Sorrespondence.

The Isthmian Canal Problem.

To the Editor of the Scientific American
The editorial in your issue of the 10 th inst. seems a little severe on the pending action of Congress upon the Nicaragua Canal problem. If any affront has been yiven anybody, it was given by Congress at its last session, when, without waiting for a report already being made, by a commission appointed by its authority, it ignored the work of the commission, then two-thirds completed and soon to be reported, and enlarged the commission by adding five members, thereby assuming that the Walker commission was either incompetent, or laggard, or both. 'This looks like an affront both to the President and the commission. "A decent respect for the opinion of mankind" should have allowed the commission to report before superseding them, and if Congress had been less hasty, the new commission would never have been appointed, for the Walker commission has thoroughly settled the question of the feasibility of the Nicaragua Canal and its extreme cost. No doubt $\$ 100,000,000$ will cover the its extreme
The commission has greatly enlarged on the Menocal plans, by an average prism nearly 75 per cen greater, has located the canal in the coastal plain and San Juan Valley, where it ought. to be, puts the San Juan dam above the mouth of San Carlos River, which is the right thing to do, plans to regulate the lake level and locates the west side to the Pacific wisely and well. The great divide cat, the long and high embankments, the great dams and embaukments at Deseado and La Flor, and the excessively high lift locks of the Menocal plans, are all wisely eliminated. What more can you ask? You say the great problem of regulating the lake level has not been solved. Well, what about the Panama project, where there is not a drop of water at the summit to regulate, and the tremendous freshets of the Chagres River have puzzled the engineers from the beginning, and the problem has not been solved to this day?
It is strange that you doubt the ability of our engineers to regulate the outflow of water from Lake Nicaragua, when the Chicago Draizsge Canal is so easily regulated at pleasure by the rise and fall at will of the "bear trap daw," 160 feet in length. So too on the

3d page following your criticism of Congress, you exploit the "balanced cantilever" and show that a single machine handled 900 cubic yards in a day, raised it out of a cut 36 feet deep, and deposited It in a spoil bank 80 feet high. This is just the thing for the 12 -mile cut west of the lake, quite similar in width and depth to the rocky portion of the drainage canal, and this is only one of the many ingenious modern appliances for handling material in wide and deep cuts. The commissioners add 50 per cent to drainage prices, for the excavation west of the lake, then add 6 per cent for administration, then add 20 per cent to that to make up their $\$ 118,000,000$. Do you doubt that there are plenty of contractors that will be glad to do the work at those prices?
But suppose the canal costs $\$ 135,000,000$, the highest that any authority has ever put the cost. Who would grumble? Nobody in this part of the dominion, I assure you. Everybody is unanimous for the Nicaragua Canal, and for its speedy construction, for it is by far our shortest route, and best route. Longer dillydallying is nonsense. No doubt that it will be of immense importance to the cominerce of the United States and of the world, and as a paying investment it will outclass the Suez Canal. O. B. Gunn.
The Montague, Kansas City, Mo., February 12, 1900.
[We cannot agree with our correspondent in his suggestion that the appointment of the Isthmian Canal Commission before the presentation of the report of the Walker Commission was any reflection upon the latter body. The Walker Commission was concerned with the Nicaragua route and no other ; whereas the President decided, wisely, as it seems to us, that hefore the country was committed to actual construction it would be prudent to determine which of the several possible routes was the best; and to this end the Isthmian Canal Commission was appointed. Such an examination is called for by the dictates of common prudence, and it is indorsed by everyday practice in the construction of our railroad systems, where several "trial lines" are almost invariably run before deciding upon a "final location."
The Scientific American desires to see the canal built and owned by the United States; but we want that canal to be the very best that can be built. So long as the location decided upon insures, more than any other, the advantages of short length, ease of access,
permanence of structure, and low cost, we care not whether it is located at Panama, Nicaragua, or elsewhere at the Isthwus. That Nicaragua combines al these advantages, or that it combines them in greater
degree than any other route, has yet to be proved. If degree than any other route, has yet to be proved. If heartily welcome its immediate construction.-ED.]

A new service of automobile cabs will be introduced in Paris.
Very satisfactory results are being obtained in Wash ington in the collection of mail from street letter bozes by means of automobiles. On one of the longest routes in the city the antomobile covered the distance in thirty-two minutes, including twenty-seven stops. The regular collector's time for this trip is one hour and forty-five minutes, and with a horse-drawn vehicle one hour and twenty minutes.

The Current supplement.

The current Supplement, No. 1260, has many inter esting articles. "Are Further Experiments Needed for Determining the Atomic Weight of Oxygen ?" is by Edward W. Morley. "An American Pacific Cable" is the address delivered before the American Institute of Electrical Engineers by George Owen Squier, and is concluded in this issue. "The Electrical Potentiality of Atmosphere Referred to Other Conditions" is an in teresting artcle by Professor Edwin G. Dexter, Ph.D
The Man's Knife Among the North American In dians" is by Professor Otis T. Mason, and it is accompanied by seventeen illustrations. "The Cruise of the Albatross,'" by A. Agassiz, is concluded.

Contents.

(Allustrated articles are marked with an asterisk.)

recently patented inventions.

Agricultural Implements.

CUT-GRAIN CARRIER FOR HARVESTERS. Henry Bryan. Modesto, Cal. In headers the endless
draper or apron runs on a roller arranged directly behind the sickle-bar and at a right angle thereto. The lower end of the roller, being near the ground, accumu lates sand which increases the friction. To overcome
this objection, the inventor forms the roller with a hollow, cylindrical body. Circular heads have a central in houlder abutting the end of the latter. Coincident oilholes are provided in the body and one of the heads to insure perfect lubrication.
cotton-Chopper.-Henry Bartels and Louis Bephnard, New Braunfels, Tex. This improved cottonthe chopping knives can be easily secured at any desired place on the periphery so that adequate spaces are left between sets of knives for the purpose of passing over
the stalks at desired intervals. the stalks at desired intervals. The cotton-chopper com-
prises a wheel comprising connected disks, formed in prises a wheel comprising connected disks, formed in
their adjacent and inner faces with series of recesses undercut toward their opposite and outer faces. The chopping-knives have their ends fitted in the recesses. MOWING-MACHINE ATTACHMENT.-THom $\Delta 8$ B. FAGAN, Van Wert, Ohio. This attachment is jesigned chine for the purpose of gathering the grass or clover into bunches and discharging the bunches behind the rruck of the mower, where they are out of the team's way on the next round. The gatherer consists of par allel slats turned up at their rear ends on a diagonal line. A gate is provided composed of an arm having pendent
teeth or tines arranged along the line of draft parallel teeth or tines arranged along the line of draft paralle
with the delivery side of the gatherer, the arm being with the delivery side of the gatherer, the arm being
made adjusizble to be lifted from the gatherer to dis charge the buncti of grass.

Electrical Apparatus
ELECTRIC-LAMP SUPPOKT. - HARRY Lona, Greentowai ${ }_{2}^{*}$ Ind. Tbis device, composed partly of aluminiun, is especially adapted for railway stations, hotel corridors, boulevards, and places where arc-lamp fixtures
of tasteful design are required. The inventor has furthermore provided a very simple and ingenious means for supporting a lamp and for raising and lowering it, so rent is automatically cut off, so that the carbons can b renewed without danger.

Engineering-Improvements TRACTION-ENGINE--AMBrose M. SEARLe, Geneseo, Ill. The construction provides a pivotal connection
for attaching one end of an adjuetable two wheel base to a traction-engine, thus making it possible to sustain the weight of that end of the adjustable base and also the weight of the load which may be carried npon that par of the base, at the same time allowing the engine perfect freedom in the movements as regards its steering or
guiding apparatus and in the!performance of ite other guiding apparatus and, in the!performance of ite other
operations. The action and position of the boiler of the base. The base is so arranged as to travel in front of
instead of trailing behind the engine, as a result of the positive operation of
ments of the boiler.
MACHINE FOR MEASURING OR LAYING OUT SLide-ValVES. - Yeter Elifs and Archibald a. Whitel.aw, Wellington, New Zealand. This improved
device enables anyone readily to find, without further device enables anyone readnly to find, without further
calculation, the angle of cut-off, the lead, and the linear dimensions of ports, the lap, and the angle of advance of the eccentric.
COMBUSTION-ENGINE. - JAMES L. BATILIE and Perley b. Vertty, Shawnee, Ohio. This combustionengine employs a driving-wheel of the turbine type and usee gas, oil, air, or steam as a motive agent. The gas,
oil, or other element is used expansively, being ignited oil, or other element is used expansively, being ignited or exploded in a separate vessel, the resulting gases be-
ng conducted to the driving-wheel of the engine, thus go conducted to the drivigg-wheel of the engine, thus roviding a more steady and uniform pressure than when t
gine.

Mechanical Devices.

SHEET-FEEDING MACHINE.-Lewis E. Morrison, Kensington, Conn. The invention provides a aimple form of suction separating mechanism adapted to carry paper to the separating mechamism and the feed of he machine to which the attachment is applied. The owermost sheet from a pile of paper and directs the se lected sheet to any machine, device, or receptacle adapted to receive it and also effects such separation and delivery so that the paper is not buckled or subjected to ndue strain or pressure.
FEED-ATTACHMENT FOR WOOD.PULP CHIP-Pers.-Samuel W. Butterfield, Three Rivers, Quebec, Canada. The inventiou is a machine for reducing timber to chips, before transforming them by the aid of chemicals into wood-pulp. The invention provides a
new and improved feed attachtent for pulp-wood chipnew and improved feed attachtment for pulp-wood chip-
pers for feeding timber to a revolving knife-wheel, for the knives to cut chips of uniform thickness, which is essential to a proper disintegration when the chips are subjected to the action of the chemicals to insure the production of a high grade wood-pulp.
FENCE-WIRE FASTENING DEVICE - Oscar D Woodbury, Rochester, N. Y. The inventor has devised an apparatus for fastening stays to the running-
wires of wire fences. The faatening is effected bit clenching a staple around the fatening is effected by by slightly crimping the wires, so that the staple can more effectively engage and hold them in the proper elative position
PUWER-TRANSMITTER FOR WINDMILLS. Fred C. Thompson, Burton, Wash. The power-transmitter comprises a wind-wheel loosely turning on a
shaft. Independent ratchet-wheels are mounted to rotate loosely. A centrifugal governor is mounted on the wind-wheel and controls pawls adapted to engage either of the ratchet-wheels. Planetary gearing is driven from the ratchet-wheels and connected with and controlled by the governor. The power given to the shaft is transmitted by oppositely-arranged crank-arms to pump-rods o move the latter alternately in opposite directions, so as to insure continuous pumping. The operator can whenever desired

CURRENT-MOTOR. - Robert S. Theall. Fort Pierre, S. D. The current-motor is designed for the
utilization of the power of a flowing stream, oceanatilization of the power of a flowing stream, ocean-
tides, etc.,'and comprises a float having a post at one edge, with a mast munnted to turo upon the post.
series of sweeps or rotating-arms extend from the mast over the float and water. Stays extend from the npper part of the mast to the outer end of the sweeps. Levers pivoted upon the sweeps carry buckets or vanes adapted
to drop into the water. The levers extend above the sweeps to engage the stays as stops. An incline extends down from the float into the water and engages the vanes to raise them out of the water. The lower and float and supporting the vanes during one-half of and foat revolution.
Reversible Clutch-mechanism. - Franz SchneIDEr, Lawrence, Mass. The main object of the and wheels of motor-vehicles so that the wheel can axies farter than the axle, nevertheless enabling the axle to engage the wheel to turo it positively when the speed of
the axle is equal to that of the wheel. 'The device is made so that it can connect the axle with the wheel to turn the wheel either forward or backward, and that it can be set so as to be disengaged entirely from
wheel, enabling the wheel to turn in either direction.

Railway-Appliauces.

CAR-BRAKE.- Charles E. SuArpless, Dubois, Penn. This brake is especially adapted for mine cars, but is also applicable to other vehicles. It is so con-
structed that it is capable of automatic adjustment structed that it is capable of automatic adjustment or
compensation for any unequal wear on the orake shoes or blockes, thns obtaluing equal pressure of the shous or blocks at both sides of the car. The ioventor claims that there is no friction between the brake-blocks and car-wheels when the brake is not in use, so that grea pressure may be applied to the brake-blocks with
slight expenditure of power on the operating lever.

Miscellaneous Inventions.

SKIRT AND WAIST-FASTENER. - WILLIS J. Gallup, New Richmond, Wis. The invention provides a device for conveniently and securely fastening together
around the waiet the two sides of a placket of a lady ekirt and also for holding the dress-waist at the back Tbus the two parts of the d
prevent all unsightly gaping.
chain-link.-William H. Griffith, Baltimore Md. This wire chain-link is of that form in which there is a loop forming one end of the link, the other
end being formed by two terminal eyes brought to lie end being formed by two tcrminal eyes brought to lie
side by side to receive through them both the loop of the next adjacent link in forming the chain. The presen invention consists chefly in locking the ends of the terminal eyes in convolutions coiled in the shanks at a point near the terminal eyes and at one end of the open portion of the link.
horse-detacher.-Henry . and Georae p Thomson, Wakarusa, Kans. The purpose of the inven ion is to provide a horse-detacher applicable to single or double rigs and arranged to permit the driver or other a vehicle. The singletree is mounted so that it can be
given a quarter-torn. Trace-pins are pivoted on the ends of the singletree and adapted to cngage apertures in the trace. Keepers are carried by the singletree, each
for normally holding a pin in position and allowing the for normally holding a pin in position and allowing the giving a quarter-turn to the singletree. The pin is nor mally spring-presed into engagement with the keeper. HANGING CLO'THES-RACK.-Louls G. Horton, Blossburg, Penn. When set up, this clothes-rack will accommodate a number of plain pieces, as well as ekirts, shirts and the like, the latter named garments being sus pended from the lower portion of the device. The lothes-rack is so constructed that the articles upon one lier will not interfere with the articles upon an upper or lower tier, the rack-bars or rods upon which
are hung being arranged in graduated series.
Lathe-dog.-William b. Haneins, Mount Ver non, Ohio. The inventor has devised an ingenious latheog which can be readily fitted to all kinds of work, ob-
iating, therefore, the necessity of changing the dog to suit the work. The dog consists of two jaws. which can suit the work. The dog consists of two jaws. which can
be moved toward or from each other to engnge and disengage the work. The saving effected by this device is TOBAC
TOBACCO-PIPE.-Emil P. DAtow, New Orleans, La. To prevent nicotin from passing to the mouth of the smoker, the inventor forms the bowl of the pipe with a smoke outlet in its side above the bottom of the
bowl. Into a cooling and draft chamber surrounding the bowl a smoke-oatlet opens. A settling-chamber communicates with the bottom of the bowl, but is distinct from the cooling-chamber. An air-circulating chamber circulates air around the cooling and draft chamber. Saliva besides being prevented from passing ot the cooling-chamber, repels the oil of nicotin.
BOOT OR SHON HEEL.-JAmEs J. NAUGiton, Manhattan, New York city. One object of the invention
is to provide au attachment for boot and is to provide au attachment for boot and shoe heels
whereby the wearing. surface of a heel may be removed whereby the wearing.surface of a heel may be removed
at will and another substituted whenever desired. The at will and another substituted whenever desired. The
invention also provides for the attachment of a treadlift of any desired character to a heel and supplies means whereby
the shoe.
apPaRATUS FOR DISTRIBUTING AIR.-JAMEs Curlex, Macoupin, III. This apparatue is adapted for application to vehicles, and is so constructed that air
may be drawn and delivered directly to varions points may be drawn and delivered directly to various points where it is required. When the vehicle is occupied, cur rents of fresh air win be supplied not only to the occu vehicle, the bodies of the animals being simultaneously protected from the irritation of insects.
SAFETY-LOCK.-Josepr M. Robinson, Manhattan, New York city. The lock is designed for attaching a nother cleaning device or belt to a window-frame or to proftably employed constructed in two parts, one being designed for attachment to the support, and the other for connection with he cleaning-device. No springe are used in the con struction. When once in position the lock cannot be AUXILIART
AUXILIARY GENERATOR FOR OIL-GAS camps.-Alexis F. Gillet, Kearney, Neb. In using
oilgas lamps which have a generator heated by the
burner it is necessary ordinarily to furnish some means for heating the generator to volatilize the oil. The means usually employed colekirt of eome form of torch
for heating the generator when the lamp is first ignited. for heating the generator when the lamp is first ignited.
The object of the present invention is to provide a carThe object of the present invention is to provide a car-
bureter operated by the attendant, which will farnish a bureter operated by the attendant, which will farnish a
supply of carbureted air or gas sufficlent to heat the gensupply of carbureted air or gas sume. The device may b applied to any lamp of the form using a generato heated by the flame of the lamp.

Denigns. OR VESSE

NECK-BAND FOR VESSEL-CARRYING DE-VICES.-Josery Rittenhouse, Phijadelphia, Penn eeck so that it will be provided with two eyes which re. ceive the ends of a bail.
Nore.-Copies of any of these patents will be furnthe name of the patentee, title of the invention, and date of this paper.

NEW BOOKS ETC.
Elfmentary Chemistry for High
Schools and AcA inmies. By Al-
bert L. Arev. C.F. New York: The
Macmillan Company. $1899 . \quad 12 w o . ~$
The author has produced an excellent text book which compares very favorably with those of the same grade which we have examined. "Sulfur" never looks as weli as sulpbur, but it is perhaps well to bow graceflily chemical literature to stay. The diagrams admirabl elucidate the text.
Home Pork Making. By A. W. Ful
On. New York and Chicayo Pp. 124. Price 50 cents.
The present volume is a complete guide to the farmer the country butcher, and the suburban dweller in al that pertans to hog slaughtering, curing, preserving and storing pork product from scalding vat to kitchen table and dining room. The formulas are most practical. I
Water and
John C. Whter
Supplies. By
Second
Revised
John C. Thresh. Second Revised
Edition. Philadelphia: P. Blakis
Edition. Philadelphia: P. Blakis
ton's Son \& Company.
1900. ton's Son \&
438. Price $\$ 2$.
A thoroughly practical work of value to all sanitaryenIneers and to otherswho deal with water supplies. Eng been given to the sabject in England, owing to the densit of the population. that it is all the more valuable on thi account.
Forage Crops Other than Grasses. How to Cultivate, Harvest and Use
Them. By Thomas Shaw. New
York: Orange Judd Company. Illustrated. 1900. Pp. 281. Price $\$ 1$.
The work has apractical ring about it that begets confidence. It will prove of immense value to every farmer
who will give it careful study. Forage plants can be tined to occupy an important place in the near future in systematic crop rotation on every stock and dairy farm Formulas and Tables for Heating.
for Heating and Ventilating Work
for Those Who Plan or Erect Heat
ing Apparatus. By J. H. Kinealy. pany. 1899. Pp. 53.
This work will prove of value to all who have occasion to arrange heating and ventilating plants. Good work has recently been done in Germany, and we ought to re
The Diurnal Theory of the Earth a Stratified Physical World. By
\mathbf{W} illiam Andrews. New York: Myra
Andrews and Ernest Gork: Sterens. 1899. Pp. 551.

The Art of Thinking. By T. Sharper Kork: Frederick Warne and New 1899. Pp. 139. Price $\$ 1$.

A valnable little book which makes us see how defective we sometimes are in the art of thinking. It is an exto be benefited by it.
Essays on the foundation of eddea. TION. By Rev. J. Godrycz, Ph.D.
Lansing, Mich. $1900.12 \mathrm{mon} . \mathrm{Pp}$ 168.

The author deals with "Intellectual Education, "Methods of Teaching History," "Religious Educa tion." " Phyysical Education," etc.
Catalogue of the Annual Architec-
TURAL ExHIBITION, 1899-1900. Philadelphia: T Square Club. 1899. Smal
quarto. Pp. 210. Price 0 cents.
This handsome volume is filled with excellent arcbiIt shows what remarkable architeetural work is being done in the United States.
SEEGER AND GUERNSEY'S CyClopedia of the Manufactures and Pro OF THE OF THE UNITED STATRS.
New York: The United States Industrial Publishing Company. 1899. 8vo. Pp. 1856. Price $\$ 10$.
That the earlier edition has been in constant use in our office for some years in answering manifold queries as to manufacturers of all kinds of goods is a
sufficient guarantee of the great excellence of the work. sumcient guarantee of the great excellence of the work Its value has been demonstrated almost daily particularly
in the consideration of cases where manufactured goods in the consideration of cases where manufactured good
are madein small quantities or are of odd, out of the way articles. The arrangement is admirable, and access

Business and ersonal

Marine Iron Works. Chicago. Catalogue free.

 "U. S." Metal Polish. Indianapolis. Samples fre Yankee Notions. Waterbury Button Co., Waterb'y, Ce For bridge erectingengines. J.S. Mundy, Newark, N.J. Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St Cbagrin Falls, 0.Ferracute Machine Co., Bridgeton. N. J., U. S. A. Full Inventions developed and perfected. Designing and machine work. Garvin Machine Co., 141 Varick St., N. Y. Thecelebrated "Hornsby-Akroyd" Patent Safety Oil ngine is built by the De La Ver\&ne Refrigerating M
hine Company. Fort of Kast 138 h Street. New York.
The best book for elect rcians and berinners in elec
tricity is "Experimental Science," by Geo. M. Hopkins by mail, 84. Munn \& Ca . publishers, 361 Broadway, N. Y CDend for new and complete catalogue of Scientific New York. Free on application.
Nather

HINTS TU CORRESPONDENTS. Names and Address must necumpany all leters
or no attention will be paia thereto. This is for ous or no attention will be paid thereto.
information aud not for publication.
eferences to former arricles or answers should give date of paper and page or number of question.
nquiries not answered in reasonabole time should De repeaten: correspondents will bear in minu that
 B uyern wishnng to purchase any articie not addertised
in our columns will be furnished with addresses of housee manufacturing or carrying the same.
pecifil Writiten In forniation on matters of
personal rather than general interest cannot be expected without remune ation.
scientific Aments referred Sclentilic American Suplements referred
to may be had at the offce. Wooks referred to promptly supplied on receipt of
price.
Hinern sent for examination should be distinctly
markei or labeled.
(7828) F. A. writes: I have read of a machine so cosetructed as to show the motion of the earth. It consists of a pendulum supported on a frameork. How heavy would the pendulum have to be, and how long the rod to pendulum to construct a small made with a pendulum weighing kay threeor four pounds nd the rod about two feet long? A. The experiment is alled Foucault's experiment from its inventor. The 6 to 20 feet long you would as probably succeed with one hould be as heavy as convenient, ten to twelve pounds. A strong steel wire should be used to support the weight. The support at the top should be as rigid as possible. he space within a stairway several stories high is well diapted to the experiment. One was hung in Bunker Hill Monument, $2: 2$ feet high. The ball is made to swing
exactly north and south, at the start. In even five minutes its deviation may be noticed, the south end of the swing falling to the west of the meridian. In this latitude the deviation is about 9 degrees in an hour. A valuable article on this topic is found iu the Scientific merican Suprement, No. 627, price 10 cents.
(7829) G. B. asks: What becomes of the latent and active heat contained in air or water when the oxygen therein combines with other substances, as in
malting, fermenting, spontaneous combustion, putrefacive fermentation, in all which a rise of temperature And place animal heat, is it supplied by the of supply? And ulso animal heat, is it supplied by the same cause, am led to this way of thinking by the effect produced on air by depriving it of its latent heat; it becomes "liquid air." A. The heat given off when the various changes described above take place is due to the chemical combinations which occur. There is no liquefaction of the oxygen in any of these cases, but there is chemical action. This is a source of heat. The latent heat of air or water is given off when they change their state to
the liquid or solid form.
(7830) W. F. asks: What magnifying power (number diameters) a microscope should possess
to reveal, spermatozoa and the consumption germ? A. For observing such objects, an objective of at least onefithinch focallength is required, and an eighth should be gives a magnifying power of 425 diameters; with an inch eyepiece, 780 diameter8; and with a halp.inch eyepiece 1,200 diameters. This is enough for any purpose.
INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week Ending FEBRUARY 13, 1900.
AND EACH BEARING THAT DATE.

See note at end of list about copies of these patents. 1

Letyerer................................. 643

Air compressor, \dot{W}. D. Hooker................iii
Air purifying and drying apparatus, Bíreail

utomobile vehicle gearing, L. H. D. Der.
Back pedalink brake, H. S. Ahker
Back pedialing brake. . P: Binckiey..
Bag. See Sample or conveying bag.

 Casempaliorase euporting apparatus, C. Lampitt

63,325
643,177
643,157
643.59
643,175

ind berrg
Uniotroe macoine.
Liquotion mearchive ean
Mall
Mains, str eet box
Mannel it irey
Macco matied.
Mater reataie
Metal bending machine, Henius \& Heemoidid,
Metal haridining aparat
Miler joion iranimiter
${ }_{\text {Sis }}{ }_{\text {a }}^{\text {b }}$
Motoroperating pant Mi. W. Wiil
Musical nifument str
Naldilier,
,
Nut Iock
Nutater
ation
Pater
(eater
ata
See Tolaceo

