IExTlich Mrichex

Oasting Blank Records,

Making Band Records.

Turning the Blanks

Making Violin Solo Records.

Testing the Phonographa,
teg mandiacture of edibon phomoarape records, -[See page 800.]

ESTABLISHED 1845

MUNN \& CO., - . - Editors and Proprietors. PUBLISHED WEEKLY AT
No. 361 BROADWAY, - . NEW YORK.

terms to subs cribers

 the scientific american publichations.

MUNN \& CO., 361 Broadway, corner Frankin Street, New York

NEW YORK, SATURDAY, DECETIBER $22,1900$.

THE METRIC SYSTEM IN CONGRESS

Now that the House Committee in charge of the bill to substitute the metric system in place of our present system of weights and measures has decided to make a favorable report, the chances of our having to think and talk in terms of meters and kilogrammes become very real. The arguments in favor of the metric system are so many, so reasonable, and so well known, that it is not necessary to reiterate them now. "Apart from the saving of time and labor among ourselves, there is the commercial advantage which will be gained by abolishing a systen of weights and wëasures which seriously hampers us in our trade with almost all the foreign nations, and particularly with the LatinAmerican republics. The English-speaking races stand alone in the use of the old and largely discredited system; and alchough these races are far in the lead in manufacture and commerce, and have the power, if they wish, to perpetuate for many a decade to come a confessedly clumsy and antiquated system, every argument of utility and convenience calls for the substitution of a decimal system, which, by long use, has proved its all-round superiority.
It is scarcely likely, however, that such a change will be made during the present Congress, and the probability of the bill's becoming a law would be greatly increased if the other great branch of the Eng-lish-speaking race could be induced to make the lish-speaking race could be induced to make the
change simultaneously with this country. The agitachange simultaneously with this country. The agita-
tion in favor of the metric system is as strong, possibly tion in favor of the metric system is as strong, possibly
stronger, in Great Britain than it is here, and in view stronger, in Great Britain than it is here, and in view
of the close trade relations and the enormous volume of business between the two countries, it is well worth considering whether an attewpt at concerted, or rather simultaneous, adoption of the metric system would not be advisable.

BOSTON AND THE "AMERICA" CUP.

Every one who is interested in the cowing "America" cup contest was pleased to learn that Boston is to be represented in the races of 1901, for it was in this city that the celebrated Burgess boats were conceived and built, and it was to the generosity and sportsmanship of a Boston yachtsman that we owed that splendia of a Boston yachtsinan that we owed that splendid
trio of sloops "Puritan," "Mayfower," and "Volun teer," which, with the " Vigilant," were the last of the centerboards to maintain American traditions against the keel boats from over the ocean. We are glad to note that the gentlemen who will uanage both the New York and the Boston yachts have intimated that they will be prepared to give to the public such information regarding the design and general characteristics of the yachts as may be made public without prejudicof the yachts as may be made of the "America" cup. The announcement will be immensely popular with the public; for it is a fact that most of the secrecy which has marked the preparations for the contests of recent years was, as the disclosure of the models subsequently proved, quite unecessary. When "Columbia" was taken out of the water, she proved to be merely a modified "Defender ;" and "Shamrock," with the exception of $h \in r$ fender ;" and "Shamrock," with the exception of $h \in r$
a!uminum deck, possessed even less novelty of design a!uminum deck, possessed even less
and construction than "Columbia."

FILTRATION OF OUR WATER SUPPLY.

Sudden and extremely heavy rains of a few weeks ago, cowing after a period of rather long drought, brought down into the storage basin of the Croton watershed a large amount of decaying vegetation aud various forms of organic debris, which had lain comparatively undisturbed during the summer and auftum months. As seen in New York, the result was such a turbid and malodorous condition of the water, that not even the most earnest assurances on the part of the officials that there were no typhoid or other dis. ease produejng germs in the water, could render it palatable. The public may be at times unreasouable, bat it can scarcely be called so when it asks that pare water shall look pure, aमđ̈ thet its qualities shall
be something more than negative. Inasmuch as the Grand Jury has taken in hand the question of a better water supply for Greater New York, the present outcry comes at an opportune time.
Obviously the remedy is the provision of a first-class filtration plant, and the success which has attended filtration, notably in the case of Albany, is a guarantee that the outlay, though it wight awount to several million dollars, would be money well spent. The report of the Merchants' Association Commission for the enlargement of New York's water supply, contemenlargement of New York's water supply, contem-
plates the erection of a vast filtration plant in the hills plates the erection of a vast filtration plant in the hills
above Poughkeepsie, through which every gallon of water that comes to the city would pass. The construction of a filtration plant in connection with the Croton watershed would not be money thrown away, as provision might be made to incorporate it as a part of the larger scheme whenever the latter shall be carried through.

IMPORTS AND EXPORTS OF THE COUNTRIES OF THE

 WORLD COMPAREDThe Treasury Department is preparing a statistical abstract which will show the imports and exports of every country in the world which has statistical reports. In doing this, the aim of the Bureau of Statistics is decidedly ambitious, since it is intended to present a comparative picture of the world's commerce, not only of to-day, but for a tong term of years extending into the past. The opening chapter of the proposed volume shows the imperts and exports from the carliest date for which figureś are obrainable, down to the present time. In the case of Great Britain, the report begins with the year 1800; of France, in the year port begins with the year 1800; of France, in the year
1831; and of Germany, in 1872 . As far as the work has gone, the figures that show the total commerce, country by country, afford material for some interesting comparisons with our own growth. The imports for homé consumption of Great Britain, for instance, which n the year 1800 amounted to $\$ 81,310,000$, had risen in 1899 to $\$ 2,043,896,450$, an increase of 2,400 per cent, while in the case of the United States the imports for home consumption, which in 1800 were $\$ 52,121,891$, in 1899 had grown to $\$ 685,441,892$, an increase of 1,215 per cent. The contrast on the export side of the comparison is much wore clearly in favor of the United States; for while the exports of articles of home production from the United Kingdom in 1800 were $\$ 111,107,000$, in 1899 they were $\$ 1.287,151,345$, an increase of 1,059 per cent; whereas in the case of the United States the exports of home products rose from $\$ 31,840,903$ in 1800 to $\$ 1,293,931,222$ in 1899 , an increase of 3,681 per cent.
As regards France, the comparison is equally interesting. In 1831 the imports for home consumption into France were $\$ 72,182,000$, and they had increased 1,108 per cent by the year 1899, as against an increase during the same period in the case of the United States of 734 per cent. During the same period the exports of articles of howe products in France showed an increase of 810 per cent, whereas the increase in the exports of of 810 per cent, whereas the increase in the exports of
the articles of home production in the United States during the same period was 1,933 per cent. Compared with Germayy in the period from 1872 to 1899 ,- while the German imports showed an increase of 64 per cent and the exports an increase of 42 per cent, during the Same period the imports into the United States showed an increase of 24 per cent, and the exports of home products an increase of 181 per cent. A specially interproducts an increase of 181 per cent. A specially inter-
esting fact developed by the study of these figures is esting fact developed by the study of these figures is
that in the case of the United States they show with much greater frequency than in any other countries a favorable " balance of trade," or excess of exports over imports.

REPORT OF THE CHIEF OF THE BUREAU OF ORDNANCE.

The report of Rear-Admiral O'Neil, Chief of the Bureau of Ordnance, states that satisfactory progress has been made in the manufacture of the new longcaliber guns with which our latest battleships and cruisers are being armed; it also shows that the important work of converting the old slow-firing weapons to rapid-fire guns is being carried through as fast as the capacity of the gun shop at Washington will allow.
During the year the last of the 13 inch guns ordered, making thirty-four in all of that caliber, has been completed, while of the twenty 12 inch guns of the new 40 caliber pattern ordered for the ships of the "Maine" and "Arkansas" class, one has been tested at the proving grounds and has given admirable results. The test showed that this weapon is the most powerful of its type in the world, for under a powder chainber pressure of only $161 / 2$ tons. a velocity of 2,854 feet per second was developed, with an equivalent muzzie energy of 47994 foot-tons. The power of this gun is shown by comparison with the 12 -inch gun of the "Iowa," which with brown powder has a muzzle velocity of 2.100 foot-seconds and a muzzle energy of only 26.000 foot-tons; or with the 13 -inch gun of the "Kearsarge," which with smokeless powder develops an energy of some 2,000 or 3.000 foot-tons less than the new weapon. Our new ships of the "Maine" and all
later types will unquestionably be armed with the most powerful 12 -inch rifle in the world.
Eight-Inch Gun.-The mention in the report of the 8 -inch nickel-steel gun, 35 calibers long, which has been fitted with a new conical breech mechanism, calls to mind the late lamented Lieutenant F. J. Haes ler, who, like the late Lieutenant Dashiell, was one of the most prowising of our younger ordnance officers. The breech mechanism of the 8 -inch gun mentioned was designed by the former officer. The threads of the plug are continuous and wind about a conical breech block. There are no slotted-out spaces, as in the cylindrical block, and its conical form enables the block to be swung on its hinge immediately into position, a single pull of the lever closing the block, turning the plug 225°, and engaging the thread throughout its whole length. Remarkable results for velocity of fire were shown by this gun at its trial. Beginning with the gun loaded, a rate of fire was obtained of six unaimed shots per minute.
Seven-Inch Gun.-We note with satisfaction that a set of forgings for a 7 -inch experimental gun of 45 calibers has been delivered at the naval gun factory. The call for a gun intermediate in weight and power between the 8 -inch and the 6 -inch is occasioned by the wonderful improvement in armor due to the introduction of the Krupp process. Time was when the 6 -inch gun was more than a match for the light armor carried by the cruiser class; but to-day it is questionable whether the 6 -inch shell, even when fired from guns of the highest velocity, will have, at the ordinary fighting ranges, sufficient penetrative power to get through the Krupp plates of the modern cruiser. The 7 -inch or $71 / 2$-inch gun combines something of the penetrative power of the 8 -inch with much of the handiness of the 6-inch weapon, and we confidently look to see it adopted as one of the standard guns of the navy. Six-Inch Guns.--An experimental 6 -inch gun of 46 calibers has been tested, and with a chamber pressure of half a ton wore than the 12 -inch gun, or 17 tons to the inch, has developed a muzzle velocity of over 3,000 feet per second. The new guns of the battleship "Maine" and all later ships are to be 50 calibers long, and this increased length will no doubt enable them to secure the same velocity with a chamber pressure considerably below the specified regulation pressure. These results are, if anything, more creditable than those achieved with the 12 -inch gun; for the muzzle energy corresponding to 3,000 foot-seconds is over 6,000 foot-tons. The muzzle energy of our early 6 -inch guns is only 2,773 foot-tons, so that the introduction of its own special powder and improved methods of construction have enabled our Ordnance Bureau to more than double the striking energy of this caliber of weapon.
Good progress has been made with the new 50 -caliber guns of 5 inch, 4 -inch, and 3 inch caliber, and the present indications are that the armament of the many new vessels under construction will keep pace with the progress of the ships themselves.
A most valuable work of reconstruction, of which but little is known, is the task of converting the old slow-firing guns of the earlier ships of our navy to rapid-fire guns, thereby enormously increasing their efficiency. During the year twenty-five 6 -inch, 30 -caliber gunsis have been converted, making a total of eighty of this class which have been thus improved, while four 8 -inch, 30 -caliber guns which were removed from the "Chicago" to make way for a more modern type have been fitted with new and improved breechmechanism. The time is approaching when the batteries of every ship in the navy will be of the rapid-fire type.
As was recently mentioned in these columns, the Bureau has been successful in securing satisfactory contracts for the armor required for the three battleships of the "Maine" class, the five battleships of the "Pennsylvania" and "Virginia" classes, the six armored cruisers of the "West Virginia" class and for the three protected cruisers of the "Milwaukee" class. It is highly gratifying to learn frow the report before us that the ballistic qualities of the Krupp plates which have been made by the Carnegie and Bethlehem companies for Russia show that the arwor wakers of this country are capable of reaching the highest standard in the manufacture of face-hardened arimor.

THE GREATEST IRON ORE MINE IN THE WORLD.

With a record to its credit of $1,000,000$ tons of iron ore mined during the past twelve months, the Norrie mine on the Gogebic range may be considered the greatest iron ore producing wine in the world. This output represents about one-fifth of the annual ore supply of the Carnegie Steel Company, Limited.
The Norrie mine has been in operation during the past fifteen years. Several years ago the Oliver Mining Company, under which name the ore plants of the Carnegie interests are operated, obtained control of the Norrie mine, and since that time there have been wonderful improvements in the methods of mining and handling the ore and preparing it for lake shipment to the Carnegie docks at Couneaut. More than 3,000 tons

of ore are mined and shipped each working day of the

 yearThe railroads which carry the product to the docks have been brought to the very mouths of the mine. The "skip" cars which convey the ore from the mine dump their contents into immense ore pockets, which in turn empty into the rallroad cars waiting beneath to receive their load. When there is an over-supply of ore, the surplus is dumped on the stock pile. Mining never the surplus is dumped on the stock pile. Mining never
ceases. The aspect of the Norrie mine is very different ceases. The aspect of the Norrie mine is very different
from that of the Menowinee range, where great ore pits from that of the Menowinee range, where great ore pits
can be seen. The Norrie is a mine in the true sense of the word; for there is no open pit, no evidence of the ceaseless activity far beneath the surface.
The mine now known as the Norrie includes workings in which were four separate wines formerly known as North, East, and West Norrie and the Pabst. Two additional mines, the Vaughn and the Aurora, are also additional mines, the Vaughn and the Aurora, are also
operated by the company under the name of Norrie, but their produet forms a separate account. If the output were included with that of the Norrie, the sum total would be much in excess of $1,000,000$ tonsper year.

ANIMALS THAT BLOOM AND PLANTS THAT EAT MEAT.

In general, animals move about to seek food, while plants are fixed to one spot and get their nourishment from the earth in which their roots are imbedded and the air that surrounds their leaves, but there are species in each "kingdom" that do not follow the rule. Botanists know of plants that have neither roots nor leaves, of others that have one but not the other, and of others still that are undoubtedly vegetable yet move about as freely as animals would do. On the move about as freely as animals would do. On the
other hand there are animals that never leave the spot on which they first took up their habitation, and that seem to trust to luck for food. The oyster and clam have thus lost the power of locomotion. There are many that have been separated from the plants only by the researches of recent years. Sponges, corals, sea anemones and the whole "sea cucuinber"group were anemones and the whole "sea cucumber"group were
long believed to be vegetable, and many blue water long believed to be vegetable, and many blue water
sailors think so to this day. There are animals that sailors think so to this day. There are animals
seem to blossom as freely as do flowering plants.
The sea anemone is one of the commonest of these. It is found clinging to rocks in sheltered places along shore in practically every part of the world, for it is not confined to any special region. It grows only in comparatively shallow water, that is in depths of less than five hundred fathows, although there is one species that lives in the open sea, but wherever species that lives in the open sea, but wherever
found it is essentially the same in structure. It is a found it is essentially the same in structure. It is a that fastens it to a rock or other foundation, and expanding above into the flower-like "disk" with the mouth in the center. All around the opening of the mouth are curling tentacles, not unlike the petals of a modern chrysanthemum. Some varieties are almost or entirely colorless, while in some others the tentacles are gorgeously tinted and rival the flowers of the field; but in all lurks death in a certain and horrible form. but in all lurks death in a certain and horrible form.
Watch some little ereature touch the curving arms, Watch some little creature touch the curving arms,
and they will be seen to curl inward and wrap the intruder in their folds as they push it toward the mouth. The inner sides of the tentacles are covered by poison glands that sting the prey to insensibility or death and so stop the struggles that might prove disastrous to the anemone. When the mouth is reached, the captive is pushed into the hollow interior, and the anemtive is pushed into the hollow interior, and the anem-
one shuts up into a reddish brown ball until its meal one shuts up into a reddish brown ball until its meal
is digested, when it spreads its fatal beauties for another victim.
Another great family of flowering animals is that including the "sea cucumbers." These animals have long, flattened bodies of a dark color that ranges from brown to reddish purple, and their most active movement is a slow creeping along the bottom. At one end is the mouth surrounded by the petal-like tentacles that push into it the mud and sand on which the organisin lives. The mud of the bottom is filled with tiny beings that really furnish the food, but it appears to subsist on the inorganic mud itself. The most curious thing about the "cucumber" is that it takes lodgers in a way. It has a large cavity within its body that is filled with water, and into this cavity a little fish called the fierasfer works its way, and then lives within the helpless host. It is not a parasite, for it within the helpless host. It is not a parasite, for it
leaves its lodging to seek food, but it merely lodges in the holothurian for shelter, as the power of stinging that sea cucumbers possess to a high degree renders them fairly safe from molestation. The little lodgers do not seem to do any harin to their landlords except when several take quarters in the same one, and then they may inflict fatal damage by overcrowding.
The whole class of coral-forming animals resemble plants so closely as to deceive all but skilled observers. Few sights in nature are more beautiful than the "coral gardens" in the West Indies, where the gorgeously colored vegetation is almost entirely animal in character. . Thesea bottom near Nassau is formed of white coral sand and the debris of broken-down shells, and covering this is water of such transparency that
the boat seems to float in air. A plate of glass is let into the floor of the boat, and the reflection of the sun light frow the white saud below illuwinates the scene so that its smallest detail is visible. The sheet of glittering white sand is broken by dark masses of coral rock from which strean broad sheets of "fan coral" that naturalists call gorgonias, brilliant in vivid reds, yellows and purples. The darker masses of rock are spangled with anemones that equal the tints of a tropical forest, while the waving plumes of the sea feathers cal forest, while the waving plumes of the sea feathers
and the fantastic shapes of the glass sponges add the and the fantastic shapes of the glass sponges add the
charm of variety of form. Clumps of bright-hued sea weeds that bear. little resemblance to the dirty, faded green ones cominon on our coasts, are the only repre sentatives of real vegetation that greet the eye. Al the rest is animal, but the eye is deceived by a mimicry of plant life so perfect as to make the efforts of our human players crude indeed. The vivid stars of richhuman players crude indeed. The vivid stars of rich-
est crimson that look like blooms on the branches of est crimson that look like blooms on the branches of
the coral are really the ends of boring annelids, worms that cut into the stony mass and ensconce themselves in the trunks of growing coral.
The birds and butterflies of the upper world are replaced by fishes of curious forms and flashing colors. The common names of these give even those who have never seen them an idea of their appearance, but their never seen them an idea of their appearance, but their
beauties can be appreciated only when in their native beauties can be appreciated only when in their native
element and amid their normal surroundings. Angel element and amid their normal surroundings. Angel
fishes, parrot fishes, butterfly fishes, and shoals of smaller ones float through the water with easy grace, or dart into shelter with a quickness that would elude the eye but for the silvery gleam of their bodies as the sunlight is flashed back from the glittering scales. It is hard to believe that the fishes that seem to browse among the coral trees do not actually bite off the tips as sheep would nibble twigs, and even so close an ob server as Darwin thought that they did so, but they are seeking the crustaceans that feed on the coral madrepores, or, perhaps, the madrepores themselves.
In the sheltered tropical waters grow anemones that are larger and more beautiful than those in our harsher climate. Some of them are two feet or more in diameter, and from this they range to tiny forms that can be found only after careful search, but from the largest to the smallest, they have a charm that lures many an unfortunate being to its doom.
Zoology has revealed no organism more at variance with the popular conception of animals than the " sea lilies" or crinoids, and when seen for the first time it is difficult to believe that they are not near relatives of the stately queen of flowers, but in all but form they are animals belonging to the same fawily as does the starfish. The crinoids grow in clusters like the beds of tiger lilies, and from the bed a jointed stalk rises sometimes to a height of several feet before the "lily" is reached. Surmounting this stem is a disk that bear the mouth, as in the case of the anemones, but the ten tacles are much longer and rise around the wargins of the disk in such a manner as to simulate a lily with marvelous perfection. Unlike most of the anemones, the crinoids live in deep water, and some of them have been dredged up from the depths in which it seems impossible for such tender and delicate things to exist They were among the earliest types of animal life on earth, and their fossils are very common. They are in such preservation that they were called "stone lilies" before their true nature was understood, and their origin was much discussed before the living crinoids were discovered.
However anomalous the idea of flowering animals may appear, it is not more so than is that of plants that set traps and devour the prey taken by them. Flesh-eating plants seem to violate the rules of nature yet the violation is apparent rather than real, for many plants absorb animal matter as part of their food. In general this is taken in only after decomposition has rendered the tissues soluble, but there are some blood thirsty plants that kill and eat small animals as ruth lessly as do beasts of prey.
Among these the little sun-dew is most widely known, for its fame was spread over the world by the work of Darwin, who gave an elaborate description of it in his "Insectivorous Plants." The leaves of the sun-dew are studded with little projections on whose summits are drops of a clear, sticky liquid that glistens in the sun, as does dew, and frow this the name is derived. The liquid attracts insects, either by its appearance or its odor: but when the unfortunate visitor seeks to sip the tempting draught, the leaf begins to coil inward and form a cup from which escape is impossible. The liquor runs down into the hollow and collects into a pool, in which the insect is drowned before being digested.
In the neighborhood of Wilmington there grows the "North Carolina Fly-Catcher," a plant that Linnæus called " the miracle of nature." This plant has leaves divided into two lobes that sit at a little less than a right angle to one another, and are fringed with tiny spikes. The upper side of each lobe is covered with minute glands that secrete a purple fluid, and also has a number of sensitive filaments arranged in a triangle. If an insect touch these filaments, the lobes shat up like the leaves of a book, the two parts turn-
ing on the midrib as a hinge, and the intruder is captured. If it be very small, it can escape through the spaces between the interlocking spikes, but otherwise the leaf forms itself into a temporary stomach in which digestion proceeds. The glands that were dry before, begin to secrete an acid liquid of a purple color, containing an enzyme like pepsin, in which the soft parts of the victim are disintegrated, and as this proceeds the pressure is increased until all of the digestible matter is absorbed, when the leaf gradually opens and the dry husk is extruded. The leaf will close on a bit of glass or stone as readily as on a fly, but the frand is quickly discovered, and the indigestible matter rejected. The leaf is then ready to close again, even before it is fully opened, whereas when digesting food material it stays closed for several days, and is very sluggish in shutting again. The most vigorous leaves seem to be able to digest only two or three times in a lifetime, and the botanist Lindsay fed some specimens with such quantities of meat that they died from indigestion.

In Portugal there is a plant known as the Drosophyllum lusitanicum among botanists, that is so efficient as a fly catcher that the country people hang up branches of it for this purpose. It secretes a gummy, sticky fluid that entangles insects and kills them.
The cominon bladderwort is a foe to many small animals. It captures great numbers of water bugs, and has been known to catch and kill small fishes. From time to time the attention of fish culturists is called to this plant as a foe, but it is not regarded as a serious one.

THE IRON AND STEEL INSTITUTE AT PARIS.

Among the most interesting of the papers read beAmong the most interesting of the papers read be-
fore the recent meeting of the Iron and Steel Institute at Paris, was that of Mr. Ernest Lange, of Manchester, relating to a new method of producing high temperatures and its application in practice. This method has been first practically applied by M. Goldschmidt, of Essen, and depends upon the reducing action of aluminium. This metal has a great chemical activity, and its affinity for oxygen gives it a considerable reducing power. Its heat of combustion has been determined by Mr. Thowsen, who finds that 393.6 calories are disengaged by the union of an atom of the metal with oxygen and water; as a result of the reaction, aluminium oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$, and water are formed. M. Goldschmidt, of Essen, was the first to apply the principle on a large scale in metallurgical work and overcome the difficulties met with by previous experimenters. He found that to cause the reaction it was not necessary to heat the whole mixture of the metallic oxide to be reduced and aluminium po wder to its igniting temperature, but it sufficed to cause the ignition in a single point, and then the reaction soon spread throughout the whole mass. In this way exterior heating was dispensed with, and thus all danger of explosion was a voided.
In the method used by Goldschmidt, the crucible in which the action takes place remains at first cold at the exterior, and only becomes heated up by conduction, this being an excellent condition for resisting the very high temperature of the reacting mass in the interior. To start the action, one point is strongly heated by placing at the surface a cartridge containing a small quantity of a mixture easily inflammable and capable of giving a high temperature; the aluminium is used either in powder or in grains. The crucibles used should be such that their material does not enter into the reaction; for these, magnesia is preferable. The metals reduced from their oxides are obtained in a very pure state without alloy of aluminium, provided the reaction starts with a slight excess of the oxide; they are quite free from carbon, which is an important point. Under these conditions M. Goldschmidt has been able to produce 2.20 pounds of pure chromium in 25 minutes; he uses a special furnace in the form of a crucible; a small quantity of the mixture is poured in and ignited, and when the action is finished the process is repeated. The surface crust of corundum is remelted at each addition, while the metal unites at the bottom in a single mass; it is estimated that a temperature of $3.000^{\circ} \mathrm{C}$. is reached in the interior of the crucible. Mr. Lange considers that this method is also of considerable value in rail-soldering and repairing of steel castings. In these cases the oxide best adapted is the red oxide of iron, $\mathrm{Fe}_{2} \mathrm{O}_{3}$, and it is mixed with aluminium powder, using the following reaction: $\mathrm{Fe}_{2} \mathrm{O}_{3}+$ $\mathrm{Al}_{2}=\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Fe}_{2}$. This mixture may be regulated according to the degree of heat it is desired to use. For relatively low temperatures pure aluminium is not required, or in other cases the oxide of iron may be mixed with magnesia or carbonate of lime. For soldering purposes alone, the reduced iron need not be absolutely pure, but this latter condition is necessary for the repairing of castings. As concerns the soldering process, this method offers great advantages in the construction of electric railways, where the continuity for the return current though the rails must be assured. It permits of operating on the spot, and avoids the use of railbonds, without requiring the transportation of a heavg outfit.

A NEW RATCHET-WBENCH.

Our illustrations picture a new ratchet-wrench invented by Joseph M. Nesley, of Grant, Mont. Fig. 1 is a perspective view, Fig. 2 a partial plan view, and Fig. 3 a partial longitudinal sectional elevation of the tool.
The wrench consists essentially of a lever-body to the top and bottom of which plates are riveted. The plates overhang the sides and ends of the wrench. The overhanging ends are perforated to receive a rat-chet-wheel provided with two nut-receiving openings.

the nesley ratchet-wrench.

The teeth of each ratchet-wheel are adapted to be engaged by spring-pawls held between the overhanging side edges of the top and bottom plates previously referred to.

In order that the one or the other spring-pawl may be thrown into engagement with a ratchet-wheel, cams are formed near the ends of the spring-pawls. These cams lie, not directly opposite each other, but are located one somewhat in advance of the other, so that they way be alternately acted upon by blocks sliding in slots formed in the faces of the top and bottom plates. By moving the blocks back and forth, the springpawls are in turn thrown in and out of engagement with the ratchet-wheels. The tool can therefore be used as a right or left hand wrench without removal from a nut or bolt head. The construction of the wrenchbody with a central lever-bar and top and bottom plates, which overhang to furnish a bearing for a socketed ratchet-wheel at eacolı end, is cheap and compact.

POWER SCRAPERS ON THE ST. LAWRENCE POWER COMPANY'S CANAL.
Where the nature of the ground permitted it, extensive use was made, in the excavation of the St. Lawrence Power Company's canal, of the powerful stea'ndriven Vivian scraper. The character of the work done by these scrapers is very clearly shown in the accompanying illustration. The plant is composed of a sower and an anchor, which were placed on opposite sides of the canal. The anchor, which in the illustration is in the immediate foreground, carries a sheave, through which passes an endless cable. The tower carries the engine and boiler, and is placed far enough back from the cutting to allow of the formation of a spoil bank for the excavated material. Both the tower and the tail ancior are placed on trucks, which run upon parallel tracks on either side of the canal excavation, this arrangement being adapted to facilitate
a change of position for the purpose of making a new cut. An endless cable is attached to the back of an unusually large scraper, which is 8 feet in length, 2 feet in depth, and has a cutting edge of 7 feet. Attached to the forward lower part of the scraper is a drag rope. The scraper is formed with a curved bottom to facilitate its tipping when it is full of material, and by keeping the cutting edge clear of the ground, to allow it to be easily dragged along the ground toward the spoil bank.
In operating this machine, the endless rope is wound in toward the tower, thus bringing the scraper to the commencement of the cut. The scraper is then raised to an angle of about 45°, and standing at this angle, and being pulled at the same time by the drag rope, it is forced into the ground and loads itself as it is drawn by the drag cable toward the tower. When it has been pulled onto the spoil bank, the drag rope is thrown out of gear and the endless rope is thrown in. This dumps the load. The endless rope is then reversed, and the scraper is drawn back to the anchorage for a fresh cut. The only labor required to operate one of these machines is that of an engineer, a fireman and two signal-men. The scraper has a capacity of from 3 to 4 .cubic yards, and in favorable material it has made cuttings 26 feet in depth. The total yardage moved by this means at the canal in the year 1898 was 123,350 cubic yards, and in 1899 the total amount for the year rose to 207,500 yards. We are indebted for the illustration and particulars to Mr. John Bogart, the chief engineer of the company.

THE PLECHER ELECTRO-PNEUMATIC TELEPHONE. A new telephone transmitter and receiver has been devised by Mr. Andrew Plecher, of Stanford University, Cal., the peculiar construction of which is shown in the accompanying diagrams. Of these diagrams, Fig. 1 is a view of two combined transmitters and receivers; Fig. $2 \boldsymbol{i s}$ a slightly modified form.
The transmitter and receiver consists of an iron box, M, connected by a heavy iron wire, I, with a similar iron box, M. In each iron box are two thin diaphragws, D and D^{\prime}, insulated from each other by a non-conducting warginal ring, N, forming an air-tight joint with the diaphragms. Behind the diaphragms in the box, M, is a chamber having an opening, O, for the admission and discharge of sound waves. In the hermetically-sealed chamber thus constituted a coil, X, of fine iron wire is suspended, so wound that the individual turns nearly touch one another. One end of the coil is connected with one diaphragm, D, and the other end with the second diaphragin. D^{\prime}. When an electric current passes through the coil, the turns will touch since the coil becomes magnetic. The vibrations of the diaphragms will separate or bring into contact the turns of the coil, whereby resistance is thrown into or out of the circuit, thereby causing a corresponding fluctuation of the current. For the magnetic action of the current causes the turns of the coils to be attracted. Then when the vibrating diaphragius move outwardly this lateral contact is broken, and the resistance of the whole coil will be thrown in by compelling the current to traverse the coil lengthwise instead of leaping from turn to turn. The air-vibrations propagated by the voice act on the front face of the diaphragm, D, through the mouthpiece and on the rear face of the diaphragm, D^{\prime}, through the opening O, whereby the two diaphragins are caused to vibrate in opposite directions. The effect on $t h e$ resistance varying coil, X, is therefore augwented. The fluctuations are transmitted through a circuit composed of a fine wire, K, connected with the diaphragm, D, and wound around the central stem of the box and the heavy wire, I, thereby converting the kox and the wire, I, into a magnet. The wire, K, is connected with one pole of a battery. From the other pole of the battery a similar wire, K, passes and is connected as shown with the diaphragw, D. In

order to cause the hermetically sealed chamber between the diaphragis to be expanded or collapsed, to regulate at will the amplitude of movements of the turns of the coil, X, a bulb is employed to place the air under regulable tension.
In Fig. 2 the ends of the coil have carbon buttons mounted on metal disks. The coil is sustained only by threads. The carbon buttons are arranged to bear with an elastic pressure against the diaphragm-plates, $D D^{\prime}$.

London's New Electric Railway.

The Baker Street and Waterloo Railway, the third electric railroad in London to be propelled by electric, traction, is rapidly approaching completion, and one section will shortly be opened to the public. The total length of the line is a little over five wiles, and extends from the Elephant and Castle Circus on the south side of the river to Paddington Station, the terminus of the Great Western Railway, in the west end of the metropolis. The route passes under the busy thoronghfares of Northumberland Avenue, Charing Cross, Regent Street, and Edgware Road, and is a connecting link between four of the great trunk railroads of the country, and also the new Central Electric Railway of London and the underground District Railway.
The system of construction is similar to that adopted in the Central London Railway, consisting of two parallel tunnels, throughout its entire length, bored upon the Greathead system. The engineers are Sir Benjawin Baker, K C.B., Mr. W. R. Galbraith, C.E., and Mr. R. F. Church, C.E. As the railroad passes under the River Thames, advantage was taken of the opportunity of sinking two temporary shafts from a timber staging in the river, since by this means it.has been possible to extend the work of boring simultaneously

Surfm. M.

AN IMPROVED TELEPHONE.

north and south, and to convey the ballast excavated to the top of the shaft and to discharge it direct into the barges, without necessitating any intermediate cartage. Work was also able to be continued incessantly without inconveniencing the traffic in any way, since the shafts have been sunk on one side of the river, so as not to obstruct the river channel in any way. The engineers have successfully driven the tunnel throughout the water-bearing gravel of the bed of the Thames, without the slightest hitch.

The electrical generating station, and depot for the accommodation of the rolling stock, etc., is located about a quarter of a mile distant from Waterloo Station on the southern side of the river. It is anticipated that the trains will complete the whole journey from the Elephant and Castle Station to Baker Street in twenty-five minutes, the speed of the trains being about 13 miles an hour. A three winutes service will be inaugurated, so that rapid transit may be assured. The railway will be exempt from competition, since at the present time the only iveans of traveling across Central London in this direction is by omnibus, the journey by which occupies about one hour and a quarter. Then, again, the railroad will serve four of the busiest traffic centers of the metropolis. According to the statistics published by the London County Council, the Elephant and Castle is the second largest point of concentration of passenger traffic in London, folJowed respectively by Charing Cross, Piccadilly Circus, and Oxford Circus. It also taps one of the most thickly populated artisan districts in London, so that the revenue derived from this source alone will be considerable.

The total cost of the scheme will be about $\$ 15,480$. 000. It is estimated that the total gross receipts will amount to $\$ 1.350,000$ per annum, and that the yearly working expenses, allowing the running of 300 trains daily for six days in the week, and 150 trains on Sundays, will aggregate $\$ 500,000$. In view, however, of the rapidly increasing suburban traffic of London, and the marvelous extension of the metropolis, there seems every probability, as in the case of the Central London railroad, that the service will be inadequate. In this event the service will be rendered quicker, and longer trains will be run, since the station platforms are of sufficient dimensions to accommodate trains of nine carriages.

A recharging motor for electric vehicles.
The one great drawback to the present electric motor carriages is their inability to cover more than twenty-five or thirty miles on a single charge, under the most favorable conditions. When a hilly road is encountered, the capacity of the battery is considerably reduced, owing to the heavy discharges it is called upon to make in driving the carriage up hill, and there is a consequent reduction in mileage of from one-third to one-half. Of course, in descending the hills, the vehicle runs by gravity, and no current is taken from the battery. The weight of the vehicle is such, however, that even at comparatively slow speeds the momentum is great enough to generate considerable current if the motor is used as a dynamo. The wakers of the Waverley vehicles were, we believe, the first in this country to make use of this prineiple on their carriages for braking purposes. Their machines are equipped with a set of resistance coils, through which the current generated by the motor may be made to pass, the braking effect becoming greater as wore current is allowed to pass. This forms a very simple, easily controiled and powerful brake, with no wearing parts and nothing whatever to get out of order. It will work on the steepest hills as well as on the level, and will retard the motion of the carriage to any speed desired.
It is apparent that in such a system of electric braking, the current generated is wasted and its energy dissipated in the form of heat when it passes through the resistance coils. To conserve this electrical energy by utilizing it in charging the storage batteries, is one of the features of the improvements herewith illustrated, which have the merit of maintaining or equalizing in some degree the otherwise reduced mileage of the vehicle. The chief difficulty to be overcome lies in the double direction of the current. In order to recharge the batteries, the current must pass through

DIAGRAM OF CONTROLLER CIRCUITS OF RECHARGING MOTOR.
no current and the ammeter pointer will stand at 0 . If the speed increases still further, the counter electromotive force of the motor will exceed that of the battery, and the armature will generate a current in the opposite direction. The motor will do this because the shunt coils of the electromagnet maintain

THE CHARGING MOTOR

their polarity the same, notwithstanding the fact that the series coils are now working against them.

The field magnets are somewhat weaker in this case, since their magnetism is now the difference of that produced by the shunt and series coils, whereas before it was the sum. By this arrangement, since the field magnetism is weaker, the amount of current generated is less than would be produced if the field coils operated in unison, and the charging proceeds for a longer period with a lighter current, while the speed of the vehicle gradually decreases.
Moving the controller to the second and first positions educes the voltage of the battery 40 and 20 volts respectively, caus-
ing a heavier current to be generated by the armature, which will thus produce a much stronger braking effect, and $t h e$ ve-
hicle will stop quickly.
It will be readily seen that this motor is of great value in a hilly region, especially as a considerable per-
 cantage of the
the circuit in the opposite direction to what it does when the battery is discharging and operating the wotor, while when simply a resistance coil is employed, the direction of the current does not matter.
The motor which we illustrate is the invention of Mr. J. C. Lincoln, of Cleveland, Ohio, and is manufactured by the Lincoln Electric Company of that place. It is a four-pole compound wound machine of substantial construction. The four shunt coils are connected respectively to the four crates of the battery, numbered $1,2,3,4$ in the diagram, and are in circuit when the controller is on any of the six positions or notches-four forward and two backward. This connection is made at the controller by four disks against which press spring conductors, and which will be noted at the right-hand end of the controller in the illustration. The coils take but a small amount of current, about three-fourths of an ampere. They are designated by the small figures $1,2,3,4$ on the motor in the diagram, while the series coils are marked \mathcal{S}. The letter A on the motor refers to the armature. V refers to the voltmeter.
The three speeds are obtained by coupling the four crates of battery cells (ten in each crate), first in parallel, then two in parallel and two in series, and finally all four in series. Starting from the extreme left-hand terminal, marked A in the diagram, which is connected by the controller with the $B_{1}+$ terminal of the battery, the current passes first through the ammeter, then through the plug switch, thence through the motor armature to its right-hand A terminal. As this is connected by the controller with the terminal, \mathcal{S}, the current continues through the series coil and returns to the B_{4} - terminal of the battery.
When the carriage descends a grade, if the current is kept on, the speed continues to increase until the counter electromotive force of the armature equals that of the battery, which would be 80 volts with the controller on the third position or notch. At this point the motor will take
additional current consumed in ascending a hill can be recuperated in descending it. The motor is also said to be considerably more efficient than a series one when running under light loads on the level. Slowing down and stopping can be accomplished without using an extra brake lever, and the batteries each time receive a brief recharging, which, although not amounting to very much, perhaps, certainly has a tonic effect; for it seems to be the general experience that freshly charged batteries will yield considerably more current than when they have been standing some hours. The inventor claims that with

AUTOMATIO BEGHARGING ELECTRIC VEHICLE.
that no iron may fall to the decks of passing steamers. The ties will be of wood, but are to be protected by a covering of sand. On either side of the track there will be raised a screen of heavy metal plates, faced with firebrick and reaching to a height of four feet. An extension of thinner plates will bring the screen up six feet farther. The cars are ladle-shaped, and the molten metal runs directly into them when the furnaces are tapped. A locomotive then draws the train to the steel works at a moderate pace. The glowing freight, says The New York Tribune, is still in a fluid condition when it reaches the mixers there. If it were not, the cars would be ruined.

Substitute tor Gutia-percha Bottles.
For the preserving of hydrofluoric acid, which is frequently used for cleaning heliotype plates, in the manufacture of dry plates and for etching on glass, only the expensive gutta-percha bottles have been used heretofore, which, however, become brittle and hard in time, and therefore constitute danger. A very convenient substitute is obtained, according to the Deutsche Photographen Zeitung, by pouring hot wax into a glass bottle with suitable spout, and coating the inside with it, by allowing the wax to harden with constant turning. The neck, as well as the spout, is also coated with wax. Instead of cork or glass make a stopper of glazier's putty. The wax coating at the spout prevents drops from running down to the outside wall.

The electric tramways of Berlin are to undergo extensive development and extension. Intercommunication with the heart of the city and the remotest suburbs is to be established, and a general two cent fare will be charged throughout the wholesystem. Unfortunately, however, the number of accidents is increasing proportionately with the extension of the system. During twelve weeks over sixty tramway accidents occurred, nearly thirty of whicb terminated fatally.

THE MANUFACTURE OF EDISON PHONOGRAPH RECORDS.
The Edison phonograph has become such a familiar object-in our modern home life, and its mechanism, in spite of its marvelous ingenuity, is so straightforward and easily understood, that it is difficult, in giving a description of this prince of toys, to tell the multitudinous possessors of them anything that they did not know before. If one were asked to name the particular part of the phonograph which possesses the greatest interest and which is the most essential to its success, he would have to mention the cylinder of wax upon which the waves of sound are cut by the dainty little sapphire turning-tool "known as the stylus.
The great growth in popularity of the phonograph, and the necessity for keeping the lowners supplied with fresh "literature," has caused the mere work of manufacturing the records to assume truly enormous proportions. Evidence of this is shown in the storage room of the Edison Phonograph Works, in which are to be found tier upon tier of storage "bins," whose contents represent records of 3,000 distinct subjects, or nearly half a million wax cylinders in all.
The first process in the manufacture of records takes place in the melting room, where the proper constituents to form the special grade of wax employed in making the records are brought together and melted in several large vats, each of which contains ahout 1,000 pounds. There are three meltings in all, and between each the fluid is carefully strained to remove any hard or gritty impurities which it might contain; for it is evident that the presence of foreign substances, even a few particles of fine dust, might easily produce fatal irregularities in the grooves of the record. The first two meltings take place in the melting room, and the third in the moulding and shaping room, of which we present an illustration. On entering this room, the most conspicuous feature is several large, circular, rotating tables, set around the periphery of which is a number of round, iron pins which form the core of the mould. Concentrically around each of these pins is placed a brass sleeve. The wax is taken from the melting vats in a can and poured into the moulds in the manner shown in our illustration. The tables are constantly rotated, thus bringing the moulds, which constantly rotated, thus bringing the moulds, which
cool very rapidly, round to the workers on the opposite side of the table, where the wax cylinders are removed. The moving table brings the empty moulds back to the starting point, where they are again filled from the pouring can. The cylinders are cast with an interior spiral thread, which adds somewhat to the strength of the cylinder, and forms the bearing surface when the wax cylinder is placed on the mandrel of the phonograph. After they have cooled, the cylinders are first reamed out to gage, then edged and rough-turned, and finally given a finishing cut, the finish turning being done with a fine sapphire knife. The records are then given a final inspection, in which those that show tine least sign of imperfection, such as a hair crack, or a failure to meet the gage test, are rejected. The cylinders are now ready for the important work of making the records.
It should be mentioned just here that in addition to the standard size of records, measuring about $21 / 4$ by 4 inches, with which the public is more familiar, the Edison Company manufacture a larger size, known as the concert record, which is about 5 inches in diameter. The advantage of the larger size is that the grooves are longer and the curves of the depressions are of longer radius, with the result that the ball-point of the reproducer is able to follow the grooves more closely and give a more perfect reproduction of the sound waves.

One of the upper floors of a large building in the record department is divided into a number of rooms, in which the specialists who are employed by the Edison Phonograph Works are kept steadily at work speaking, playing or singing into the recording machines. One of our illustrations shows the methods chines. One of our illustrations shows the methods
adopted in producing solo records, whether instrumental or vocal. In this case the violinist stands with his instrument immediately and closely in front of three converging horns, each of which connects with a recording phonograph. The only difference between a recording and a reproducing phonograph is in the nature of the little sapphire tool by which the diaphragm rests upon the wax record. In making the record, the "recording stylus" is used, and in reproducing the record, the "reproducing ball" is substituted. The difference between the stylus and the ball is that the point of the stylus is cup-shaped and ground to a fine cutting edge, which, as it travels over the surface of the wax cylinder, is driven more or less deeply into the material, and turns off a shaving which varies in thickness, according to the quality of the sound waves which fall upon the diaphragm. It is extremely interesting to watch the endless stream of fine hair-like turnings which falls from the little tool while the record is being made. One of the first things that strikes a visitor to the record room is the rapidity with which the artists sing, the speed being much greater than that to which one is accustomed in a music hall or opera house. Moreover, the songs are
sung with the full power which would be used before a public audience. As soon as the record is made, it is taken off the mandrel and placed in a phonograph and reproduced to test its quality. If there is the slightest defect, it is, of course, rejected.
Among the most popular records are those of band music, and for making these the company maintains a full instrumental band, which is occupied steadily, under the baton of a conductor, in playing popular airs, marches, waltzes, etc. The musicians are so grouped around the phonographs that the volume of sound from each instrument strikes full upon the horns, the front row of the performers being seated on ordinary chairs and those behind on raised seats. On the occa sion of our visit there were no less than sixteen phonographs on the racks in front of the band, each with its horn pointing toward the musicians. In this case, as in the case of solos, the music is performed at full power.
The testing of the phonograph records is done in a separate room by a corps of experts, who are careful to throw out every record that gives the slightest suggestion of a defect. Long training in this work has made them sensitive to irregularities in tone and quality which would scarcely be noticed by the average listener. It is to this searching examination that the uniformly high quality of the Edison rec̣ords is largely to be attributed.
Our last illustration shows the phonograph testing room. This test is just as important as, and perhaps more so than, the testing of the wax records themselves. The work done in this departwent is really a matter of testing the testers, for during the construction of the inachines every part of the phono graph, as it is completed, is subjected to close inspec tion. It may happen, however, that in the assembling, or in the frequent handling, a trifiing injury may have resulted to some part; there may be a slight lack of adjustment, or the bearings may be clogged with oil, and it is the part of the final inspector to detect such faults and see that the inachine works with the abso lute smoothness necessary to good phonographic re sults.
The phonographs themselves, after passing this test, are put in cabinets and sent to the shipping depart ment; the phonograph records, after the final inspection, are each carefully wrapped in cotton, then in paraffine paper, and finally placed in cardboard boxes on which are printed the catalogue numbers of the records. The boxed records are then stored in numbered bins, and on the receipt of an order, it is a simple matter to select the records, pack them in cases or barrels and wheel them to the cars, which are brought by a switch to the doors of the shipping department. In closing we would make mention of the really admirable system of shop management which is displayed throughout the whole of the works-a system which displays very markedly that characteristically American arrangement of the shops themselves, and of the machines with which they are crowded, which aims at minimizing the amount of handling and transpurtation to which each individual piece is subjected in its trans formation from the crude material to the finished arti cle. There are, as this journal has often pointed out, several elements which conduce to the coumercial su premacy of the country; and to nothing is the cheap ness of our products more directly traceable than to that carefully-thought-out distribution of the work and orderly and consecutive arrangement of the machines, of which these works are a striking example.

Automobile News.

A prominent firm of cycle manufacturers in Coventry (England) have devised a lady's motor bicycle. The nachine is of the conventional design, with the open frame, and the motor, which is a two horse power oil engine, is compactly attached to the rear wheel. The cycle is started in the usual manner by pedaling, and the speed of the motor is controlled by a small lever fixed to the handle-bar.
Next year the Automobile Club of England proposes a more exacting motor car test than the 1,000 -mile tria of 1900 . The experiment will continue over a period of three weeks, commencing, as at present arranged, on August 12, 1901. The cars will leave London en route for Shaftesbury and Plymouth, to cover which distance will occupy two days. From Plymouth they will proceed to the North of England through the western counties to Carlisle. This journey will include a series of hill-climbing competitions on the two steep sharp gradients Dunmail Raise and Shap Fell. Glasgow will be the next destination, where the cars will be placed on show in the Manufacturers' section of the Exhibition. A short independent tour for five days is then projected through the Highlands, the cars reas sembling at Glasgow on August 26. The return to London will be made via York, Lincoln, Norfolk and Welbeck Park, at which latter place the speed trials will be made, as on the last occasion. It is contem plated that the cars will travel 100 miles per day, with an aggregate distance for the tour of 1300 miles, in dependent of the five days traveling in the Highlande.

Mr. Marshall H. Saville, of the American Museum Natural History, has started for his winter work in southern Mexico, where he will continue his excava tions in the territory formerly occupied by the Zapotecans.
An institution was opened in Belgium for the alleged cure of tuberculosis by the exclusive raw meat diet After a trial of a few months, the experiment wa abandoned, as it was found that there was no efficacy in the Richet cure.
The various scientific departments in England recently held a conference in which they sought to obtain government powers for protecting the delicate instruments in the Kew and Greenwich observatories from any magnetic disturbances that arise from the work ing of electric tramways and railways in their vicinity
The Duke of Abruzzi on his recent A rctic expedition carried with him a small balloon, similar in con struction to those employed in the Italian army, for the purpose of pushing farther north when the vesse became blocked by the ice. It, however, proved useless. 'The duke is now busily engaged upon the design of a new balloon, specially adapted for such an object which he will take with him upon his next expedition.
There is to be a ceramic exhibition in St. Petersburg in December. Its aim is to show the public the progress made by Russia and other countries in artistic and industrial ceramics. Only works of artistic excel lence will be admitted to the exposition, but also those which, lacking the preceding condition, are yet distinguished by the originality of their design, form or mode of manufacture.
The city budget of New York city for 1901 calls for the expenditure of $\$ 98,100,41343$, an increase of $\$ 8,321$,440.95 over the budget for 1900 . The largest sums are for education, $\$ 18,512,817.69$; interest on city debt, $\$ 12,100,206.05$; police, $\$ 11,983,343.42$; the redemption of the city debt, $\$ 10,332,173.18$. It is curious to note that The City Record, in which various'advertisements relating to the city are printed, has $\$ 563.200$ appropriated for it, an enormous sum, exceeding that appropriated for buildings.
Sir George Newnes, who financed Mr. Borchgrevink's recent expedition to the Antarctic zone, has placed the whole of the scientific. spoils collected by the late Nikolai Hansen, the scientist to the expedition, at the disposal of the Natural History Museum at South Kensington. The collection comprises birds, beasts, fishes, and an assortment of other innumerable curiosities. The authorities at the museum will select all that they require, and transfer them to the experts in the respec tive departments, to be duly examined and annotated
At a recent congress of German anthropologists, which was held at Halle, Professor Dr. Klaatsch, of Heidelberg, read a paper in which he contended that the hypothesis of the direct descent of inan from apes was no longer tenable. His conclusions were based upon the biceps muscle of the thigh. He stated that it was a mistake to regard man as the most perfectly developed mammal in all respects. His limbs and teeth do not show any high degree of development, and he is superior to other aninals only in his brain development.

The Rev. J. M. Bacon, F.R.S., proposes to make a balloon ascent during one of the thick, impenetrable fogs which visit London during the winter months. He proposes to ascend to the higher limits of the fog and to explore scientifically its constitution. He also proposes to discharge small cartridges of guncotton at great heights, in order to ascertain whether the concussion will dislodge or disperse the fog in any way. He has already carried out several experiments with similar cartridges for acoustical purposes, at varying altitudes.

Arrangements are being made among the various scientific and mechanical institutions in London to hold an engineering congress at the Glasgow Exhibition next summer. The congress will consist of nine sections, with Lord Kelvin as Honorary President. The President of the Institution of Civil Engineers will preside over the first section, while other sections will be presided over by Sir Benjamin Baker, F.R.S., and Sir John Wolfe-Barry, F.R.S. Already a sum of over $\$ 16,000$ has been collected as a guarantee fund for defraying the expenses of the scheme.
The latest development of the automatic machine is an apparatus in which letters and telegrams may be placed to a wait the call of the addressee. The communications are inserted in the machine in such a manner that the name and address is plainly visible through a small window. To obtain possession of a missive, one places a penny in the slot. Shouldra reply be necessary, the insertion of another penny into the instrument will insure the delivery of an envelope and sheet of note paper, and the reply may be written upon a small desk attached to the machine. It is stated that the English postal authorities have consented to place letters and telegrams in these automatic " postes restantes" if theaddressof the particular machine is supplied.

Engineering Notes.

A subway scheme is proposed for Chicago, every other treet in the business section being involved in the project.

It is said that the Krupps are negotiating with Spanish capitalists for the organization of a company in Spain to build ironclads and manufacture ordnance.

The increasing importation of American steel into Great Britain is interfering with the trade of Swansea, as the revenue obtained from the importation of raw material used in making bars, and the industry itself, was threatened with extinction.
The a la carte system of dining cars of the Pennsylvania Line west of Pittsburg has been abandoned in favor of the table d'hote plan, ballots having been given to passengers for several months in order that they might vote as to their preference.
The Lake Shore and Michigan Southern Railway has instituted a house to house canvass in Chicago with a view to causing the people to test the facilities of their suburban service, and free tickets are left at the houses which entitle the holder to one free ride in either direction.

Probably the most valuable stock in the world is that of the London New River Company, of Iıondon. There are only 72 original shares, of which 36 are "adventurers' shares" and 36 " king's shares," the former commanding higher prices than the latter. A share sold recently for $\$ 625,000$.
Preparations are being made to move the Columbus monument at the circle at Fifty-ninth Street and Eighth Avenue. New York, on account of the underground railroad. The foundations were so deep that it was considered cheaper and safer to move it temporarily, and then return it to its present location.

Experiments are being carried out in Germany as to the perforating capacity of the latest Mauser model, and the latest field guns, and as targets several hundreds of pauper corpses are being used. The bullets, when fired at a comparatively short distance, tear asunder the soft inner organs and finally mangle the bodies.

A new light system has been introduced into the village of Stinnozheim in Würtemberg. From a large central petroleum reservoir, the oil from which the light is produced is distributed to the different lamps through copper tubes; the petroleum is then vaporized by special apparatus and burner. A large lighting plant of this system is to be put in the railroad shops at Stuttgart.

The American red gum wood is now being largely employed in London for street paving purposes. Regent Street; Piccadilly, and the Haymarket have recently been paved with this wood, and it is to be employed extensively in other parts of the metropolis. Although the wood is not so hard as the red woods of Australia, it is more durable than deal or any other timber, while it affords the best foothold for horses. A prominent feature of the wood is that it neither shrinks nor expands under the influence of dry or wet weather, which are great recommendations for its utilization for paving purposes.
An American hydraulic engineer, Linden W. Bates, has been asked to undertake the widening of the Suez Canal. The corporation is desirous of rendering the canal available for the passage of ships of greater draught than can now be accommodated. It is to be carried on by a colossal dredging process. Mr. Bates has just completed three very large dredging ships for the Queensland government. The largest of them is about to leave the Arwstrong. Whitworth yards at Newcastle-on-Tyne, and the Australian colony has consented to have the machinery stopped en route and test its efficacy for the purpose. Mr. Bates has had great experience in matters of this kind, as he helped to lay out the Chicago Drainage Canal and designed the big Mississippi works at Memphis for the War Department.

The Midland Railway Company, of Erigland, have recently purchased four Pullman sleeping cars for use on their system. Each car measures 59 feet $103 / 4$ inches over the buffer beams, and 13 feet 1 inch in height from the rail level to the top of the roof. The bogies upon which the car is built were constructed by the Midland Railway Company at their own shops, so that they differ somewhat from the prevalent American pattern. The fittings for the vacuum brake were also supplied by the railway company. The car was dispatched to England in sections, and the parts reassembled at the rail way works. The car is divided, one portion of it being provided with five staterooms, eacl. of which is supplied with bed, folding washstand and usual appurtenances. The remaining portion of the car is a general saloon, and is only converted into a sleeping apartment at night by making up the berth between the two seats. All the berths are on the same level, the company having abandoned the idea of placing one berth over the other. A smoking saloon and buffet are attached A charge of $\$ 1.25$ is made for the use of this saloon in addition to the railway saloon.

A NOVEL WIND OR WATER MOTOR.
We present herewith an illustration of a novel motor, patented by Marcin Puszkar, 18 Greenwich Street, New York city.
From a central driving shaft, a number of arms radiate, which serve to carry vanes. Of these vanes, each has one end pivotally attached to the outer end of one of the arms, so that it can swing freely. Stop are movably secured to the arms and arran ged to pro ject into the path of the vanes to bring them into driving connection with the arms. Bars are slidable transversely on the arms and are operatively connected with the stops. A collar or ring normally engages the ends of the bars, the ring being provided with alternating elevations and depressions. The collar is locked by means of a lever. A stop-lever is arranged to engage the projecting portion of the lock-lever to anlock the collar whenever desired. By means of this lever mech anisin, the collar can be made to rotate with the arms, or it can be thrown out of gear, so that the bars will sini into the depressions, thereby stopping the motor.
The vanes, as our illustration shows, are of peculiar construction. Each vane consists of a rectangular frame to which a cover is secured. To this rectangular frame canvas-covered side frames are pivoted so that they can fold inwardly. At the pivotal or outer end of the vanes a folding canvas-covered end frame is attached, and is opposed by a balancing-frame likewise covered with canvas. The vanes are pressed by the current against the stops. When the vanes approach a position directly in line with the wind, they are a position directly in line with the wind, they are
swung around on their pivots, partially by the action of the wind on the end frames. This action is counter balanced by the balancing frame, thereby preventing the vanes from swinging around too soon. The vanes range in the direction of the wind, the several frames folding against the main frame. Against the current

THE PUSZKAR CURRENT MOTOR

the vanes present a narrow edge, and therefore offer little resistance, automatically preserving a direction parallel with the current until they strike the stops again.

Strike Insurance in Austria.

A number of-Austrian manufacturers have recently formed an association for insurance against' strikes, says a United States consul. It is the object of the association to indemnify its several members for all losses sustained by them from unjust strikes which may break out in their respective establishments, whether voluntary, sympathetic, or forced. Each member is to pay a weekly premium equal to from 3 to 4 per cent of the amount of his pay-roll. The indemnity to be paid to him in case of a strike is to be, tentatively, 50 per cent of the wages paid to his employes for the week next preceding the suspension of work. It is provided, however, that no indemnity shall be paid if a committee of confidential agents appointed by the association shall, after a full investigation of all the circumstances, find the strike a justifiable one.
It is worthy of note that a report upon and discussion of the subject "Insurance against strikes" formed a prominent feature of the programme of the national convention of Austrian manufacturers.
It appears that this movement of industrial employers is not confined to Austria. It is reported that a simi lar insurance association, though on a smaller scale has been organized in Leipzig. Both the Austrian and German associations, it appears, recognize in principle the justness of strikes; which is, at least in this country, an important concession to labor. Whether this recognition will have any practical result, remains for the present a matter of conjecture.

The French roller boat built by M. Bazin has been broken up at Preston, England, after being exhibited for some time as a curiosity. Her construction was most intricate, and the amount of metal used enr-rious.

Eleetrical Notes.

Telephonic communication has been established between St. Michael and Nome by means of a tempo rary submarine cable. The toll is $\$ 2$ for ten words.
A Russian medical man has decided that the electric light is least injurious to the eyes. He says that the oftener the lids are closed the greater the fatigue, and consequent injury. By experiments he finds that the lids would close with different illuminations per minute : Candle light, 6.8 ; gas, $2 \cdot 8$; sun, 2.2 ; electric light, 18 .
The single-phase system is rapidly being supplanted in England. The Sueffeld corporation have arranged with the Electrical Construction Company, Limited, of Wolverhampton, for the conversion of their existing plant into the two-phase system. They have also or dered two new two phase alternators and engines to work in connection with the same at a cost of $\$ 69,200$.
The new electric rail way at Paris has proved a great success, despite the mishaps that have occurred there on from time to time. From the date of its opening on July 19 untul October 31, 13,000,000, passengers were carried. Occasionally the daily number of passengers carried amounted to 170,000 . It was originally intended to run only 270 trains per day, but this number ha beeu considerably increased, and further trains are to be added.

An accident occurred on October 19, on the Paris Underground Railway, in which twenty-nine persons were injured, and two were fatally hurt. The acci dent occurred near the Exnosition grounds. A train entered the station at the Place de la Concorde, and then backed out again. The train which followed it misunderstood its signal, and the result was a collision. As both trains were moving elowly, the damage to the train was not very great. Traffic, however, was de layed for several hours.
The French government have decided to establish their own service of submarine cable communications. This decision has beeu arrived at as a result of the Trans vaal and Chinese campaigns, when the majority of the messages from France had to be dispatched over lines under British control. Even the communications that pass between the home government and the various ministers abroad have to pass through English hands. It is proposed to establish four cable lines interconnect ing the colonies and the home country.
In the fire which destroyed the telegraph depart ment of the Manchester post office a short time ago the whole of the 250 instruments, which comprised one of the finest and most modern installations in the English postal service, were lost, the danage representing some thousands of dollars. For the past t welve month the work of substituting the accuisulator system in place of the old battery system has been in progress, and now the obsolete system will have to be used fo another year until the accumulators can be restored.
The Russian authorities are displaying remarkable energy in connection with the utilization of Popoff's wireless telegraphic system. All the lighthouses in the Black Sea are to be provided with this apparatus, and several stations are to be erected on the shore, so that communication may be maintained between the shore, lighthouses, and the warships within the radius of the electric waves. Two hundred complete installa tions of the apparatus were recently dispatched to Vladivostock and Port Arthur, and the work of fitting out the Russian warships in the Pacific is to be carried on with all possible celerity. The two ports are also to be connected by the establishment of intermediate stations along the Korean coast.

Mr. K. W. Hedges, of London, has recently patented some improvements in connection with lightning conductors. By his process, all the joints in the conductors are effected by a fusible or plastic metal, poured into a mould which has been placed arou nd the parts to be joined. To insure perfect contact between the joints, he recommends that the nould should constitute a kind of clamp, thus forcing the plastic metal upon the parts of the conductor joints. He also fixes a lead protecting sheath round the conductor at the approximate point at which it enters the earth. Earthing is attained by a plate, or in the event of the ground being dry, by a tube driven deeply into it, and closely packed with carbonaceous material.
A new electricity meter has been patented in London in which the conventional balance spring is substituted by an electro-magnetic device to bring the escapement wheel to the central position. This wheel has a number of wires diametrically attached to it, and is surrounded by a coil through which passes the current to be measured. The rapidity of the oscillation of the balance wheel to a certain extent is proportional to the current. Should an extra powerful current happen to traverse the coil, or should the current be suddenly increased in voltage, auxiliary devices are provided to prevent the balance wheel when near the central position remaining stationary at that point. These secondary appurtenances also serve to set the balance wheel in motion with a small current. In other respects the appliance resembles the ordinary type of meter.

THE ROZE DIRIGIBLE AIRSHIP

The competition for the Henri Deutsch prize of $\$ 20,000$ for dirigible balloons promises to be of great interest, and next spring will, no doubt, see the first contest, as at present no less than three dirigible balloons are bising constructed at Paris, and will probably be finished before the end of the year. These are the balloon of M. De Santos-Dumont, which has already been described; the "Thermosphere" of M. Emmanuel Aime, secretary of the Aero Club; and the "Aviateur," which is now being constructed by M. Roze at Argenteuil, in the vi cinity of Paris. M. Roze, who has been occupied with the subject tor a number of years, has finally de cided upon a type of dirigible bal loon with which he expects to solve the problem. He employs the principle of a balioon heavier than air which is lifted by the ascensiona power of two horizontal helices driven by petroleum motors and propelled by two vertical helices. The balloon is thus able to rise or descend at will, and may be placed in the most favorable region to take advantage of air-currents. The idea thus approaches somewhat the ideal conditions of a bird's flight. The apparatus consists essentially of two immense cigar-shaped balloons, side by side, joined by a framework in the middle, which supports a car containing the propelling and steering devices. The total weight including eight persons, is 6,800 pounds, and the ascensional power
of the balloons is calculated so as to make the whole apparatus 220 pounds heavier than air. Above the car is a parachute of special construction, which also serves the purpose of an aeroplane. The engravings and diagram show the general arrangement of the apparatus: the two cigar-shaped balloons are of considerable size, being about 140 feet long and 22 feet in diameter in the middle. They are constructed upon a skeleton frame of aluminium tubes and rods, made up of a series of circles and longitudinal brace-rods; at each end is a point made of sheet aluminium. This frame is very rigid, and at least 15,000 feet of tubing and rods have been used in its construction. The framework is covered with varnished pongee silk to form the balloon.
Each of the balloons is divided into six compartments by transverse partitions, and from the middle part down the in terior is provided with a double bottom, to allow for the expansion and contraction of the gas without deformation. The different compartments are connected by means of a series of tubes having automatic valves of special design, so as to allow the proper distribution of gas without a brusque displacement ; the compartment serves also
light wood and aluminium. The lower part will hold eight persons seated, including the aeronaut, whose station is in front, where he has at hand all the con trolling devices. A light wood partition forms the upper floor, which is to contain the motors; the top of the car is formed of a light framework covered with canvas, which comes down to a point at each end giving the whole a flsh-shaped appearance. Two or more gasoline motors of light pattern are to be used,

FRAMEWORK OF THE ROZE TWIN AIRSHIPS.
giving a total of 20 horse power- 10 for the lifting and 10 for the propelling helices. The motors are to b coupled together, or may be used separately in case of coupla Ther ore two propelling helices one is accid front and one in the rear of the car; the latter, with the vertical rudder, may be seen in one of the views. The propellers are formed of aluminium tubing over which varnished canvas is stretched; they revolve at the rate of 200 revolutions per minute and will displace about 450 cubic yards of air per second; M. Roze thus counts upon a speed of 40 to 60 miles an hour in calm weather Above the car are placed the two ascensiona helices; one of these in construction may be seen in the foreground of one of the views. They have been calculated to overcome the weight of the balloon, with

placed the parachute, at about the same level as the top of the balloons; it consists of a light framework (see diagram) from which hang a number of blades formed of silk stretched on an aluminium frame; these take a vertical position when the balloon mounts, and when it is propelled forward they are inclined toward the rear. In cuse of accident, when the balloon descends, or when in other cases it is desired to use the parachute as an aeroplane, the hanging vanes come together at the top and form a large surface, and the descent is thus gradual. Besides, the position of the vanes may be governed at will by a system of cords, and an aeroplane may thus be formed at any time, and the ascensional helices disconnected; all the force of the motors is then available for the propulsion. The disposition of the car has the advantage of keeping the mechanism at a distance from the bottom, and there is less danger from shocks. The bottom of the car is about 3 feet above the bottom of the balloons; in case these should descend upon the water, the system would float and the car would be still out of water.
Mr. Roze has constructed a small model about 5 feet long in which the helices are moved by clockwork; it is suspended from a balanced lever, and is made to go through the different evolutions, from which favorable predictions may be made for the large balloon. It is expected that the first experiments will be made toward the end of the year if the weather is favorable.

Arsenic in Beer.

In England the victims of arsenical poisoning from drinking beer now number more than sixty dead and one thousand ill, Manchester being the center of the trouble, and the places affected are usually within a hundred-mile radius of that city; but the panic has spread over the entire country. It has been found that the cause of the poisoning is arsenic in the sulphuric acid used in the manufacture of glucose, which the English brewers employ in making cheap which the English brewers employ in making cheap
beer in place of malt and hops. The poison has thus far been traced to only one establishment, which supplied sugar for several breweries in the Midlands and the North. The commercial sulphuric acid used in England is largely made of pyrites, which comes from Spain, and there is always a trace of arsenic in it It was thought there was an undue aumount in the lode from which the supply came in this iustance. An analysis of some of the beer sold in public houses showed that it contained sufficient arsenic to kill any

view of the car showing one of the horizontal rodders.

bear view showing rear helice and vertical rodder.
for safety in case of rupture. The tubes which join the two balloons allow the passage of gas from one to the other, and thus the equilibrium of the system is maintained. The framework in the middle, connecting the two balloons, is made of aluminium tubes and rods, and supports the car below, with its propellers, and, above, the parachute, which is on a level with the top. One of the engravings shows a rear view of the car, which is divided into an upper and lower part; it is made of
a sufficient reserve force to lift it to any desired height, and the position of the balloon in space is thus quite under the control of the aeronaut, who may place himself in the most favorable zone.
There are two of these ascensional helices, carried upon vertical shafts spaced each about 10 feet from the center of the car. There are four horizontal rudders, two in front and two in the rear; one of these will be noticed at the side of the car. Above the helices is
regular drinker. Hundreds of thousands of gallons of beer have been poured into the sewers of Manchester by brewers and retail dealers. It is probable that there will be a governmental inquiry, and that there will be legislation providing for the use of malt and hops instead of cheap and deleterious substitutes.

A fresco which is attributed to Giovanni Bellini ha been discovered in the church of the Frari in Venice.

DISAPPEARING DEMON.

by w. e. robinson.
An excellent trick which never fails to please is known as the "Disappearing Demon." A couple of very clever acrobats and contortionists have been mystifying both continents with acrobatic feats and wonderful posturings, and then end their performance with a unique disappearing and appearing act. The only piece of apparatus which they have occasion to use is what appears to be an ordinary kitchen table, devoid of cloth. One of the performers sug gests that they set the table for dinner. The cloth is spread over the table, coming some ten inches below the top. A dispute then arises who shall cook the dinner. Finally, one of the acrobats, who is dressed as Mephisto, jumps upon the table to get away from his companion who follows him with a cone-shaped wicker basket, which he claps over his comrade's head and body, hiding him completely frow view. In a few seconds the pursuing acrobat kicks over the cone, and the demon has disappeared. The cone is again placed upon the table, and immediately lifted, and it is found that the demon has returned. The trick can be readily understood by reference to our engravings. The table has a double top, the upper one be ing made fast to the legs and containing a well-concealed trap. The lower one is movable, working up and down in grooves in the table legs. It is kept in its normal position against the real top of the table by means of spiral springs in the hollow legs of the table. The cloth is slit on three sides of a square, and the other side is loosely basted, so that one pull on the thread will disjoint or free it. When the dewon is covered over, he pulls out the thread in the cloth and passes through the trap in the table top, the lower part of the double top sinking down under the performer's own weight. During the time when he is lost to the view of the audience, he lies flat between the two table tops, and close to the trap. O course, when the cover is removed, he has apparently disappeared. He makes his appearance in the reverse way.
Fish Poison.

The subject of fish poisons has for some years past attracted attention among chemists, and a useful contribution to the subject has just been completed by a corresponding member of the Pharmaceutical Society, Dr. M. Greshoff, the Director of the Chemical Laboratory at the Colonial Museum, Haarlem. It forms Part XXIX. of the Mededeelingen uit 'Slands Plantentuin, as published in Batavia. A good deal of the work was done in the celebrated Botanical Gardens at Buitenzorg, in Java, where Dr. Greshoff worked for some time. This volume is the second that has been issued, and the two form a complete résumé of all that is known on the subject, economical, botanical, and chemical. The poisonous action on fishes seems to be due chiefly

ฐ̌ientific : ${ }^{2}$ mericau.
to the following substances: Prussic acid, saponin, cumarin, cytisine, and andromedotoxin, although there are others, such as picrotoxin, derrid, and the acrid principles of the Euphorbiaceæ and Ranunculaceæ.

Antiseptic Properties of Bile.

A few years ago it was supposed that the bile had a considerabie antiseptic power, and that one of its functions consisted in modifying the intestinal fer-

mentations; later on, however, bacteriological research showed that the bile had no antiseptic power, but, on the contrary, it was in most cases an excellent medium for the calture of different microbes. But although the bile is not antiseptic, it acquires, under certain conditions, antitoxic and vaccinating properties. Robert Koch found that the bile of animals who had succumbed to the bovine pest could be used for the inoculation of other animals to protect them from the disease. The recent work of F. Neufeld has established a new property of the bile, naınely, a bacteriolytic power toward the pneumococcus. If 1 part of rabbit's bile is taken and wixed with 10 or 20 parts of a bouillon con-
taining the pneumococcus, it is found, upon examining the liquid in suspended drops, that at the end of a few minutes the contours of the pneumococcus lose their sharpness, becoming less and less visible, and finally disappear completely, being dissolved in the liquid; this action requires, in ordinary cases, about three or four minutes, but sometimes lasts as long as fifteen to twenty minutes. The rapidity with which the solution takes place varies, besides, with the more or less fluid state of the bile and the quantity of culture in troduced; the bile may dissolve up to 300 time its volume of culture. The action is about the same at the ordinary temperature and at 33 C.; but is slower at 1° or 2° above zero. The dissolving of the pneumococcus does not involve the destruction of the vaccinant sub stances contained in the body of these micro organisms; in fact, a hypodermic injection of bile given to a rabbit, and having previously dissolved a culture of pne unococcus, gives it immunity, or at least increases considerably its resistance to this form of infection. The bile seems to act only against this particular form of micro-organism, and leaves intact the other pathogenic bacteria (typhus bacillus, streptococcus, diphtheria bacillus, etc.) This prop erty is possessed not only by rabbit's bile, but in less degree by the human bile and that of different animals.

THE PROTECTED CRUISERS OF THE
 "ST. LOUIS" CLASS

A point has been reached in the development of the new United States Navy in which we not only have ceased to follow the lead of other navies, but are producing original designs of ships and novel details which are being followed by foreign constructors. It is true that in size the United States Navy stands fourth among those of the world, but in design, material, equipment, and efficiency, it is the equal, if not the superior, of any other navy. This result is due largely to the ability and energy of the Bureau of Construction and Repair, which, under the Chief Constructor, Rear-Admiral Philip Hichborn, has been responsible for the design, construction, and wainteuance in a state of efficiency of our new navy. The latest products of this Bureau are fourteen vessels, whose construction has recently been authorized, namely, five battleships, of about 15,000 tons displacement, six armored cruisers, of about $14,-$ 000 tons displacement, and the three protected cruisers which form the subject of the present article, of a little under 10,000 tons displacement.
The Protected Cruisers, to be named the "St. Louis," "Milwaukee," and "Charleston" (the latter to continue the name of the 3,700 ton vessel wrecked Novenber 2. 1899, off Kamiguin Island in the Philippine group), compare favorably with their class in other navies. In fact, so closely do they approach the type of secopi-class armored cruisers that they might easily be

mistaken for such. In anengagement they would prove themselves a match for some of the armored cruisers of other navies. A comparison of their principal data with that of the British "Monmouth" class will demonstrate their value.

Unitrd States. "St. Lonis,"," "Milwankee," "Charleston."		Great Britain. "Monmouth." "Egsex," "Kent," "Bedford.
Length on load waterline.	424 feet.	440 feet.
Breadth, extreme...	66 feet.	66 feet.
Trial displacement. . .,.....	... 9,700 tons.	9,800 tons.
Mean draaght at normal dis- placement.............. . 28 feet 6 inches. 24 feet 6 inches		
Engines, twin-screw, I. H. P..	...21,000	22,000
Speed.................	22 knots.	23 knots.
Normal coal supply.........	650 tons.	800 tons.
Coal bunker capacity........	.. 1,500 tons.	1,600 tons.
armament.		
Fourteen 6.inch R. F. gans.	Four 6-inch	F. guns, in turre
Eighteen 14-pdr. R. F. guns.	Ten 6 -inch R .	F. guns in casemates.
Twelve 3-pdr. R. F. guns.	Ten 12-pdr. R.	F. gans.
Four 1-pdr. automatic.	Three 3-pdr. R	F.guns.
Eight 1-pdr. R. F. guns.	Eight machine	guns.
Two machine guns, $0 \cdot 30$ caliber.		
Eight automatic gans, 0.30 caliber.		
protection.		
Main side armor.. 4	inches. 4 inches, taperi	g to 2 inches at bow.
Lower casemate armor... 4	"	
Upper " " ... 4	"	
6.inch gun protection.... 4	4 inches.	
Conning tower and shield. 5	"	
Signal tower............ 4	"	
Splinter bulkheads....... 2	"	
Protective deck...... ...21/2	Two decks, 11/4	inches and $3 / 4 \mathrm{inch}$.

The act authorizing the "St. Louis" class states that these vessels shall carry " the most powerful ordnance for vessels of their class, and have the highest speed compatible with good cruising qualities and great radius of action;" all these qualificathinns have been embodied in the design for ithese vessels. The general appearance of these cruisers suggests that trite quotation : "A thing of beauty is a joy forever." "Beauty" and "joy" applied to these vessels mean easy lines, graceful exterior, speed and the ability to sustain that prestige up on the sea which has been maintained by the navy of the Republic since its origin.

The main deck of these cruisers is supplemented amidships with a covered superstructure, within which are located four 6 inch rapid-fire guns and six 14 pounder rapid-fire guns; outside the superstructure are two more 6 -inch rapid-fire guns, located on the center line, one forward and the other aft. Located on the gun deck is the greater portion of the battery, consisting of eight 6 -inch rapid-fire guns, twelve 14 pounder rapid-fire guns, and four 1-pounder rapid-fire guns. Sixteen rapid-fire guns are stationed on the superstructure deck and bridges, and the remainder of the battery is located in the fighting tops of the two military masts. Additional platforms are built upon the masts to accommodate the two search-lights. Electric ammunition hoists are designed to supply the guns with the greatest rapidity, making it possible to hurl against an enemy a broadside of about twelve tons of metal per minute.
The four lofty smokestacks, extending to a height of 76 feet 6 inches above the normal load waterline, provide draught for sixteen straight water tubular boilers located in four watertight compartments, which, together with the engines, are protected by the side armor sloping deck armor, and a twelve-foot coal bunker.
The inner bottom of these vessels extends to the un der side of the protective deck; above the protective deck a cellulose cofferdaw, 30 inches wide and 41 inches above the normal load waterline, extends throughout the length of the vessel.
In the construction and equipment of the " St . Louis" class, as small a quantity as possible of wood is to be used, and wherever it is used it will be electric fire-proofed. Each vessel of this class is fitted to accommodate a flag officer and staff in conjunction with the regular complement. In commission the number of officers wilf be 39 and the crew will number 525 men, for which are provided 16 boats, ranging from a 36foot stean cutter to a 16 -foot dinghy, and in addition to these two 12 foot punts and two life-rafts will be carried. These boats are stowed in chocks on the superstructure deck and swung out by four cranes.
All the latest and best improvements in construction and equipment are to be provided for the accommodation and comfort of the officers and crew.
The waterline belt, 4 inches in thickness, extends in the wake of the engines and boilers and magazines for over one-third of the vessel's length, and reaches from several feet below to about 3 feet above the normal waterline. Side armor of the same thickness is carried up amidships to the main deck, and extends between and includes the forward and after 6 -inch guns on the gun-deck. The 8 inch guns at the four corners of the superstructure are also protected by 4 -inch armor. While we greatly admire these vessels, we must express a regret that the waterline armor was not carried
up to the bow, even if some compromise had been necessary in the matter of coal or armaiment. This is an age of armored cruisers (i. e., ships with a complete waterline belt), and it is regrettable that these vessels should fall short of the requirements for want of the 120 feet of 2 to 3 -inch armor necessary to complete the belt to the stem.
The corn-pith cellulose cofferdam at the water line, with its water-excluding properties, will safeguard the trim and stability of the "St. Louis" against all but the swaller 6 and 14 -pounder shells about as effectively as if the 2 -inch belt were extended to the stem ; but it will be just these very small-caliber guns that will be used to search out and cut to pieces the unprotected ends of an ehemy's waterline.
It must be admitted that the new ships, although they are not quite in the class of the armored cruisers, are nevertheless more than a match for any protected cruiser afloat

ARMORED BURROWERS
 by charles f. holder.

In the early days some of the most interesting animals were burrowers, as the glyptodon and toxodon; huge mailed creatures estimated to have been as large as a rhinoceros. South America was the home of these forms, and when the renains of a toxodot were diseoveted, they created no little excitement in the world of science. A rancher found the skeleton, whieh had rolled out of a bank. The strange head was seized upon by his boys, who, after pounding out the teeth set up the then priceless skull as a mark, and what as left, and a few teeth, constitute the most inter esting specimen in England to-day.
The glyptodon had a length of five feet and re-

ARMORED BURROWERS.

sembled an enormous turtle. The tail was long giving the animal, with its head, a length of nine feet All these mailed animals appear to have been enormous. Thus the genus Chlamydotherinm equaled the largest living rhinoceros in size, while Pachytherinm was as large as an ox. They were slow-moving crea tures with little intelligence, needing the heavy armor to protect them from the attacks of the savage ani mals of the time.
These giants seemed to have anticipated the curious armadillos of to-day, which are found in South Amer ica and the southwestern borders of the United States It is difficult to imagine more interesting creatures then these armored burrowers, provided with a coat of mail jointed and so arranged that some can coil themselves up into a perfectly protected ball impervious to the attacks of almost any foe.
Armadillos are not rare in museams, but, to see one alive with its young is notan every-day experience; and when I was informed that a female, owned by Edwards Brothers, of Tacoma, Washington, had given birth to three young in Pasadena, 1 induced the owner to allow me to photograph the family group. The young were interesting little creatures about six inches in length, and despite the fact that they were but a day old were very active; and doubtless the patient photographer, Mr. Jarvis, of Pasadena, never had such remarkable and obstreperons subjects, as it took fur men over an hour to secure the accompanying picture. The mother was very docile, and displayed no affection for her young. When placed on a table on a white cloth, to throw her outlines into retief, she seemed like a stuffed specimen as far as any interest in her surroundings went; the only motion being a trewbling, as though she were cold. But the two young were continually moving attempting to reach the mother and nurse-a privilege which sthe had evidently denied thern from the first; ard the owner was trying to raise them by the bottle, to which they seemed favorably inclined. Their movements were very erratic and rapid; and whor toucted thieg at
first seemed to recognize a stranger, and gave sudden leaps; but they soon became reconciled to the warmath of wy band, and would lie perfectly quiet. They were pink in eolor and almost perfect fac similes of their parent; their eyes open, and the armor as hard as the inside of a man's hand and by no means as soft as one might expect. The head was very large in proportion to the body, the reverse holding in the adult.
There was something about both parent and young suggestive of swine; the peculiar snout as cold as ice the piglike ears, and a very comical piglike trot com pleted the resemblance. The mother was perfectly tame, and sat in the keeper's arms in almost any posi tion without objecting, but a strong, peculiar musky odor was particularly offensive, and would prevent the armadillo from being a popular pet. When placed upon the floor, the animal would trot around at a rapid gait, apparently not using her small eyes, but touching the snout to the floor at every step, as though to direct her course. The two adults ate three pounds o roast beef per day, and were given nothing else.
The observer in watching the animal could not divest himself of the idea that it was an automaton and wound up, so clumsy were the movements. Sometimes she stopped as though to listen, cocking her long ears upward and holding her head slightly on one side, at which time she might be standing on the tips of her toes in a most constrained and unnatural position; in a word, when the animal stopped, she did so in whatever position she happened to be in, whether flat-footed or on tip-toe. The keeper said that the an mal displayed no intelligerce, and paid no attention to her young. I repeatedly held the young to her nose as she trotted across the floor, but she did not appear to notice them. When placed in a box, she made convulsive leaps, falling with a crash. To see the armadillo at its best, it should be in its home, where its burrowing powers are extraordinary. It is said that it is almost impossible to dig one out, the animal having the faculty of burrowing faster than two or three men can dig. Darwin, in referring to a South American form, states that when ove was seen running along on the pampas, it was recessary literally to tumble from the horse to save it, as it would immediately begin to disappear, and before it could be grasped would often be nearly out of sight, its tail alone remaining above ground.
The hairy armadillo, according to Azara, would scent à dead horse a long way, and run directly toward it as would a hound. Instead of attacking it above ground, the armadillo would begin a burrow some distance off and come up beneath it, burrowing into it and remaining in the body until it had devoured all but the hide and bones. This species is said not to build burrows to live in, preferring the surface of the ground. When the singular Botocudos were first visited by white men, they were found to be provided with extraordinary speaking trumpets, hard as rocks and made up of facets. These were the tail armor of the largest of all the armadillos, which attains a length of two to five feet and has twelve or more movable bands. Its claws are enormous, constituting the most powerful digging armament known among animals; and in the regions where it is found, bodies when buried have to be weighted with rocks to prevent their depredations.
Nearly all the armadillos are valued as food, the flest being described as good even from the American standpoint. The shells are used for a variety of purposes, and I have seen a very fair guitar made from one, the strings being stretched across the opening, a neek of wood having been inserted. To a certain exterit the animals are scavengers. Several have been kept on one of our nen-of-war to kill insect and acimal pests, devouring rats, mice, and cockroaches with avidity. They are not confined to animal diet in their natural state, eating succulent roots, seeds, and plants of various kinds.

Potash Soap to Prevent Dimming of Eye-

Constant wearers of eye-glasses, spectacles, etc., are much annoyed by the dimming of the glasses upon entering a warm room from a cooler place. It will greatly interest them to know that this evil can be obviated by rubbing the glasses with soft, soap. All that is necessary is to rub every morning or before going out a little so-called green soap (washing soap, potash soap) over the whole surface of the glass, polishing it until it is bright ausain. The preparations, "Glasolin" and "Oculustro," offered for the same purpose at high prices, are nothing else than pure potash soap.-Die Werkstate.

The Prussian army is going to try barracks made of asbestos. Field Marshal Count von Waldersee has a portatie asbestós house among his luggage.

December 22, 1900.
V. $\triangle N$ INEXPENSIVE WATEE MOTOR 3R Gzorex x. Hopruss.
A simple but very effective water motor can be made by any one according to the plan here showa, with little trouble or expense. It may be necessary to have a few minutes' work done by a tinsmith. The maker may do this if he understands soldering.
In a pine board 7 inches square and 1 inch thick, make a round hole 5 inches in diameter, by the use of a scroll saw, or in any other convenient way. To the sides of the board fit two thin boards $1 / 4$ inch thick, one on either side. In a small hole in the center of each side drive a short piece of brass tube of about $1 / 8$ inch internal diameter, and to these tubes fit a straight steel wire so that it will revolve freely. This wire is the shaft of the motor wheel. It should be of sufficient length to project an inch beyond its bearings, to receive a small pulley
To the center of the shaft is soldered a shee brass disk 3 inches in diameter, so that it will run true as the shaft revolves, and to the disk is soldered a disk of brass wire gauze 30 mesh. The edges of the brass wire gauze must, as the ladies would say, be sewed over and over with a fine copper wire, to prevent it from raveling when the wheel revolves rapidly. If the workman is an adept, he may solder a ring of brass wire, say No. 18 or No. 20, to the edge of the wire cloth.
The simplest way to secure a nozzle for the wheel is to buy a cheap, small oil-can having a long nozzle, with an opening in the smaller end of about $\frac{1}{16}$ inch. This nozzle is inserted into the edge of the wooden wheel-case, as shown, and its smaller end is bent so that it forms a smal angle with the wheel, with the point of the nozzle as near the wire cloth as possible without touch ing. To cause the wheel thus made to keep a central position in its case, pieces of the small tube before named may be slipped on the shaft each side of the wheel.
A $3 / 4$-inch hole may be made in the casing at the bottom, and provided with a short tube for receiving a rubber pipe, to carry off the waste water, and there should be a $1 / 4$-inch hole in each side near the top to admit air. The casing may be seeared to the wooden foot-pieces with screws. It is desirable to make the casing impervious to water. To do this, the various parts may be boiled in hot paraffine for ten minutes. If it is found difficult to secure paraffine in bulk, a pound of parafine candies will furnish enough for this purpose. The inflam mable nature of paraffin should be kept in mind and a cover should be provided for the vessel in which it is melted, 80 that it may instantly be ex tinguished by the cover should it become ignited The metal used in the construction of this whee should be of brass, exeepting the shaft. The screws with whieh the eusing is pot together should be brass. The top of the osircars is cut off to torm a part of the compling for reeeiving the rubber pipe leading from the washbowl faucet to the motor.
To prevent the checking of the wooden parts of the motor, the parts shond be arranged with the grain lying in the same direction.
With sufficient water pressure, this motor will make from 1,500 to 2,000 revolutions per minute. With a very flexible cord belt-a leather shoestring, for example-it may be made to drive a light sewing machine, fan, or any other machine requiring a small amount of power.
If more power is required than ean be secured by one water jet, additional noz zles way be distributed around the wheel or more wheels may be placed on the same shaft, but nothing will be gained unless the water pressure is maintained. The pressure should be from 25 to 40 pounds per square inch.
In a small high-speed motor of the class here described, the full power is realized only when it is provided with a very small pulley connected by a very flexibl belt with a large pulley on the machine to be driven.

It is obvious a non-corrosive metallic case would be better than a wooden one, and the metal one is advised when the builder has conveniences for making a casing of that kind.

The white sands.

Perbaps of all southern New Mexican wonders, that which is known locally by the name of the White Sands is the most remarkable and beautiful-let us add, one of the ruost financially valuable also.

- Imagine scaling a mountain in the Arid Belt, wherein lakes and rivers of any importance (with an apologetic bow to the Rio Grande) are conspicuous by thein absence, and beholding against the cloudless blue of the horizon a line of silver breakers tossing before a fine heait wind. Such, as viewed from a distance, are the

MOTOR DRIVING SEWING MACHINE.
constantly in motion that no living thing takes root there, although along its edge trees and plants find nourishment. It may be presumed that some profit able use will one day be made of this valuable de posit. A railroad now runs to within 20 miles of it, and ther roads are in prospect.
On the western border of the gypsum deposit, and extending for about five miles in length by one mile in width, is what is generally sápposed to be the bed of some vanished lake or river. Here the deposit of carbonate and sulphate of soda, and borax, appear to be of unknown depth, and the water found from two feet below the surface to 30 feet (which is as far as exploration has hitherto been carried) is heavily min-
cally famous White Sands. In reality this silver sea is a vast bed of purest gypsum, about 60 miles in length and from 5 to 20 in width. It lies in the San Augustin Plain, 60 miles south or so of an extinct volcano, whose lava stream flows to within a moderate distance of it. There are other gypsum deposits in the Territory, but none so important or so extensive as this one, which may be looked upon almost in the light of a phenomenon. Little or nothing seems to be known of it, however, in public institutes of scientific or other research ; in fact, the curiosities and resources of this section all share pretty much the same fate. Even the mines, fabulously rich as they are in various ores, receive no attention.

SMALL WATER MOTOR

The latest report of the United States Geological Survey oentions, for instance, but one of the several turquoise mines, and that one of the least important-whereas the New Mexican turquoise has long held a place in the front rank in the European inarkets, and wore re-

cently in those of New York. The so-called sand hills of this great gypsum bed are none of them over 40 feet in height; yet on a near approach they resemble some mountain region clothed in eternal snows and broken into gorges and cañons of indescribable beauty and variety. The winds of the plains keep these sands so
eralized, not only with the above ingredients, but with chloride of sodium also.

The Dissolution of Bones by Bacteria.
It is considered certain that bacteria play an important part in the dissolution of bones, so that if rapid dissolution is desired, it follows that the bacteria should be afforded every opportunity of doing their work. This may have some bearing upon our methods of the disposal of the dead, says The London Lancet. The action of bacteria is not likely to be facilitated by burying bodies at a comparatively great depth beneath the surface. Some recent experiments have shown that when sifted bone-meal was inoculated with various bacteria, and kept wet, a remarkable resolution o the constituents of the bone, including the inor ganic as well as the organic matters, took place The latter resolved themselves, as might be ex pected, into simpler compounds of the type of am monia, but the most curious results consisted in the fact that the soluble phosphate of lime was converted into soluble phosphoric acid. The ex periments were confirmed by utilizing oats grow in large pots with bone meal and inoculating with different bacteria. The yield of oats was far greater than when the bone meal was inoculated in this way. Several species of bacteria were etn ployed with results which varied widely. As a rule the organic substances which act as poisons in the human body are of a very complex nature, and a they are resolved into simpler ones their toxicity diminishes and finally disappears. In the putre faction processes, the organisms concerned are rapidly breaking down complex toxic substances into simpler innocuous products. Bacteria. how ever, in certain diseases, may elaborate poisons of a highly complex constitution. Thus we have two great classes of organisms from the point of view of the healthy human subject, the benevolent and the malevolent.

A LOCOMOTIVE recently ran cff a bridge over the St. Quentin Canal, near Paris, and fell into the water It was found impossible to raise the locomotive, as the space was so confined, so divers passed chains around it, and these were attached to beams. The load was then raised by means of screw supports, block ing being introduced as the work proceeded, to guard against a possible breakdown. The toco motive was lifted 14 feet, so that a sand-laden barge could be run underneath. The engine was then lowered and taken away; five days were consumed in doing the work.

December Building Edilion.
The thirtieth volume of the Building Edition ends with the December number of this periodi cal, and certainly no issue of this journal was ever bandsomer than this number. The eover is de voted to a colored illustration of a Spanish-Ame rican house at Pasadena, Cal. The first page engrav ing consists of a large reproduction of Donatello's pulpit of San Lorenzo, Florence. "Ochre Court," Newport, R. I., the residence of the late Ogden Goelet, Esq the snbject of three large engravinge. This is the masterpieces of the late Richard M. Hunt. A choice selection of modern suburban houses is given

The Current suppiement
The current Supplement, No. 1303, opens with an article on "Direct-Con nected Railway Generators," in which large machines are illustrated in detail "Contemporary Electrical Science" is a series of short notes on electrical matters. "The Origin and Progress of Scien tific Societies" is an address by Sir John Evans. "The Paris Exposition of 1900 " is by Carl Hering. "Elephant Hunting" is an extremely interesting article. "Drift wood" deals with floating timber, and gives most interesting facts. "A New and Simple Method of Making Telescope Objectives" is by Edmund M. Tydeman and is accompanied by working drawings "The Great Sea Serpent of the Garden of Acclimatation" is illustrated by two engravings. This issue contains the usual

RECENTLY PATENTED INVENTIONS. Electrical Apparatus.
Dry-batterry. - Ernest Meyer, Boulevard de Clichy 60 , Paris, France. About the centrally-located positive electrode surrounds the depolarizing mass. A layer of peat flber or moss is interposed between the cloth cover and the positive electrode and is impregnated some of the exciting liquid and extends at the top of the battery between the electrodes. The compactness, sim plicity of construction, and high efficiency of this battery are noteworthy.

Gas-Generating Machine

ACETYLENE-GAS GENERATOR.-JAMES WALTon, Phœnicia, N. Y. This apparatus comprises a gasometer and a generator connected by a valved pipe. A
bracket is carried by the gasometer-bell, from which bracket a rod projects downwardly, provided at its lower end with an arm. A chain or cord is secured to an arm and arm, so that the rise and fall of the bell will close os open the valve in order to control the generation of gas The action is automatic. Care has been taken to provide means for cooling the gas before distribution.
ACETYLENE-GAS GENERATOR - William H. McGoLDRICE, San Antonio, Tex. The generator and gas-holder in this machine, are combined ir one appara-
tas comprising a tank in which a bell is mounted to tas comprising a tank in which a bell is mounted to
move vertically, and has a generator-dome consisting move vertically, and has a generator-dome consisting
of inner and outer walls separated to form a waterspace. A pipe leads from the interior of the dome through the water-space to the interior of the bell above
the water-level. A vent is connected with the pipe the water-level. A vent is connected with the pipe and
controlled by a valve in the pipe. A generator-cylinder is extended upwardly from the bottom of the tank. A jacket of water surrounds the bell and the cylinder. The pressure of gas in the bell forces the water downward in the bell, causing it to rise at the outer surface and to pass through the feed pipe to the generatorcylinder.
aCETYLENE-GENERATOR.-Augustus F. Shriver, Arbuckle, Cal. The generator-cylinder is arranged on the lower portion of the gasometer. In the generator
is a spray-pipe connected with a valved supply-pipe is a spray-pipe connected with a valved supply-pipe.
From the stem of the valve an arm is extended, the free end of which is adapted to be engaged by a cam-shaped projection on the top of the gasometer-bell. A curved arm, attached to the bell and projected over the camshaped projection, is adapted to engage the arm as the shaped projection, is adapted to engage the arm as the
bell moves downward. The rising of the bell closes the valve of the feed-pipe; the falling of the bell opens the valve.

Railway Appliances

LIFE-GUARD FOR TRAM-CARS. - Wiliam T. Watson, Victoria, British Columbia, Canada. The bed of the car-fender is divided into two parts hinged tonormally stationary. The two parts are yielding; the force of a shack is further broken by a rubber buffer and by mounting the front bed so that it "can slide rearwardly againgt the tension of springs. The invention is an improvement upon a similar contrivance devised by Mr. Watson.

Vehicles and Their Accessories.

VElocipede.--Ernst H. Neubert, Independent Hill, Prince William County, Va. The inventor has devised a velocipede which can be driven by the hands of
the operator and in which the grips held in the hands may be moved to set the clutch devices into and out of adjustment to key the wheels upon the drive-shaft. An adjustable platform forms a support for the operator. SEAT-COVER.-Arthur B. Jones, Lincoln, Mass. The cover is primarily designed for use on single seats-
such as are employed on mowers and vehicles-and is arranged to be quickly folded or extended. The seatcover frame for sapporting the top comprises a curved base having hook-bolts whereby it may be fastened to a seat, and a vertically-disposed bearing. Upwardlyextending braces are secured to the base and have a
clamping-bolt at their junction. A slotted standard re-clamping-bolt at their junction. A slotted standard re-
ceives the clamping-bolt and is fitted in the bearing of the base. A frame for the top is secured to the upper end of the standard and has braces connecting therewith. Adjustable straps are arranged to connect the upper end of the standard with the seat.

Mechanical Devices.

educational device. - Thomas L. Martin, Lewisburg, Ky. The invention is adapted for use in principles of lange spling, or any subject that can be taught by copying. The device consists of a main frame; ribbon-winding rollers which are geared together; and a supplemental frame hinged to the main frame, so that it
can be raised as required. Guide-rods are arranged at can be raised as required. Guide-rods are arranged at
the front end of the supplemental frame, one guide-rod the front end of the supplemental frame, one guide-rod
being higher than and in the rear of the other. A ribbon passes over the rolls and back to the wiuding-rollers. Upon the ribbon the words or signs to be copied are printed. The device saves the teacher much time and printed.
CONVEYER.-James W. Barney, Kansas City, Mo. This invention relates to a conveyer adapted particularly to the work of transporting brick from one point to another, particularly from kilns to \& railroad, the invention comprising a hauling device having carriers adapted to receive the brick and arranged to run on trackways of novel form. The invention further comprises a novel
matner of arranging the conveyer-runs so that they can mahner of arranging the conveyer-runs so that they can
be connected in various ways to carry the brick from any one of a number of kilns.
hose-washer. - John J. Kress, Perth Amboy, N. J. The purpose of the invention is to provide a wash and clean the hose of fire-engines. In a boxing comprising two separable sections, two cylindrical brushes are superimposed. Forward of the brushes feedrollers are superimposed. The brushes and the rollers are geared together. Water inlet and outlet pipes are
provided. The boxing haring been flled with water, the
machine is set in motion. The hose as it is fed through
is scraped by the brushes. The surplns water is squeezed is scraped by the b
out by the rollers.
STREET-SWEEPER.-Charles Z. O'Neill, Manhattan, New York city. The object of the invention is a provide a new and improved street-sweeper, simple tion. The machine is arranged thoronghly to sweep the dirt from the street-surface into the buckets of an elevator, which in turn delivers the sweepings into a wago or cart, with the rear end of which the sweeper is remov
ably connected. Upon moving the vehicle forward, the ably connected. Upon moving the vehicle forward, th sweeper is dragged along to sweep the street and to de is loaded, the sweeper is detached to repeat the operation.
GRAT e-bar. - George S. Strabant, Greensborough, N. C. The grate-bar is formed in section a self-supporting counection at such point, thus avoidin the necessity of any cross-bars or similar supports be nas of the grate-bara
AWNING FOR MINE SHAFTS OR TUNNELS. Col. The drip of water from the roofs of mines and tun nels is a serious annoyance to miners and workmen and is a constant source of danger to health. Mr. Wheeler has devised a drip-averting awning which is light, con
veniently portable, and cheap, and which can be easily and quickly put up or removed. The awning consists o two sets of telescoping tu bes, each tube having a pointed outer end to engage the tunnel-wall. Screws clamp the two tubes of each set together. The awning has hem

WATER-STOP OR GATE. - Walter S. Fisher,
Artman, Colo. This inveution is a water-stop in the orm of a gate for use in ditches such as are employe for purposes of irrigation. The water-stop comprises main plate on which are extension wings projected and retracted by lever devices. These lever devices are By these means water may be stopped at any point By these means water may be stopped at any poin
in ditches of different widths within the range the stop. The stop can be easily handled and applied and removed by a boy or man. Moreover, the
stop can be bandled whether or no the ditch contains water or is empty, anid avoids destroying the level of the land.

Miscellaneous Inventions.

RUNAWAY-HORSE CHECEE-CHARLES E. WILLIS Manhattan, New York city. By means of this nove
device, a runaway or fractious horse is instantly sub dued, and made tractable, by a very slight pull upon dued, and made tractable, by a very silight pull upon a
check-rein within convenient reach of the driver. The check-rein operates a leather-covered tongue or projec tion set within the throat-latch and acting, when pulled, at right angles with and directly upon the wind-pipe. The arrangement is simple, inconspicuous, and per-
fectly harmless to the animal, thereby doing away with the often cruel curb-bit, and can be readily attached to any bridle for either riding or driving, and without de
tracting from the appearance of either the horse or har tracting
ness.
FEE

FEED-box. - Robert C. Jarvis, West Pullman, Chicago, Ill. The feed-box is so constructed for a team the body of an animal and held in convenient position for feeding or be quickly secured to a pole or tongue o detached therefrom. In the box, feed may be packed and stored and the box be used as a seat when not needed for feeding the horse. The box can be attacked to the body of the vehicle like an orinary seat,
RECEIVER FOR DISCHARGED SHELLS. Charles H. Dieterich, Cooperstown, Ill. The regun. To the frame, members are pivoted capable of as suming a parallel position or a position at an angle the purpose of receiving the ejected shells. The device can be used with any repeating gun from which th shells are ejected from the side portion of the frame.
NECETIIE-RETAINER. - Theodore S. Woolf, Brooklyn, New York city. The retainer is made of a single piece of metal and embraces a receiving, member
for a collar-button, a locking member for the batton, and cheek-sections which carry spurs serving to fasten th device to the shield of the tie.

Designs.

AXLE-SHIELD.-GLlbert Y. Lowe, Washington Ga. The inventor has designed a shield which is in the end of the axle and the hub of the wheel.
KEY-RING AND BOTTLE-SEAL BREAKER.and bom S. Lord, Jr., Portantially heart-shaped, the apex being a plate or web.
bottle.-Georae W. and Herman F. Klumpp, Manhattan, New York city. The body is enlarged at it central portion; and the neck terminates in a bulb-like apper ena.
Manhattan who has devised York cits. The inventor is a druggist up poisons. The paper is printed with skulls and cros ed bones; and the words "poison" appear beneath the
skulls and crossed bones. The paper should find its way into every druggist's shop.
Plate!-Charles J. Seiter, Manhattan, New York city. The design consists of a group of rabbits eatin
bottle.-Chauncey J. Klmmer, Brooklyn, New York city. 'Fhe body of the bottle is cylindrical. Th cylindrical at its upper end. The inner surface of the neck is tapered downwardly at its upper portion and flares with a downward convexity at its lower portion The distance between the concave and convex portions Note.-Copies of any of these patents can be furnished by Munn \& Co. for ten cents each. Please stat of this paper. of this paper.

$\mathfrak{B u s i n e s s}$ and $\mathfrak{X e r s o n a l}^{2}$

Marine Iron Works. Chicago. Catalogue free.
Y. B." Metal Polish. Indianapolis. Samples free. Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St Chagrin Falls, 0
Book " Dies and Diemaking," \$1, postpaid. J.L. Lucas,
Bridgeport, Ct. Send for index sheet. ridgeport, Ct. Send for index sheet.
Machine Work of every description. Jobbing and re-
pairing. The Garvin Machine Co., 141 Varick St., N . Y. The celebrated "Hornsby-Akrogd" Patent Safety O Engine is built by the De La Vergne Refrigerating Ma The best book for electricians and begnners in elec
ricity is "Experimental Science," by Geo. M. Hopkins By mail, 84. Munn \& Co., publishers, 361 Broadway, N. Y CTV Send for new and complete catalogue of Scientif New York. Free on application.

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters
or no attention will be paid thereto. This is for our
information and not for publication.
Rerences to former articles or answers should
give date of paper and give date of paper and paske or number of question,
Inquiries not answered in reasonabale time should
be repeated; correspondents will bear in mind that be repeated; correspondents will bear in mind that
some answers require not a little research, and,
taough we endeavor to reply to all either by letter tiough we endeavor to reply to all either by letter
or in this department, each must take his turn.
Bu yers wishing to purchase ans article not advertised Buyers
in or
honges
 expected without remuneration.
Scientific American suplements referred
to may be had at the office tc may be had at the officice. Price 10 cents each.
Books referred to promptly supplied on receipt of
price price.
minerals sent for
marked or labeled.
(8008) .T. O. asks : 1. I have a continuous current dynamo giving 40 amperes at 125 volts which I use for lighting purposes. I wish now to transmit 15
amperes a distance of 3 miles; what is the best way to o so with the least loss ? A. You cannot transmit the
irect current at 125 volts to the distance of three mile direct current at 125 volts to the distance of three mile
without very great loss. You should use the alternating corrent at high voltage for transmission. Consult the General Electric Company, Schenectady, N. Y.; or the Westinghouse Electric Company, Pittsburg, Pa. 2. How is a lightning arrester coupled to an electric light circuit? A. The mode of connecting the different lightning ar-
resters to the line varies. The particular type you have esters to the line varies. The particular type you have should have its directions acoompanying it, or you should
write to the maker of it for instructions. Generally, Nrite to the maker of it for instructions. Generald
there are two binding poste for the circuit through it, and one for the ground wire. 3. What is meant by ground line detecter lamps, and how are they connected ame implies, to show the presence of a ground immediately. They are connected in a variety of ways, de-
pending upon the dynamo and system. In the three-wire pending upon the dynamo and system. In the three-wire irect carrent system, three lamps may be put in series
between the outside wires of the circuit. A wire is put earth between the first and second of the lamps. If a round comes on the side of the first lamp, that lamp
will light to full brilliancy. If the ground is on the other side, the twolamps there will be brighter, but not lighted (8008)
(8009) J. H. S. asks how to construct water telescope. Reference is made to this instrupage 269. What is the cost of Nicol prism suitable Are such telescopes on the market ? If so, about what
price are they? A. There are two kinds of water telecopes. The one is a watertight tube or box of wood inches or so square, one end of which is open and the ther end is a plate of clear glass. This is used in examing the bottom of lakes or in looking down into the deater for seeing fish, or anything else. It operates by
destroying the ripples which prevent clear vision below when looking upon the surface of water. The glass end of the box is pushed down into the water and the surface of the water in contact with the glass is entirely smooth Hence one sees clearly objects at a much greater depth han without ite aid. In this sense 1 t acts like a telescope, though it has no lens or other magnifying apparatus. The other water telescope. a complete teleseope so made that the tube may be enirgely filled with water. So feen used byow, they are noter the market. They have connected with the motion of light. To this a Nicol prism may be attached for ascertaining whether the light polarized. The Nicol prism in large sizes is very difficult to obtain at present. Small sizes cau be pur-
chased from dealers in microscopes or other optical chased
goods.
(8010) G. J. asks the name or names of iquid that boil at 60 degrees, forming steam in the one way that water does at 212 degrees? A. We know We give you a few which boil near this temperature Sulphurous acid, 16°; hydrofluoric acid, 68°; ethylacetyform, 142°. The vapors of most of these are violently orm, 142°. The vapors of most of these are violently exthe presence of fire. The vapor of hydrofluoric acid is extremely corrosive and cannot be allowed to escape into in glass receptacles, since it consumes glass with readi-
(8011) I. S. W. asks: How can I make a simple sal aminoniac cell? A. A stick of zinc, a plate lass cell a.e the materials for a simple cell. The carbon should have many times as much surface as the zinc. The zinc is usually a rod of about $8 / 8$ inch in
diameter.

NEW BOOKS, ETC.
A CAtechism on the Combustion of Coal and The Prevention of
Smoke. By Williain M. Barr, M.E. New York: Noriman W. Henley \&
Company.
1900.
12mo. Price \$1.50.
The popular question and answer system has been extended to combustion. The subject is one of prime im-
portance, and while it has been treated before, there is an ample field for the present volume, which is handsomely illustrated and printed. The author deals with his subject in a thoroughly competent manner, and it is a successful contribution to the literature of steam engineer ing. It should be welcomed by all engineers, firemen, and all those who are interested in fuel economy. With the present high price of coal, the success of the boo
should be assured. should be assured.

TO INVENTORS

H5w wivewix

INDEX OF INVENTIONS

For which Letters Patent of the nited States were Issued for the Week Ending DECEMBER II, 1900,

ANDEACHBEARINGTHATDATE

 HAVE THE LATEST IMPROVEMENTS

it has the most
modern per-s.
fected tools.
Forin instance,
the
TENT NIPPLE HOID ASHLEY PATENT NIPPLE HOLDERS
hold nipples forcutting either right orleft hand threads.
They hold the sleeve from turning and take the strain quality cast sterl., carefullit ftted Long or short nip-
ples cut with equal facility.
of light weight and compact form. WALWORTH MANUFACTURING CO.
BOSTON,

Water Emery Tool Grinder
 3 W. F. \& JNO. BARNES CO.
1999 Ruby St., Rockford, III. CASTINGS: Both GREY IRON and BRASS. PATTERNS: wOod and METAL, ma We manu facture castings and specialties of every
description and weithtand can build your patterns, if necessary. having a full equipped metal and wood pat-

THE WATERBURY

, Emery Grinder, With adjustable table, for flat surface
grinding and finishing, and for ordi-
nary tool grinding. BLAKE Nend for circulars. AKE \& JOHNS Waterbury, Conn:
THE B. F. BARNES

 othe market. The next size, 23 , swing
sabout ready fordelivery.
eglad to send you printe mail
 12-inch Pipe cut off and
Threaded with ease by one man and a

FOREES
PATENT DIE STOCK Gariden street.
The Eureka Clip

 Drier. See Grain dirier...........
Drillinee Motive fuid dril.
Driling machine, H. H. Nenstaed

 ELectric raction system, M. T. De Felice..
Eleectrical connection, W. B. Ceveland....
Electical conuections, forming, W. B.
 Electrolytic apparatus. H Becke
Elevatort Se Sidewalk evator.
Embroidery hoo Eterator. See sidewaik eievator................
Enamoidery hoop holder, portaple, L. Dimock.
Enaning bath tubs, apparatus for. W. D. Degei
man. Enameting metal ware, composition of mater
for, W. Topping. Sin .
Engine. See Gas engine. Rotary engine. Steam
engine.
 Engines, exhaust silencer for explosive,
Buck.........
Engnearking igniter for explosive, Clarke
Heaslet.
 Engraving mac̈ine w.s. Eato.....
 Feeder, , oiiler. H. Hus. Davis et ail.
Feeder, portable and adjustab

웅 ㅁ.

Filter, '., Z. Zoeller...........
Filter, ber, Kuchman.:
Filter, water. M. Lemley.
Fire alurm, R. LC Livia

 Food. Haking eatile. A. Beddies.
Foort rest. J. D Mack. brace, W. kigby.
Fork. See Toasting .

 Ryan etaine. tack saving att
Lathing machine. Hargreaves.:
\qquad

Liqual searator. centrifu yal. M. Henze........
Lock, see Coin controlled lock. Door lock. Trrun
Lock. Bennstein...
Lock, G. G. Laureyns

Manetic separair. Kreuser \& L Langguth.
Maximn demand meter. . Oxley......

Mining or placer machine. gold, C. Barwick...... 663,6

Motive fuid drill. H. H. Vaughan.
Motor. See Churn motor.

Mucilaze or paste holding stand
Music notation, $\mathrm{G} . \mathrm{L}$. Peterron.
Musical chart, G. H. Brock.....
(Continued on page 398.)

Swiftest, Strongest

Saves Most and Lasts Longest

WYCKOFF, SEAMANS \& BENEDICT
A ROOF THAT IS WEATHERPROOF
 made by an entirely ne
process.
Comes in rolls
containing 108 sauare feet
and
 fect joint to obe made when
faplying. Particulars
from THE BEST BENCH LATHE

"PERFECT BRAND" Asphalt Ready Roofing.

AN UNUSUAL OFFER!

Che Scienifific \boldsymbol{A} merican

Che CJJorld's ZJoork

FOUNDED ON AN IDEA.
$\mathrm{T}_{\text {Me World's Work is an Illustrated }}$
Monthly Magazine reporting the important results in all branches of the world's activity and achievement, written by men who know their subjects and who beleve that their own country and their own time are good to live in. It is a part of the cheerful world of action.
 IcAN 15 s.30 a year and of Tri worl's work
$\$ 3.0$. For a limited time we offer a combined pres.ano. Fora
paid yearly subsernption to the

Two Magazines at $\$ 4.50$.
The magazines can be sent to one or different addresses.

MINN \& CO., - 36I Broadway, DOUBLEDAY, ${ }^{\text {of }}$ PAGE $\& C O$
34 Union Square, East, New York.

ELECTRICAL ENGINEERING TAUGHT BY MAIL．

\％
 IIIustrating
 Taught hy Maril tion peiking

 Farnace for Amateur＇s Jse．－The Eutilization of 110 voit Plectric circuits for small furnace work．By N．MonroeHopkins．This valuabe article is accompanied by de
tailed working drawing on a lare scale，and the fur

Economical Gas Engine Igniters
 Stationary．Marine or Dynamos，Magnetos， Starters，Coils and
Plugs for either tonch Plugs for either to
or jamp spark．
80 St Dayton Electrical Mfg．Co．， 80 St．Claîr St．，Dayton， 0 GUYER＇S PATENT DESULPHURIZING FURNACE． ： $\begin{aligned} & \text { Latest，Cheapest and Best．} \\ & \text { Takes the place of Heap } \\ & \text { or Stall Roasting．} \\ & \text { Saves time and money．} \\ & \text { Write for particulars．}\end{aligned}$ HENRY GUYER，Casilia 514，LIMA，PERU，S． ROTARY PUMPS AND ENGINES．

Cbe Scientific American

PUBLICATIONS FOR IgOI．

The prices of the different publications in the United
States，Canada，and Mexico are as follows： cientiflc RATES BY MAIL，

 COMBINED RATES
in the United States，Canada，and Mexico．

Terms to Foreign Countries． The yearly subscription prices of Scientifc Amer
publications to foreign countries are as follows：

Scientific American（weekly），－－－－
Scientific American Supplement（weekly）
Building Edition of the Sclentift Amer．
Export（monthly $\begin{aligned} & \text { Eition of the Scientific Amer－} \\ & \text { ican（monthly）in Spanish and English }\end{aligned}$
Combined Rates to Foreign Countries

Scientific American，Scienti fo American
Supplement，and Building Edition，
－ 11.00
Proportionate Rates for Six Month
The above rates include postage，which we pay．Re
rit by postal or express money order，or draft to order oi
MUNN \＆CO．， 361 Broadway，New York．

Bradiey．．．．．roil for W．W．Bidile
Rotary bille Rotary engine，Asling \＆Hells．Bid
lotary enne．
Saddie，J．W．． F ．Lazenby．．．．

arator．Ore separator．
Sewing machine bobbin case holder and bobbin Sewing machine，circularly moving hook．．．．．P

 Shoulder brace and antisnoring attachment， I
E．Wilsonn．．
 Shutter slat fasterer，W．L．Ambler．
Sidewalk alevator，J．Mie．
Sivnal system，selective F．A．Picke

 situdirinizinial

 Swing．H．F．Mitzel．
Swate．
Swrin．
See Electric
Telegraph repeaterer，oisen \＆C．Caroii．．
Telephone switchboard．W．S．Paca．

Nomel

tells the story of contemporaneous events and illustrates it
ith the most artistic pictures．Its correspondents and
writers cover every important field the world over
LESLIE＇S WEEKLY is a paper to keep on the library table，and to read and 1 re－read，and to file away for useful reference．It is read by more families ot culture and refinement among the masses than any other paper of its class in the world．It is the greatest，best，most attractive and cheapest of all American educa－ tors．Its special features are worth your time and money．They include Jasper＇s Weekly Hints to Money＝Makers，answering without charge questions regarding Stock and Bond Investments；Hermit＇s Life Insurance Suggestions，answering without charge questions concerning Life Insurance．

Send One Dollar to the publishers＇address below，and Leslie＇s will be mailed to you regularly each week for a period of four months．
LIOSLIESS WEEKLY

WALRATH cas \＆casoline MNGGINTEE From 4 to 200 H． ．Made in one，two，thre and four cylinder type．The
 Marinette Iron Works Mfg．Co．，Marinette，Wis．，U．S．A．

	2
\cdots	，
The Lookn atater	Pmile mil
	－
for twe	
ie＇s	trated Weekly

110 FIFTM AYENUE

Chnice Holitay Booris

JUST PUBLISHED. The Progress of Invention In the Nineteenth Century

EXPERIMENTAL SCIENCE.

the scientific. american Cyclopedia of Receipts Notes and Queries.

A Complete Electrical Library.

TRADE MARKS.

 pany. A. Micicuire.
Hedical compound

LABELS.

A printod conv of the specitcation and drawing
any patent
pin the foren

Medal and Diploma, Chicago, 1893.
 4 mbimswir

RECEIVED THE GOLD MEDAL
and

Now

FOOO 0

FOR SALE, - Machine Shop. brass and iron foundry

Pressim ball races LARGE SIZES A SPECIALTY.
OTTO KONIGSLOW, Cleveland, Ohio

\$3 a DaySure

Prices $\$ 160$ and up. Send for Catalogue,
PIERCE ENGIN

SERVICEABLE $*$ in all SEASONS
 …wisw

Winton

 Motor Carriage advantage.The cost of opera-
tiontsamere trifle. It stands for all that is good and to be desired in a thigh
grade Automobile. New catalog details many interesting facts.

AUTOMOBILE PATENTS

EXPLOITATION COMPANY.
Cycles. The examination manufacture of Automobiles and Motor
for the
fill

Our"1901 Model"

1 Asbesto

 Metallic Pbecker Packings

If it isn't an Eastman, it isn't a Kodak Gake a

Kodak
 homefor CHRISTMAS

Kodaks, $\$ 5.00$ to $\$ \mathbf{3 5 . 0 0}$.
Brownie Cameras, $\mathbf{\$ 1 . 0 0}$.
 The Smallest Porta-
ble Electric Light. $\begin{array}{r}\text { Weight, } 51 \text { in oz. } \\ \text { Yis. } \\ 8 \text { ins. Iong. }\end{array}$ Ullike all oother portable
Uights, the batterie of th

首 "WOLVERINE"

Foreign Travel

ACETYLENE

$M^{\text {OPROW }}{ }^{\text {CoARAKER }}$
 FITS ANY CYCLE. IO O, OOO INU S SE
 ADOS PLEASURE AND SAFETY-ALL DEALERS SELI THEM.
 RIDE 50 MIIES-PEDAAL

Hatford Thateriters

Hartford No. 2-Full Keyboard. Hartford No. 4-Single Keyboard. - Calaogus on an

The Hartford Typewriter Co. 472 Capitol Ave., Hartford, Conn.

EVOLUTION OF THE AMERICAN LO-

"LIGHT OF ASIA" LAMP
The New England Watch Co. ARTISTIC SPECIALTIES (a) In Our Blue Book for Ladies' In Our Red Book for Men's Watches.

> Either or both sent on application.
37 Maiden Lane,
application. Maiden Lane,
New York, N. F . 149 State Street,
Chicago, Ill.

MONTGOM SHOE BLACKING.-FORMULAS FOR

