aid of canals, bridges
and landscape gardening. The mall which connects the two most important entrances, which are most used by visitors, is spanned and decorated with orna-

Venice in America, from the Rialto.

The Horticultural Buinding.

Fountain and Agricuitural Building.

One of the Smail Canals.

The Mall.

Electricity Buldang.

12 -men breech-Loading Ritie on Disappearing Carriage,
mental trees and shrubbery. It is embellished by statues, and is lighted at night by posts, the top of each being a mass of small incandescent lights, for the arc light is banished from the grounds except for illuminating outskirts of the reservation, the result being there are no excessively bright points to strike and offend the eye. The Grand Canal, which is over a mile in length, extends around the central group of large buildings, and is shown in several of our en gravings. The outer bank of the Canal and the banks of the lagoons are sodded and set with trees and flowers, producing vistas of great beauty. The canals are crossed by many bridges, and statues, groups of statuary and fountains are distributed with a lavish hand. The buildings with their polychromatic decora tion compose admirably with the water, bridges, statuary, trees and flowers.

Even the attractions of the Midway in many cases fit in admirably with the architecture of the buildings. This is especially the case with "Venice in America, which is composed of a number of replicas of Venetian palaces, shops, bridges and canals, and gondolas, with real gondoliers, can be engaged to make the circuit of the Canal. The "Topsy-Turvy House" is one of the oddest attractions on the grounds. It represents a house standing on its roof. The visitor enters through the roof and after going up or rather down several flights of stairs, he reaches the cellar, which is con verted into a roof garden. Even the flower-pots on the balcony are upside-down. One of the most interesting exhibits is the 12 -inch breech-loading rifle on a disappearing carriage, which is in the rear of the Gov ernment Building. The government exhibit, as a whole, is remarkable for its completeness, and the visitors are sure to appreciate this fine example of -arican ordnance manufacture.

a pNeumatic spring for vehicles.

The shocks to which a vehicle is subjected as it travels over an uneven road are absorbed in a novel way in an invention patented by William W. Humph reys, of Sheffield, Ill
The two parallel reach-bars, connecting the front and rear axles, are concaved to receive two long pneumatic cushions, A, each closed at one end and provided with an air-valve at the other end. Curved saddleplates, B, are carried by the cushion-springs to support the vehicle-body, and are prevented from being accidentally displaced by means of bolts.
When the cushions are inflated, the jolting of the vehicle is so thoroughly absorbed. that only a gentle rocking motion is felt by the occupants. Automobiles
a new metal railway tie.
Perhaps no railway appliance contains so much promise for the future as the metallic tie; for the time will soon come when our fast-disappearing forests must necessitate the abandonment of the wooden sleeper for the more durable and stronger metal tie. The illustration which we present herewith pictures one of the latest attempts which have been made to provide a metal tie which will answer the needs of the modern railway. The inventor of the tie is Mr. Chester Rabert, Coalburg, W. Va. Fig. 1 is a general view of the tie; Fig. 2 is an enlarged sectional view; Fig. 3 is an enlarged cross

a New metal railway tie.
section of the tie; Fig. 4 shows a split-wedge emsection of the tie; Fig. 4 shows a sphit-wedge emhold the rail in place; and Fig. 6 shows a method of securing the rail at any angle and at any point on the tie.
The tie is composed of interlocking upper and lower sheet-metal sections. The sections are so bent that the general outline of the tie in cross section, as shown in Fig. 3, shows a wide flat base and top, sharply re-entrant sides and corresponding vertical parallel side portions. Interposed between the side portions is a reinforcing block of metal, extending the entire length of the tie. The vertical portions and the block are firmly bolted or riveted together. By reason of the peculiar hollow form this construction combines great strength and lightness. Down ward strains upon the upper section of the tie are concentrated upon the reinforcing block.
Each rail, as shown in Fig. 2, is secured to the tie by a curved bolt extending through openings in the top of the tie and seated in a saddle A (Fig. 2); the ends of the bolt pasis through washers, B, overlapping and securing the base of the rail. The rail is seated upon a piece of hard felt or other sound-deadening material. As shown in Fig. 5 the washers have a circular body portion designed to rest upon the upper face of the tie, and an extended lug or pro jection overlapping the edge of the rail-base The under surface of each washer is cut away beneath the lug portion to form a shoulder or abutment bearing against the edge of the rail base.
The curved bolt connecting the washers is seated in a groove formed in the under surface of the saddle, A, and in a recess extending throughout the entire length of the reinforcing-block. The saddle, A, and the lower opposing face of the top of the tie are both toothed, so that a firm interlocking connection is pro vided to prevent longitudinal movement of the saddle. A split-wedge of the form shown in Fig. 4 is used to straddle the bolt and to pass between the central reinforcing-block and the saddle.
As shown in Fig. 5, the rail may cross the tie and be secured to it at any angle and at any point. It is necessary merely to make two openings in the top of the tie at the proper point for the passage of the curved bolt-a construction clearly serviceable for sidings and switches.
By reason of the serrated connection of the saddle and tie the rails may be transversely adjusted to the proper gage while the parts are loose. Upon tighten ing the bolt the saddle and rail are positively locked against movement transversely to the rail. This done, the wedge shown in Fig. 4 is driven home It will be seen that Mr. Rabert has invented a metallic tie which combines with the lightness of a abular structure, unusual stiffness, and provides an anyielding bearing at the point of greatest stress. The track gage can be simply and accurately adjusted by means which obviate the spreading of the rails and vet permit readjustment without removing the rails.

Alcohol Motors.

In an address recently made by M . Oelers, a prominent engineer, before the German Distillers' Association upon the subject of alcohol motors, he brings out the following figures to show the cost per horse power hour for motors using gasoline, petroleum, illuminating gas, or alcohol, the figures being an average for several motors of each type, of the systems most used in Germany. According to these data, the gasoline motor consumes 0.77 pound per horse power hour, representing a cost of $\$ 0.031$; a motor using ordinary petroleum, 0.58 pound, or $\$ 0.025$; an average gas motor costs $\$ 0.021$ per horse power hour; the alcohol motor uses 0.98 pound, or $\$ 0.026$. 't he conclusions brought out by \mathbf{M}. Oelers are that the alcohol motor runs at a less cost than the gasoline motor, at about the same cost as the petroleum motor, but at a somewhat greater cost than the gas motor. He concludes that alcohol will no doubt render great services in agriculture for engines and tractors, as well as for auto mobiles.

Education of German children in Foreign

 Countries.Consul Hill, of Amsterdam, March 19. 1901, reports that, in a recent German appropriation bill, provision has been made for subventions for 125 schools for the German education of German children in foreign countries. For a school at Constantinople, $\$ 7,140$ is allowed; for three schools at Buenos Ayres, $\$ 4,284$; for one at Galatz, $\$ 2,665$; and $\$ 2,380$ for a high burghal school and $\$ 238$ for a deacon school at Antwerp. A high school for girls at Brussels also receives $\$ 2,380$. Four schools at Bucharest together receive $\$ 2,380$ A school at Pretoria is granted $\$ 1,428$ and one at Johannesburg, $\$ 2,522.80$. There are 29 German schools in Brazil, 12 in China, 12 in the British colonies, 12 in Roumania, 11 in Egypt, etc.

A SUPPLEMENTAL SEAT FOR VEHICLES

Among the patents lately issued in the United States is a third seat for two-seated vehicles, the invention of Nelson Marsh, of Bernardston, Mass. The seat is bolted to a detachable skeleton-frame constructed with a horizontal part resting on the seat-cushion. A down-wardly-extending hook part receives the rear end of the cushion. A firm support is provided by a cross bar resting on the cushion.

As shown in our illustration, the supplemental seat is placed in the middle of the main seat in an ele

a detachable third seat for vehicles,
vated position so that it will interfere but little with the occupants of the main seat.

The current supplement

The current Supplement. No. 1327, might be called a Pan-American number, as the Buffalo Fair occupies a considerable portion of the paper, and is illustrated by nine engravings showing many of the principal buildings and the remarkable decorative sculpture. The article was prepared after a recent visit to Buffalo by one of our staff especially for this purpose. "Sig naling to Mars" is by Sir Robert Ball. "Syntonic Wireless Telegraphy" is a resume of Marconi's recent lecture on the subject. "The Distribution and Conversion of Received Currents" is by Henry Gordon Stott, and is accompanied by eleven engravings. "The Citizen: His Schools, His Industries, His Life," is by Prof. R. H. Thurston. "Blackfoot Amusements" is by John McLean.

