## sOME INTERESTING EXPERIMENTS IN DIRIGIBLE AIRSHIPS

Some interesting experiments with small dirigible airships have recently been carried out by Carl E Myers, of Frankfort, N. Y. A short time ago he had two dirigible airships on exhibition at the Coliseum at St. Louis, and eight performances were given each day. The two vessels were the "Electric Aerial Tor pedo" and the "Sky-Cycle Airship." The Coliseum has an oval arena of 222 feet long, 112 feet wide and 60 feet high, surrounded by seats, boxes and two galleries, and overhung with many swinging electroliers, wires, ropes, and deep iron girders bracing the roof, while on the ground space was an electric fountain, 30 feet in


## CARL E. MYERS' ELECTRIC AERIAL TORPEDO

liameter and 20 feet high, which contracted the nar row passage-way on each side of the oval. The tor pedo was of entirely new design and is shown in our engraving. It was propelled by a $11 / 2$ horse power electric motor, weighing 4 pounds, the current being at 110 volts, and it was controlled from a switchboard. The torpedo was thirteen feet long from tip to tip, and its circumference was the same. The keel attached below supported a car containing a motor, an aluminium screw shaft and a two-bladed propeller; two aeroplanes assisted to support and guide it in mid-air. The small vessel usually started from its elevated platform across the arena, rising as it flew, and then turning gradually about and retracing its course, then curving and gradually rising until it reached the ceiling on a spiral pathway. The vessel then fell vertically until it reached the ground; it then rose and circled again in a path limited by the arena until part way around the oval, when it descri bed a figure eight and flew off on another tack and re-encircled the oval with an opposite succession of cycloidal curves, pausing occasionally with an opposite succession of cycloidal curves, pausing ocsionally within reach of the spectators to perwit an inspection of its working parts. It would then suddenly fly around the arena, darting straight at some selected victim, but when just within reach it would circle to the right or left or else swing broadside. It would of cen rest itself for a moment on the railing of the boxes, then fly to the electric fountain and circle it, and $t h e n$ it, and th en
move forward in a straight or curved course. The purpose of the electric aerial torpedo was to demonstrate the ease with which war vessels of this vessels of this type might be
propelled and propelled and controlled, and
high explosives high explosives
be distributed be distributed over any point
selected for deselected for destructive pur poses.

A hundred feet of the dail of the electric nower house at Chambly was swept away on November 16, completely demolishing the fifteen sluices. The damage to the Richelieu the Richelieu woolen mills
was very great.


NEW FRENCH ARMORED CRUISER "MONTCALM."
Displacement, 9.517 tons. Speed, 21 knots Maximum Bunker Capacity, 1.000 tons, Armor: Belt, 334 to 6 inches; gun positions, 334 to 8 inches; deck, 2 inches. Armament : Two $7 \cdot 6$-inch; eight $6 \cdot 4$ inch; four $9 \cdot 9-\mathrm{inch}$; sixteen 3 -pounders, six 1 -pounders. Torpedo Tubes, 2 . Complement, 612.
is modeled above the waterline with the characteristic tumble-home that is seen in so many of the French vessels; but we miss in her the exaggerated ram bow which one has learned to associate with the Erench cruisers of former years. The total complement of the ship is 612 officers and men, and it is probable that the great length of the vessel will enable the crew to be very comfortably berthed.

## A SAFETY MILITARY SPY-GLASS

The ordinary telescope and spy-glass which military officers have used for wore than a hundred years is gradually giving place to an instrument far more


Fig. 1.-STEREOSCOPIC MILITARY FIELD-GLASS
powerful and less likely to expose an observer to the long-distance fire of an enemy. The list of dead and wounded sent home frow South Africa shows that the modern high-power magazine rifle has rendered the lot


Fig. 2.-THE FIEld.glass in USE.
of the commanding officer far more hazardous than it once was. This increased danger and the great ranges at which modern battles are fought have been the chief reasons why the ordinary spy-glass has been chief reasons why the ordinary spy-glass
found inadequate by the modern army officer
The new instrument consists of two tubes hinged together and carried by a central handle. Each tube is provided with an objective and with an eyepiece. By means of a systew of total-reflection prisms the image formed by the objective is so deflected that the eyepiece, mounted at right angles to the tubes, may properly present it to the eye.
When the instrument is open, the distance between
the two objectives is about sixteen inches. The lenses and tubes are so arranged that a stereoscopic effect is ob tained.
In order to make use of the stereuscopic spy-glass, the eyepieces are first purposely focused. Since, in the majority of cases, both eyes of the same person are not equal, the t wo eye pieces are fo cused inde pendently. The instrument are regulated for a 26 inch spacing of the eyes, which is the average For persons having eyes differently spaced, there is a very simple mechanism for regulating the

January 5, Igor.
ฐriantific © ${ }^{\text {Ancricau. }}$

dR. LaNGLEY'S BOLOMETER


INFRA-RED SPECTRUM OF ROCE SALT PRISM.
Wave Lengths, $075 \mu$ to $2 \cdot 29 \mu$.

infra-red spectrum of a rock salt prism.
Wave Lengths, $2.09 \mu$ to $5 \cdot 69 \mu$.

the astro-physical observatory of the smithsonian institution, washington. dc.
the temperature of the sun, he compared the heat and light of the sun to that of molten steel in a Bessewer converter, and at the same time showed that the temperature of the sun was very wuch greater than $1500^{\circ} \mathrm{C}$., which was the temperature usually accepted by men of science. These results were obtained by means of a thermopile, which was the most delicate instrument then known for measuring radiant energy. It became manifest to Dr. Langley that an apparatus wore sensitive than the therwopile, and which at the same time should be more accurate, would be of the utmost value in such investigations. What was needed, he said, was "a measurer of radiant energy, and not a mere indicator of the presence of feeble radiation." Aided by a grant from the Rumford Fund of the American cademy of Arts and Sciences, he set to Academy of Arts and Sciences, he set to work in December, 18 , to invent an instru ment that would yield the desired results.
His earliest design consisted of two strips of thin metal placed side by side in conditions of environment as nearly identical as possible and in such a manner that one strip could be exposed at pleasure to the source of radiation. When warmed by the radiation, the electrical resistance of the strip exposed increased proportionately over that of the other, and this increased resistance to the flow of the current from a battery could be measured by a galvanometer
Having thus determined the nature of the instrument to be used, the next step was to study the best method for its manufacture, and in this much time was consumed in experimenting. To secure a radiaring body that would not vary from one experiment to another, or from day to day, was the first problem to be considered, and it was not an easy one. He decided to employ the flame of a petroleum lamp within a glass chimney, the radiation being limited by a circular opening of one centimeter diameter in a triple cardboard screen.
With this lamp he tested various metals, such as gold foil, platinum foil, and various grades of platinum wire, gold leaf gummed on class, extremely thin sheet iron, and the same metal blackened with camphor smoke. The size of the strips was also carefully studied, and he found after much painstakng work that the best results were obtained with an instrument which he described somewhat as follows:
Metallic steel, platinum or palladium are rolled into sheets of from $\frac{1}{0}$ to ${ }_{15}^{15^{1} 0}$ of a millimeter in thickness, and from these sheets strips one millimeter wide and one centimeter long, or less, are cut. These strips are then united so that the current from a battery of one or more Daniell's cells shall pass through them. The strips are in two systems, arranged somewhat like a grating; and the current divides, one-half passing through each. When the two currents are equal, the needle of a delicate galvanometer will not be deflected; but when radiant energy in the form of heat falls on one of the systems of strips and not on the other, the current passing through the first is diminished by the increased resistance; and, the other current remaining unaltered, the needle is deflected by a force due to the battery direct ly, and immediately to the feeble radiant heat, which by warming the strips so little as $\frac{10}{1000}$ of a degree Centigrade, is found to produce a measurable deflec tion.
So delicate was the instrument thus added to the tools of science that it was said by Dr. Langley that "a change in the temperature of the metallic strips of one hundred-thousandth of a degree can, I believe, be thus noted;" and it is evident from

