October 27, 1900.

TWO INTERESTING USES OF INSECTS BY

 NATIVES IN NATALy dr. L. o. howard, ontited gtates derartirert of agriculture An entertaining volume could be written on the uses of insects by savage races. The writer has published some account of the uses of insects as food, in previous numbers of this journal, and the use of the wing-covers of certain large Buprestid beetles to decorate articles of clothing with South American Indians, the use of the structures made by termites as tinder in South Africa and other parts of the world, and many other uses, all well known to anthropologists.
The writer recently received from Mr. Claude Fuller, the Government Entomologist of Natal, two interest ing anklets formed of the cocoons of a large Bombycid woth, somewhat resembling the Luna moth of this country and which bears the scientific nawe of Argema wimosae of Boisduval, known to the English resident as the Queen moth. The natives collect the cocoons fter the moth has issued, put one or more small stones into each cocoon and sew them onto a broad strip of monkey skin, side by side, so as to cover the surface o the skin. They are sewn to the raw side of the hide the fur being on the opposite side. The anklets re ceived are 10 inches long by 4 inches wide and are at tached to the strips by means of thongs of the same hide The cocoons are tough and dry, and the stones within them rattle in a most delightful way. Wegiverattles o our children to amuse them, and the savage man has the same infantile characteristic in that he is amused by rattles. The use of these ankle rattles has become quite general in Natal since the introduction of the ricksha from China and India. The ricksha bearers wear the anklets very generally, and their rattle on the streets is almost as familiar as sleigh-bells in a New England town in winter.
This invention is not confined to southeast Africa Dr. Walter Hough, of the United States National Museum, has shown me rattling anklets from Mexico which are made in a somewhat similar way, of the co coons of another large Bowbycid moth. In this case very many cocoons are strung together on a string and several rows are tied around the ankle. Each cocoon has been opened for the purpose of inserting the stones. Dr. Hough also tells me of a much larger co coon from India, which is mounted singly at the end of a stick to be carried in the hand. This cocoon also is made into a rattle.
The other use of the insect, or rather of the insect's product, is the rather well known one of the manufac ture of the head-rings of the Zulus and Kaffirs. It is shown in the accompanying excellent picture, repro duced from a photograph for which the writer is also indebted to Mr. Fuller. This head-ring was early noticed by African explorers, and it was said to have been made of sinews surrounded with wax, massed on with the help of oil. The head is shaven, and some o the hair is worked up into the ring to hold it. As the hair grows, the ring is pushed up and must occasion ally be reformed to some extent. Tbis wax is said by Mr. Fuller to be the secretion of a scale insect of the genus Ceroplastes. 1 believe this fact has been recorded before, but I am unable to find the reference. These scale insects are extensive wax producers. The old Chinese white wax of cowmerce, fo example, is secreted by Ceroplastes ceri ferus. The exact species of Ceroplastes rom which the Zulus get their wax is, I believe, not known. Prof. T. D. A Cockerell, however, in The Entomologist for Mav, 1899, describes a new wax scale from West Africa as Ceroplastes egba rum, stating that this is a fine wax producing species, equal in this respect to the Ceroplastes ceriferus, which pro duces the Indian white wax. It occur upon the mimosa, near Abeokuta, the great city of Egbas, and was collected by Dr. H. Strachan

The Viagraph, an Instrument Devised for Measuring the Surfaces of Roads. A few weeks ago we described in the Scientific American the "orograph," a device which measures and records the surface conditions of the road over which it travels. At the annual meeting of the British Association for the Advancement of Science recently held at Bradford, Mr. J. Brown, of Belfast (Ireland), gave a description of the "viagraph," an instrument designed for fulfilling the same purposes as the orograph. But though both apparatus perform the same work, their construction and principles of working are widely divergent. The viagraph consists essentially of a straight edge which is drawn over the road surface. To this straight edge a lever is attached working on a pivot, while on its free end it carries a serrated road wheel. As the straight edge is drawn along the road, it maintains a fairly even line, and the road wheel rises and falls over the slightest unevennesses of the surface of the road. These varying risings and fallings of the road wheel are recorded by means of a pencil, which
works contemporaneously by means of a link and lever attachment, upon a roll of paper passing over a swall drum. This drum is rotated by a worm and wheel fixed beneath it, and connected by means of a shaft and bevel gear with the road wheel, so that as the latter revolves it also serves to turn the drum. As the paper unwinds from the drum it passes under the pencil and is wound up on another drum. The pencil record upon the paper, which is somewhat similar to those wade by the pencils of the barograph, is to full scale vertically and $1 / 8$ to 1 foot longitudinally. Another

zULU WITH WAX HEAD-RING

cocoon anklets from natal.

dSE OF COCOON ANRLETS BY RICRSHA bOYS in NATAL.
pencil also draws upon this paper record, simultaneously with the profile pencil, another straight line which the indicating pencil would have drawn had the road over which the apparatns is at that moment traveling been perfectly level. By this means it is possible to obtain the exact characters and measurements of the unevennesses in the road's surface.
If the depths of all these unevennesses as recorded upon the diagram are totaled, the result is the numerical index of unevenness, and this is indicated upon a decimal counter. This latter instrument is actuated in the following manner: A cord is fastened to the free end of the lever attached to the straight edge, and is passed once round a double-grooved pulley and connected to a stretched rubber band. When the road wheel falls into a rut, the lever is depressed, causing
the cord to rotate the pulley, the rubber band being stretched to permit the necessary movement to the cord. Directly the road wheel issues from the rut, the cord slips back into its former position on the pulley, the rubber band in contracting taking up the slack. The pulley is also braked by a rubber-tightened cord which is secured to a rigid part of the frawe and passes round a separate groove on the pulley. By this means it will be recognized that the pulley only revolves at intervals in one direction-evers time the road wheel drops-to an amount equal to the depths of all the unevennesses the machine has passed added together, and this sum indicated in inches on the decimal counter is the iudex of unevenness. If the road is a tolerably good one this machine will only record an unevenuess corresponding to about 12 feet in the mile, while upon a bad road it will indicate an unevenness of 100 feet or more in the same distance.

Hecent Theory of Electricity

An important development of the electron theory has been carried out by Robert Lang in his article on atomic magnetisn in the Annalen der Physik (No. 7). It may now be said that the phenomena of magnetism have at last been successfully reduced to those of elec. tricity. We know frow the work of Thomson and of Drude that an electric current in a wire consists of a stream of very small particles called electrons. These electrons are formed by the splitting up of the metallic atows into a larger positive and a swaller negative portion. 'I'he positive electrons, under the influence of an electromotive force, travel in one direction along the wire, with a velocity of one centimeter per second. The negative electrons travel in the opposite direction with the same charge, but with a smaller velocity. The masses are in the ratio of about 9 to 1 . Now, according to Lang, the negative electrons revolve around the heavier positive electrons in a magnetized metal, like a planet arcund the sun, and the electric convec tiou-curreuts thus produced are nothing more nor less than Ampêre's "elementary molecular currents." Lang calculates the speed of the electrons and the diameter of their orbits. 'The speed is that of light, and the figures obtained lead to conclusions in close agreement with known facts.-Nature.

Aunual Production of Rubber.
It has been estinated that the approximate total production of rubber annually is 57,500 tons. Of this awount, 21,000 tons are taken by the United States and Canada; 21,000 by the United Kingdom; and $15,50 \mathrm{O}$ by the rest of Europe. The Amazon dis trict produces 25,000 tons, and East and West Africa 24,000 tons: parts of South Awerica other than the Amazon district, 3,500 tons.

The Current supplement.
The current Supplement, No. 1295, has, among other articles, " Recent Street Railway Extension it Glasgow," by J. A. Stewart, and shows an excellen example of the good work which is be ing done in Great Britain toward fur thering rapid transit. Prof. Chandler's exhaustive paper, "Chemical and Techni cal Education in the United States," is continued. "The F'rst Two 'Irial 'Prip of Von Zeppelin's Airship "is illustrat ed frow actual photographs showing the ship in its housing and its ascent "Special Report on the Galveston Hurricane of September 8, 1900," is by Isaac M. Cline. Local Forecast Official and Section Director. "The Transportation Exhibit of the Paris Exposition" is ac companied by a number of illustrations showing parts of the centenuial exhibit "Curiosities in Clockwork" are also de scribed. "The Age of the Earth," by Prof. W. J. Sollas, is continued. "French Cultivation with Chemical Manures" is an important technical article. "Morals and Manners of Japanese as Viewed by a Native" is an abridgment of an ad dress delivered by Dr. Inazo Nitobe, of Sapporo, in Philadelphia and specially reported for the Scientific American
SUPPLEMENT.

