

hints to correspondents.

(8098) L. J. J. writes: 1. I have a small fan motor of 52 volts, $1 / 2$ horse powe
alternating current, which I run on direct light current, 52 volts. It has a great deal of power, but, sparks a great deal. Could you
advise me in the next issue of your valuabl? paper how to prevent this? A. Your alterna ing-current motor, when put on a direct cur rent, gets more current than it could get from and sparks more than it should. The faster are perhaps not in the proper position. Slide them to and fro around the commutator, and
find the position of least sparking. If this does not cure the trouble, you can add a resist ance to the external circuit, so as to cut down
the current which enters the motor. 2. Why the current which enters the motor. 2. Why
will it not generate when run by an 18 -inch fly-wheel: It goes very fast. A. Many of the and build them up. They cannot, for that phone be grounded on house or earth side o gas meter, and why? A. It is better not to
ground anything to a gas-pipe, either side of ground anything to a gas-pipe, either side of
the meter. A flash of lightning or a lightning falling across the telephone wire might gas and to the house. Perhaps the earth side
of the meter is a little better ground than the house side.
(8099) F. T. asks: 1. Can water be decomposed and the gases collected separately
by au alternating electric current? A. No: the gases will be miexed at each pole in the same proportions as they are in water-hydro-
gen 2 parts, and oxygen 1 part.
2. What chemicals are most frequently used in a dry
battery? A. Dry cells are usually modified Leclanche cells. The sal ammoniac solution will not run out of the cell when it is upset 3. In the preface of Tesla's " "Experiments with
Aiternating Curents of IIIeh Potential and High Frequency" it mentions a thermo-mag etic motor he devised. What was the prin
ciple of it? A. A thermo-magnetic motor as it is usually called, a pyro-magnetic motor consists of an armature formed of a disk ring of thin steel, which is set in motion when
unequally heated by reason of the difference of force so produced. Mr. Edison invented a pyro-magnetic generator which acted on the
fa.t that iron ceases to be magnetic at about a.t that iron ceases to be magnetic at about
$i 70$ deg. C., and converted the heat energy by means of it into electric energy. He used wire. By varying th temperature of the tube near 770 deg. he
then varied the magnetism passing through the coil,
and thus produced a current in the coil. 4. and thus produced a current in the coil. 4.
Can a storage battery be charged by an alterCan a storage battery be charged by an alter
nating electric current: a thermostat? A. An instrument which closes ir ope
cooled.
(8100) J. M. A. asks: 1. A condenser of $1 / 2$ inch in diameter. which gives a heat of 500 deg \mathbf{F}.; what will another condenser of
twice the diameter, but of the same focus give in heat? A. The area of the larger lens is a circle of twice the diameter and four
times the area of the smaller. It will allow our times as much light and heat to pass as the square of the diameter? A The guan tity of heat is proportional to the square of
the diameter of a lens through which it is transmitted. The intensity of heat in a focus is approximately so also. Whether a piece of metal, such as a mercury thermometer or a
piece of copper, will be heated to a higher
temperature and how upon the specific heat of the metal and upon its condition as regards radiation. In is diffif-
cult, if not quite impossible, to determine to what degree of a thermometer a given quan ity of heat will raise a piece of a given metal 3. Will the same rules hold good
bolic reflector as for a condenser:?
parabolic reflector sends the rays aut ; parallel beam when the source of heat or light then diminish as the sequare of the distance. 4. Is there any book published on the collect-
ing and applying heat from the sun's rays and on the storage of such heat" A. Langley's "New Astronomy." price ${ }^{4.3}$ by mail, contains
a chapter on this subbect. It shows pictures of the several solar engines which have been
used at various times in the effort to find
a mode of utilizing the great heat of the sun. a mode of utilizing the great heat of the sun.
We have published several articles in the We have published several articles in the
SuPPLEMENT on the subject of solar energ. engine ; Nos. 212, 214, 216, 217, 218, by Pro Langley; price ten cents each.
(8101) J. E. H. writes: If a machine arrent of 3 amperes at 10 volts what is th most practical way to get a current of $1 / 1 /$ to
ampere at 10 volts from it? If through coils nd a reduction of speed, please give size wire used and number of turns for each spool.
A. The current a machine gives depends on have three amperes through a certain circuit to have one-half as much double the resistance of the external circuit. With 10 volts, the current will be 3 amperes when the resistance is 31.3 ohms. For one ampere the resistance
must be 10 ohms. Now, if you have a part of must be 10 ohms. Now, if you have a part of
the 10 ohms in the apparatus used, you will he 10 ohms in the apparatus used, you wid
only require the rest of the resistance in a nce of one ohm to three feet. From this you can calculate what you need.
(8102) O. M. S. asks: 1. I want to put up a telephone between my place and a neigh
oor's about a half a mile distant. I have two receivers, dry and bichromate batteries. Now,
can I put up a telephone by connecting the an I put up a telephone by connecting the barb-wire fence, in which the wire is fastened uninsulated to the post by staples, and use
common electric alarm bells? A. Yes; if the wire is continuous, without breaks or loose ints. It must be spliced as strong as a tele
raph wire. Such an arrangement will wor only when the fence is dry. 2. If this can be
done, please tell me how to connect the bat teries and receivers to the fence. A. Connec The half of the battery at each end of the line using care that the poles at each end are in the same order. 3. How much power will be needed? A. We cannot tell. A.
more than with an insulated line. 4. Can dry batteries, when the current gives out, be re-
stored? If so, how? A. No; they can be opened and filled with sal ammoniac solution, used up $\overline{5}$ How can you magnetize a piece of iron by using a magnet? A. A piece
ion cannot be permanently magnetized. is made into a magnet by bringing one end the end of the permanent magnet
(8103) J. M. S. asks: 1. In making an electric furnace, there is a core of fire-clay
wound with platinum wire and then covered with clay and asbestos and connected up with rheostat. Is there anything but platinum wire used, or do they cut in a fiber similar
to that used in an incandescent lamp? You seem to be describing an electrical heater, and not an electrical furnace. The electrical furnace is made by bringing two carbons into
contact and then drawing them apart while contact and then drawing them apart while
they are covered by the substance to be treate they are covered by the substance to be treate
in the furnace. A very high temperature which furnace. A very high temperature,
whill melt any substance, is thus produced. A platinum wire wound on fire-clay electrical furnace. In such a heater as you describe there would be no advantage in using carbon filament. 2. In making a controller to reduce electric current (107 volts, alternat ing), what size of German-silver wire is used,
and hew long should each space be to the nd how long should each space be to pranches, so as to reduce same
rolts, 4 volts, 5 volts, 6 volts, 7 vol troller," but either a transforme oil. A controller is used with a direct cult rent. A choking coil can be arranged with
branches so as to give the various drops in voltage which you mention. We cannot give you a design for this, as we know nothing what you wish to do. Apply to the company furnishing the current for the apparatus. ${ }^{3}$
Could I use the insulated German-silver wire. and splice in short pieces the required disance, and then wind same up in a ball, leavng the various ends protrude, connect each
up with a button, and use switch leaves, with withou asing 107 -volt, of burning salternating current. A. No; a rheostat becomes heated by
the current which flows through it. This would burn the insulation. Wound into a close coil, the wire would be still more heated are wound into open spirals, and placed so them cool.
(8104) F. J. S. writes: To have a curby two contacts-one liquid, one metallic. Such a case occurs in an ordinary zinc cell when a particle of iron is embedded in the zinc surface. This wasteful circuit is done away with by a malgamating. But does not
this evil effect (local action) necessarily exist this evin effect (local action) necessarily exist
in the storage battery? There is the metal grid in immediate contact with the oxide, and at the same time in contact with it through
the intermediary of the liquid. Thus it would appear that there ought to be a vast amount of local action all the time. A. There is no on open circuit is the slight formation action sulphate by the combination of the lead an sulphurrc acid. This is a very slow process.
The action of a storage cell is between the

peroxide of le negative plate
 egative plate.

(8105) L. A. G. asks: 1. In the tele phone-magneto generator described in Sur plement, No. 966, could the steel magnets be charged by simply placing them against one
of the poles of the magnet of a powerful ynamo, or would consequent poles result? coil of wire through which a current of elec tricity is flowing. Pass the magnet steadily
through the coil back and forth. 2. When conthrough the coil back and forth. 2. When con
tructed as directed in the SUPRLEMENT structed as directed in the SUPpLEmen
through what distance will the generator ring: That is to say, how many thousand know. 3. Could you also give me a good ormula for a red and a black pigment enamel for painting the generator magnets
with? A. Any good varnish paints will do. . In the Hunning's telephone transmitter de cribed on page 813 of Experimental Science next to last edition), how fine and how har
packed should the granular carbon be? carbon diaphragm and carbon back give better results than a brass back and ferrotype diaphragm? A. The carbon grains of proper form and size can be purchased of manufactur-
ors of telephones, for which see our advertis ers of telephones, for which see our advertis-
ing columns. The packing should be adjusted mg columns. The packing should be adjusted
to clearest transmission by experiment. 5 . to clearest transmission by experiment.
Can the small alternating dynamo described in the Scirivipic Anerican, Vol. 77 , No. 11
be made self-exciting and still give 110 volts? How? A. No ; there is not room on the arma ture for a commutator. You can redesign the yoke, etc., and put in a direct-current arrange-
ment. 6. Would you furnish me with a list ment. 6. Would you furnish me with a list
of the articles that have been published in the of the articles that have been pubished in the
Sciestrific Anrican (not the SUPPLEMEyT) n the teleghone and the dynamo? A. Man
details of the telephone are described and illus rated in Supplenext, Nos. 142, 163 and 96 Illustrated articles, giving complete details for the construction of small dynamos, are
contamed in Supribuevt, Nos. 161, 599,600 , 844 and 865 . We supply the SUPPLEMEy copies at ten cents each. For a list of many 7 of the Supplemen Cata.
(8106) F. M. writes: Some two or aid water was a non-conductor, since which time I have got into all kinds of trouble by naking this claim. Please explain how a fire man in Kansas City was knocked over the other day when the stream from the metal the old trick of trying to get a piece of mones out of a bowl of water connected to a battery why wetting the hands before taking hold of in electro battery will intensify the shock A. We regret that you have been brought into
rouble by ina bility to defend our statement that water is a non-conductor of electricity Yet such is the fact, without any qualification But the water must be pure, of course. An the water very greatly. All the cases cite are of this character. A man's hands
are not ordinarily clean, never chemically clean. Should they be made so and dried, the it salt and this is a it salt, and this is a good conductor. Dry
hands are very well insulated by the skin. We never heard of any difficulty in taking a coin If the bowl were connected to a charged Leyden jar, there would be a shock on touch-
ing the water-ordinary water. Thompson, in his "Elementary Lessons in Electricity", give The resistance of pure water as 265,500 , 000,000, when the resistance of copper is
1.57 . Now, divide the large number by 1.57 . and you will have the fact that puye wate has $1,777,777,777$, or, roughly, one billion and three-quarters times as much resistance as
copper. Glass has only about 1,000 times the copper. Glass has only about 1,000 times the
resistance of water, and glass is one of our best insulators. Now, add 5 per cent of sul phuric acid to the purest water and its resist a very common thing in electrical works nowadays. We hope these facts may enable you to discomfit your adversaries.
(8107) R. D. T. writes: I have made one of the motors described in Scievtific
Americas of December 8 and 15,1900 and mounted same temporarily on wood bearings. Have tried three cells of open circuit battery
in series (and multiple arc), but can get no
 A few guestions. 1. Ought there not to be some effect with two or three cells when not is mplenty of magnetism in the field and spark at the terminals on breaking the circuit 2. How can I test the armature and windings, end of the winding to the battery, and try with a wire from the other pole of the bat-
tery whether a spark can be obtained from the tery whether a spark can be obtaned from the
iron of the armatire core, or the yoke of the machine. This will show
grounded . Would introdu ing a compass in place of armature and
brushes demagnetize the compass when cur brushes demagnetize the compass when cur-
rent as above is turned on? A. No $:$ it would make the compass stronger. 4. Why should anuature revolve by hand as easily one way with three cells of wet battery like Leclanche open circuit? A. Probably because there is
no current flowing. It seems as if you have
no circuit through the motor. Perhaps you
have connected up the field magnet so that the have connected up the field magnet so that the
two halves neutralize each other. 5. Where can I get the brass balls necessary? A. You
cannot purchase solid brass balls. We think
and you will have to make them.
(8108) L. A. D. writes: I have troubl with my photo plates in the fixing bath, which off the black and leaves the plate gray Fixing bath used is 1 ounce hypo. to 3 ounce develop the plates a good black in the high lights, but after fixing they are gray, with n ontrast. Please glve me a receipt for a ixing d. The trouble with your thoto plate do not, probably, lie with the fixing bath. This were thin befack and leave the the hypo. The trouble is over-exposure under-development. The best formula for any plate is the one given by the maker in the Expose a shorter time and find by experiment the proper time is for exposure
(8109) J. M. S. asks: 1. How are elec the furnace (Io denai uses, fusing porc ormed that platinum wire is used, but is tha ill? Is not there something similar to the connected in to The heating furnaces which have recently come into use are of platinum wire, wound on a non-conducting core. The resistance is out fusing the platinum, and no external re sistance is employed. The limit of temper ture is the melting point of platinum. 2 . Would there be very much expense in chang. ing a motor from alternating to direct? A commutator is required in place of the co lector rings. Its cost depends on the num
ber of bars required in it.
3 . Is it possible on charge a storage battery from an alterna ting current? A. No; except the alternating There is an electric appliance out for anne ing gold foil, used by dentists. Can you te me how it is made?
ion about this heate
(8110) T. D. asks: What is the voltage of the Edison-Lalande battery, type "W?" A 0.667 volt as the mean working E. M. F. of
(8111) W. O. E. asks: Please tell an reader of the Scientific American what is the specific heat of hydrogen gas at con-
tant pressure and constant volume. A. The mean specific heat of hydrogen at constant pressure is 3.4062, on the authority of Reg. nault and Wiedermann. The calculated
specific heat at constant volume is 0.2419 , by some authorities ; by others it is given as 0.2359 .
(8112) C. \& Son write: We desire to melt a small amount of iron for experimental purposes, not sufficient to pay for a cupola. ject? A. You can melt 3 or 4 pounds of cast
iron in a black lead crucible in a forge fire by building up a loose brick furnace around the
 the crucible
(8113) G. E. C. writes: Am thinking of making the mercurial barometer described in
Scientiric American, February 2, 1901 , page 74. Woula her to now many ounces of A. Not more than a hat pound is actually re quired, but a pound will make the work
(8114) J. B. Co. asks: In your issue of fial lightning. will you put us in the way of getting specific information as to the amount of current necessary to operate one
an 500 volts, 104 and 110 volts. A. We do not Know any way in which so strong an effect
can be produced directly by 500 volts of can be produced directly by 500 volts of pres-
sure. Ten times as much pressure is desirable.
forner.
(8115) R. D. asks: Will you kindly ive me a description of the secondary sec tion winding of induction coll, such as
Rietchie, in Boston, uses for his coils, or is there a book written on this subject which
gives full information regarding such wind gives full information regarding such wind
ings and sizes of wires used? A. The mak ings and sizes of wires used? A. The mak-
ing of a modern induction coil, with the secondary in sections, is fully described in Sur PLEMENT No. 1124, price ten cents. The diplainly given.
(8116) E. P. R. writes: In testing the sman disks as they are wound (in making a battery of sufficient strength to deflect the needle, to tell whether the wire is broken or
not in winding. I have the battery and meter not in winding. I have the battery and meter connected up and have two clamps to attach
to the terminals of the coils when testing. I noticed that at times the needle would de flect one way and then the next time it would
deflect just the opposite to what it did before and as I knew that the current was passing throush the meter in the same direction a all times, I made an investigation and found
that if I connected the outside terminal of
the disk to the wire from the battery an connecting them just the opposite the needle id before just the opposite as to what hanged the direction of the current through
he meter, which I did not do. I made se eral tests, with the same result each time.
have never heard of anything like it before and do not know whether I am in the wrong son for the needle to change. Will you kindly explain, if it is worth an explanation! A. In battery and galvanometer the current flows through the coil in the opposite direction from which it flowed the first time. The poles of that the coil is so near to the galvanomete o not see any other way in which the defle tion of the needle should be reversed.
(8117) G. G. A. E. asks: 1. How can you determine the size of wire to be used in
different circuits? Is it according to the ca pacity of the wire and the requirements of so, give the principal rules. A. The wiring of a circuit is determine by the current it is
to carry, the drop to be allowe in it, etc. The tables of the Cnderwriters are the gen ushing's "Wiring Handbook," price $\$ 1$, by for 1901 is just out. 2. How many candle 1,400 revolutions of producing 15 to 20 volts, and at 2,000 revolutions 40 to 50 volts, fur divided up into seven different lamps in order get best results? A. Two and a half to four watts are to be allowed per candle with
small lamps. With 75 watts you can have 20 to 30 candle power. If you have 7 lamps n 20 volts, you will have about 3 volts for lamps, 7 in a series. At 50 volts you can use amps, in series. 3. Which do you think is he better for both general and accumulato A series dynamo is not adapted to th wound machine. 4. Can dry batteries, when o, how many would be required for the and, if ynamo? A. We know of no way to use dr s as accumulators.
(818) J. K. asks: 1. How can I make igniting use? A. .The core of an indus tion coil for any purpose consists of a bundle ther insulation wound. Foll instructions for winding madical coil are given in Bottones "Electric . Can an incandescent 50 cents, by mail without a dynamo ; and, if so, how? A. Yes a small lamp may be lighted by a primary ric motor for running small machinery? A ambrican supplement, 641, 759, or 1210 rice 10 cents each.
(8119) A. McD. asks: Is there a water cess? A. to run a dynamo? Is it a suc power as well as by steam. It is necessary to ising columns.
(8120) B. G. J. asks: 1. To change an alternating current that now has a pressure
of 50 volts to one of 115 volts, what effect ould the increase pressure have on cononductor having the capacity of, the present A. No appreciable effect. The difference beifference. 2 , Would it be necessay to rease the size of the conductor? A. No: the
onductor could be diminishe if any change were to be made in it for the same current uctor lectrity ${ }^{2}$. down 5,500 volts to 11.5 volts: A. Yes ; such pany furnishing current at this pressure. (8121) A. W. P. asks: 1. What is the bject in having a vacuum in coherer tubes the coherer tube for wireless telegraphy. What kind of burner should be used with
acetylene gas to obtain a hot blue flame for aboratory work? A. A party claims to have with acetylene and burn safely so long as it is properly used. It is unnecessary to say losive, and unsafe. We are not informe how the burner in question is constructed. , pard rubber, paraffin wax, paraffin oil, dry to give any exact figures of relative resistanc of the various insulators. Much depends
upon the temperature and condition of the All become fairly good con Glass conducts as an electrolyte as soon as it softens. 4. If the terminals of a 3 -inch spark

	Furnace for heating metal sheets or bars, Furniture, school, w. C. Hudian,
665,217	Game a aparatus, C .
6693,	carrdenii
${ }_{66}^{66}$	cias
	Gas buruer, inc
	Gas engine Jo,
660,082 669,462	
	Gas, production of compressed, w. Kn Gate.
	${ }_{\text {eli, }}$
¢68.287	ind aitomat
	Shiets or white
669	Goods packing cushion, F\% Read........ 6 699\%399
${ }_{6}^{666}$	
${ }_{669220}$	Gun, an
	Giun su
	,
	Handle. See Tinlirella handle.
	Hanger. See Iamp hanger.
	Heater. Se See Ho
	Heating appliances, manuficture of
669	Howse stopp
	Hose conduit
${ }_{669}$	
	Hot water heater, (e) A. ciarkson669,212
669,408	Indicator, See speed indicator.
	er,
	Inkint pad, F. E. E. Har
669, 118	
	Interchangeal)e
669,433 669,122	Invalids, device for
	Iromilys haird hand
669,109	
	nal how,
	Kinletograplic
${ }_{\text {669, }}^{602}$	
66, 6	Lamp hanger, T. Li.illusily. .i............. 669,283
	Lamp, perndent
${ }^{669,138}$	Lamp, physisian's eliect
	Lamps. construetion of carriers for cyl
	trasses of electric, gas, or on, .e. stan-
	die
${ }_{6}^{66}$	Legring J M M
	lines
$\underset{669,152}{\substack{669,372}}$	
	Lightuing arrest
669,260	, 1 . w
	Lemen
391	Loom weft thread controling attachment,
,160	
669,434	Maguetod how out lrush hoider, A .
	${ }_{\text {Maill boxt }}^{\text {Mat }}$
${ }_{669,1}^{669}$	
66	
669,078	Mrasuring deviee Hiiquid, Ji H
-669,291	al
	notal into molds, "cice app
${ }_{669592}^{669}$	Metal shluet at thil ilyles
	Metals Frasch cleectrolysis, recover
	Metals by miectioisisis, reeove
	Metals,
	${ }_{\text {ing }} \mathrm{m}$ mach
669,382	Mold See ciriar mo
669,23	Motion convertint mechalism, M.
	Motion, means for converting,
669,2394	
¢69,46	
66	
	IV. H , Gi
,995	Nail extracting in
669,429	Nut, venticto axld
669,47	ing itensil for use ther
${ }_{6}^{669,335}$	linir for stuting boxes, metalic, L. Caul
	Pad. Se Inhing pa
669,240	
	H. serving apparatus, toilet, c. G. Peter-
	ar. stock indenting mashinc, R . A.
${ }_{669.069}$	
	ing
${ }_{2}^{2,16}$	
6669 24	${ }_{\text {man }}^{\text {ure or name plate }}$
	Pin mo the like for siffety fastenings, A.
${ }_{669,127}$	Phaterer. elieck
${ }_{669,192}^{66,27}$	
¢69, 100	um
	H.
${ }_{669,24}^{68,5}$	e or coium, tubular, J. Lanz
	Printing foor coloth, etc., machine for, c .
$\xrightarrow{669,93}$	
669,169	9,274
	,274
9,26	

