a WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES

Automatic Plate-facing Machine.

צrintifir Ammont

ESTABLISHED 184.5.
MUNN \& CO.,
Editors and Proprietors.
PUBLISHED WEEKLY AT
No. 361 BROADWAY,
NEW YORK.
terms to subscribers.
 the scientific american publications
 The combined subscription rates and rates to foreign countrie
be furnished upon appliation reme
Remit by postal or oxpress money order, or by bank draft or check

NEW YORK, SATURDAY, MARCH 4, 1899.

AIR BUBBLES

It is greatly to be regretted that the inception of
such a great industry as that of the automobile carriage in this country should be hampered by the sensational methods adopted by some of its so-called promoters. We refer to the omnipresent Autotruck Company, which, under the magic spell of certain names notorious in the more spicy periods of the political history of our city, still continues to enlarge on paper the sphere of its proposed operations. We have scarcely had time to grow familiar with the Air Power and Autotruck companies, with their capitalization of $\$ 10,000,000$ or more, and their intention to "control the trucking interests" of the city, before we are told that "Richard Croker is about to cross swords with the Third Avenue Railroad Company by fitting out a line of omnibuses driven by compressed air," etc. It is also added incidentally that " the Autotruck Company proposes to run stages similar to those proposed for Fifth Avenue, in Chicago and in Los Angeles, Cal.," yet we doubt if anyone has yet seen a street autotruck, and even the company cannot say more than that "orders for the construc tion of these vehicles have been given.

LIMITATIONS OF THE AUTOTRUCK

We think it is extremely unlikely that the autotruck, if it should ever get beyond the precincts of Wall Street, will succeed in displacing entirely the horse-drawn truck. For certain conditions of our city trucking it would be an immediate and absolute failure; as for instance, in a snowstorm like the last, in which Mr. Croker's autotrucks would be even more helpless than Mr. Vreeland's trolley cars have proved to be.
The weak spot in the autotruck would lie in the fact that the measure of its tractive force would be deter mined by the adhesion of the driving wheels, and in the greasy condition of the streets on which heavy hauling is done, the adhesion would be very small in deed. If a 5 -ton autotruck attempted to cross the well lubricated paving of W est Street or Water Street with the air company, if put into the motors, could budge the air co
it an inch.
If the driving wheels should chance to drop into one of the multitudinous holes with which the Metropolitan Street Traction Company, having got in its wires, has strewn our thoroughfares, it would stay there until the discarded horse could be brought around to drag its discredited competitor from the pit.

ELECTRICITY AS A THAWING AGENT

If the statistics were gathered of the number of houses that are burned down every winter, as the result of attempts to thaw out frozen pipes by the perilous methods ordinarily practiced by the householder,
the results would be decidedly sensational. To Prof. R. W. Wood, of the University of Wisconsin, great credit is due for showing that a frozen water pipe may be thawed out by the expedient of running through it an electric current of the proper strength.
In the present case a stretch of 300 feet of pipe be tween a house and the street main was solidly frozen. One wire was attached to the pipe in the cellar, and the other to a faucet across the street. The flow of the current was down the service pipe, along the main, and by way of the frozen pipe to the connection in the cellar. It was only necessary to heat the pipe to sixty degrees, and it is stated that within twenty minutes there was a full head of water in the cellar. The apparatus employed was planned by Prof. Jackson, and is being used with great success, two houses at a time being relieved thereby from their water famine.
It is evident that while electric thawing avoids the obvious risks of thawing out by hot coalsor similar ap plications of heat, it has dangers of its own, and should only be applied by an expert workman. The theory of electric thawing is that the current in flowing through the metal meets with a resistance which raises the temperature of the pipe. The temperature will de pend, other things being equal, upon the sectional area of the pipe, and care should be taken that there is no considerable reduction of the size of pipe at any point
immediate overheating due to the reduced area which would be a source of danger. The current used would not have to be as large as might be supposed, the coefficient of electrical resistance being, for instance, twelve times as great for lead as for copper. With proper precautions the process is not dangerous, and the saving in the way of excavation and plumbing will be very considerable.

COST OF THE BOSTON SUBWAY.

The figures of the cost of the Boston Subway, as given in the fourth annual report of the Boston Transit Commission, are very gratifying to the friends of the proposed rapid transit tunnel in New York. It was estimated in 1894, before work was begun, that the cost of the subway would be $\$ 5,000,000$. Now that the cost of the subway would be $\$ 5,000,000$. Now that
the work is completed, a close estimate places the total the work is completed, a close estimate places the total
cost at $\$ 4,250,000$, exclusive of the cost of certain alterations called for by legislation in 1897. It is not often that engineering works cost less than the estimate, and we do not call to mind any case where works of this magnitude have not somewhat exceeded the estimate.
There are no special difficulties or uncertainties connected with the construction of the New York under ground scheme which afford reason to expect that it would cost more than the estimates. The work would all beof a kind with which engineers are familiar, and, ind eed, if the funds for construction were furnished as fast as the engineers could use them, and a big force of labor were engaged simultaneously along. the whole route, we think it is likely that the tunnel could be
built for something less than the estimate of $\$ 30,000,000$.

COMPARATIVE MERITS OF THE PANAMA AND

 NICARAGUA CANALS.In our recent comparison of the advantages and dis advantages of operation in the two proposed canals across the isthmus, we omitted to draw attention to one or two features which would have more or less ef fect upon the commercial success of the canals, should both be built. We refer vo the question of favorable winds as affecting the amount of sailing tonnage that would seek either route, and to the yet more serious question of the curvature of the canals as affecting both steam and sailing vessels. It is in favor of Nicaragua that for ten months of the year there are steady trade winds, which would enable sailing ships to reach either terminus without the assistance of tugs except in entering the artificial harbors. In the latitude of Panama, on the other hand, there are long periods of calm which might render some what lengthy towing necessary. While the objection counts fo something, it is not so serious as might be supposed,
for the reason that t : e deep sea sailing tonnage forms a very small and rapidly diminishing proportion of the total tonnage. In fact, it is probable that by the time either canal is finished, the tramp steamer will have completely ousted the sailing ship from the long distance carrying trade.

In laying out a ship canal, the curvature is one of the most important questions for consideration. In view of the ever-increasing length of ocean steamships, it is desirable to make the canal as straight as possi ble. If, owing to the nature of the country, curve are necessary, they should be "easy," that is to say,
their radius should be large. When a large ship passes up the Manchester Ship Canal, she has to be assisted by a tug at her head and one at the stern to enable her to make the turns. This is tedious, costly and full of risk. The smallest curve at Panama will be four times as easy as that of the Manchester Canal in Eng land, and double as easy as those of the Kiel Canal in Germany.

The curvature of the Nicaragua Canal has not been determined, but for about 50 miles of its course down the San Juan Valley it must necessarily be very sharp even after the waters of the river have been dammed.
The approximate curvature of the river channel shows a total length of curvature in the valley of $39 \cdot 6$ miles. The curves of the Panama Canal are of 8,200 feet radius or over, while the river channel at Nicaragua has six curves of 700 to 1.500 feet, 15 of 1,500 to 2,500 , and 21 curves of 2,500 to 3,000 feet. Although the Ochoa dam will.widen the channel, it will be difficult, even with costly excavation in cutting away the spurs of the hills, to reduce the curvature to the extent necessary for easy na vigation.

MASONRY VERSUS WOODEN DRY DOCKS.

the United States should cene to build wooden dr docks and in future construct all of its docks of ma sonry. The principal argument in favor of wooden structures is, or used to be, the smaller first cost While a timber dock could be built for from $\$ 400,000$ to $\$ 600,000$ according to its size, a similar masonr structure used to cost from two to three million dollars This of course was an extravagant figure, but seems to have been unavoidable under the plan of periodica appropriations by Congress, which caused the work to extend over long periods with much consequent wast time and money.
The recent bidding for a stone drydock at Boston
brought out the welcome fact that a masonry structure can be built for a moderate increase of cost over one of timber. The cost of the dock will be about $\$ 1,000,000$ whereas the timber dry dock (known as No. 3) at the Brooklyn navy yard cost between $\$ 600,000$ and $\$ 700,000$, and in the two years of its existence it has ost for repairs $\$ 171,000$
Prof. W. L. Cathcart, of Columbia University, in a paper on the subject read before the American Society of Civil Engineers, gives some significant figures regarding the cost of repairs on the two types of docks, in which it is shown that the least average annual expenditure for repairs and maintenance was $\$ 230$ per year for the stone dock at Mare Island, while the highest expenditure was that upon the Brooklyn navy yard wooden dock, above mentioned, which averaged yard wooden dock, above mentioned, which averaged
$\$ 85,500$ per year. A comparison of three stone docks, $\$ 85,500$ per year. A comparison of three stone docks,
those at Boston, Norfolk, and Mare Island, shows an those at Boston, Norfolk, and Mare Island, shows an
average yearly expenditure of $\$ 1,558$, while the a verage average yearly expenditure of $\$ 1,558$, while the a verage
on four timber docks at New York, League Island, Norfolk, and Port Royal, was $\$ 13,364$. Commodore Endicott, Chief of the Bureau of Yards and Docks, stated that a timber dock has to be practically rebuilt in from twenty to twenty-five years, the experience of the navy all tending to prove that the masonry dock is superior in practically every respect.

THE FASTEST VESSEL AFLOAT

Until the new and large torpedo boats of the "Turbinia" type, now building at Newcastle, England, have been completed, the credit of having turned out the fastest vessel will belong to a German yard. The "Hai Lung," built by Schichau, of Elbing, for the Chinese navy, is credited with having made a run of $181 / 2$ knots at an average speed of over 35 knots an hour. The builder states that the highest speed realized during the run was $36 \cdot \%$ knors or 42.26 miles per hour. The best run of the "Turbinia" for a mile is 35 knots, so that the Schichau vessel has a substantial lead.

The most remarkable feature of this boat next to her speed is the fact that she is fitted with reciprocat ing engines. At the time the "Turbinia" made her phenomenal speed, it was popularly supposed that it was entirely due to her new form of motor. In great part no doubt it was; but there is reason to believe that the excellent steam-raising qualities of her boiler contributed in no little degree to the result. Relatively considered, the performance of the "Turbinia" was more meritorious, for the reason that she is only a 40 ton craft, while the Schichau boat is of 180 tons dis placement, or four and one-half times larger. The new and enlarged "Turbinias" will be full sized tor pedo boats, and for this reason it is likely that they will surpass the "Hai Lung" by a considerable mar gin of speed. Just what the excess will be is a matter which is exciting much speculation in naval quarters.

FLASHLESS RAPID-FIRE GUNS

It is reported that the new French rapid-fire gun in vented by Colonel Humbert gives no flash or sign of fire. If this be true, the French have made an advance in artillery second only in importance to that which marked the introduction by them of smokeles powder. In the operations around Santiago, the only means by which our men could locate the position o an enemy's piece was the flash. If this should be re moved, the art of war, especially on land, will become more difficult than ever, for a masked battery of smokeless and flashless guns would be positively undis coverable. The only description of the gun that has come to hand is rather obscure; but it would seem that an attempt is made to cool the larger portion of the gases below their flash point before they are allowed to reach the open air. The rate of fire has reached a maximum of twenty shots per minute. To accommodate the increased expenditure of ammunition it is pro posed to reduce a single battery from five to four gun and increase the number of ammunition wagons.

RAILS AND TIE-PLATES.

One of the most useful improvements ever introduced on American railroads is the tie-plate. Before its invention the life of a wooden tie, especially if the tie was of soft wood, was frequently limited to the time it could withstand the cutting of the rail into it upper surface. Wear, due to this cause, was alway considerable, and as the weight and frequency of trains increased, it became excessive.
In earlier days it was supposed that the material of the tie gave way by crushing; but of late years it has been believed that it is the wave-like movement, set up in the elastic rail by the wheels of the cars, that acts with an abrading effect upon the fibers of the wood. If this is the true explanation, no amount of widening of the base of the rail will prevent it from cutting into the tie.
The interposition of the tie plate (a square plate with stiffening ribs on its under side) between the base of the rail and the tie has proved wonderfully effective in preventing this cutting action. The longitudinal ribs of the plate sink into the tie, and keep tie and plate in a fixed relative position; the rail spikes
pass through holes punched in the tie-plate, and are thus held at all times snugly against the rail. Mr. Sandberg, whose good work in past years in advocating the use of rails of greater weight and stiffness is universally appreciated, does not appear to understand the true function of the tie-plate as explained above; for he has lately made a plea for the widening of the base or flange of the rail as a means of preventing cutting of the ties. The only possible gain if this were done would be an increased stability against overturning of the rail (which, by the way, is not called for, overturning being a very rare occurrence), and a broader bearing on the ties, which, as we have seen, would not go very far toward preventing their destruc tion. Moreover, to widen the base throughout the whole length of the rail would be extravagant, for the reason that the present base has ample cross-section considered as the bottom chord of a girder to carry the load concentrated between adjoining ties

SUGGESTIONS CONCERNING TRADE WITH RUSSIA.

Russia occupies an area of $8,500,000$ square miles, a sixth of all the land of the globe, and it has a popu lation of $130,000,000$ souls. There are 140 different races and $90,000,000$ of the inhabitants are farmers. This country, certainly, constitutes a world large enough to command the attention of the leading manufacturers and exporters of the United States who are seeking a market for their surplus
There is a general desire on the part of Russian mer chants and dealers to establish relations with Ameri can manufacturers, provided that it can be done ad vantageously to themselves; but, as a rule, however American houses have a general agent in England or Germany, who supervises all the business for Europ and appoints sub-agents in Russia, who naturally re ceive but a small fraction of the commission. Russian agents naturally object to dealing through an agent in
London or Hamburg, and would much rather deal di London or Hamburg, and would much rather deal di
rectly with the home company. One of our great rectly with the home company. One of our great
locomotive works and a great pump works, some years since, gave the exclusive agency for their goods in Russia to St. Petersburg agents, who deal directly with the home company, and practically control the Russian market for locomotives and steam pumps, their trade amounting to millions every year, while agents for rival companies are unable to compete with them. What has been accomplished by these companies can be done by others with equally meritorious articles. English firms give a credit of from nine to tweive months, the buyer usually accepting a draft, payable at a London bank, without interest. Longer credits and open accounts are also common. American exporters usually require payment at an American bank, on the presentation of bills of lading showing that the freight had been delivered on board the steamer at some seaport. 'This is well enough for such cash articles as cotton, resin, etc., but, where there is sharp competition in manufactured articles, the terms offered by other countries must be made to secure business.
The American consuls in Russia are in constant re ceipt of letters and circulars from American manufac turers and export associations, making inquiries as to the prospect and methods of introducing their goods, but purchasers naturally desire to see and examine any article they desire to purchase, and, therefore, the cir culars printed in English, which few merchants can read, are of little use. Russians have respect and admiration for the inventive genius of the Americans, and while conservative, they are always willing and anxious to look into new inventions from the United States; but those who desire to do business in Russia should prepare special matter and have the same printed in either German or Russian, preferably Russian They should state the price of the articles offered for sale at the lowest terms of discount, terms of payment in Russian values and weights, and cost delivered on board of vessel at a prominent seaport. The surest and best plan to introduce goods into Russia is to send samples by a thoroughly competent representative of the business. It is not absolutely necessary for him to have a knowledge of the Russian language, as inter preters can be found in all the leading cities of Russia, yet an acquaintance with Russian, German, or French would be of great assistance. Articles of manufacture, with the exception of portable and traction engines, thrashing machines and plows made in the United States, are preferred to those manufactured elsewhere. American thrashers and engines are too light to stand the rough usage to which such machines are subjected in Russia. There is a large and increasing trade in American harvesting machinery and farming implements, such as binders, mowers, reapers, hay rakes, etc. The only plows used in European Russia are those manufactured in Russia and Germany, which are cheap and give good satisfaction. The Germans are constantly studying the Russian market, and manufacture articles in the style and manner they find specially adapted to the wants of the Russian farmers.
Notwithstanding the rapid progress Russia is making in the establishment of manufactories, which are being
encouraged by the government, she is not able to keep pace with the increased demand for iron, locomotives, cars, coast steamers, battleships, elevators, electrical apparatus and supplies, wood working machinery, tin plate, agricultural implements, resin, cotton, roofing slate, leather, scales, heavy ordnance, typewriters, tools, bicycles, sewing machines, hardware, coal and other machinery, photographic materials, as well as in other lines in which our supremacy is unquestioned. Russia offers such a rich field for investment and profitable trade that our manufacturers should study the marke and methods of doing business. The Russian railway and manufacturing systems are now in their infancy, and there will be for years a constant demand for ca material, railroad machinery, etc.
As in other export trade, it is the buyer, and not the seller, who determines the kind of articles he wants and the form in which he wants them turned out, labeled, and packed for shipment. It is the business of the seller to ascerta in what the buyer wishes and offer him a better article for the same or less money than he ha been paying.
The recent order removing the duty on almost every article used in agriculture will make such a reduction in their price as to place them within the reach of many farmers who have been unable to purchase them until now, and must largely increase their sale. There is a fine field for fire extinguishing apparatus, hose electric cars, passenger and freight elevators, improved flour mills, planing mills, coal and other mining ma chinery. It is proposed by Ambassador Hitchcock, if possible, to hold an American exposition in 1901, imme diately following the Paris exposition, as the best means of introducing and advertising goods, and offer ing American manufacturers an opportunity to become acquainted with Russian merchants and to acquain themselves with the kind of goods adapted to the mar ket, and the methods of doing business. By a recent convention the International Money Order system beween the United States and Russia went into effect on the first day of January, 1899
The above is an abstract of the interesting Consula Report of W. R. Holloway, our Consul-General at St Petersburg.

THE COMSTOCK MINES AND THEIR DRAINAGE.
A systematic and determined attempt is to be mad to lower the water level in the great Comstock mines, and permit a resumption of extracting ores down to the 2,100 foot level. By a combination of the directors of the thirty, or more, mines interested, $\$ 100,000$ has been raised for this purpose. At present, these mine are flooded 40 feet below the outlet of the Sutro tunnel which is 1,663 feet below the opening of the shaft of the avage mine. The purpose is first, to exhaust the upper level of 500 feet of water and then, if the plan pursued is successful, the remaining levels, extending as far down as 3,300 feet, in the deepest shaft, will be ultimately drained, and the stocks of ore, known to exist in the submerged territory, will be brought to ight. No estimate of the quantity of water that will have to be withdrawn, in order to dry out the various mines, has been computed, but that it is enormous is well known. The magnitude of the task is fully realzed by those who have the matter in charge. In 1877, the half dozen pumps of the Hale and Norcross mines raised, in six months, no less than 400,000 tons of water at a cost of one cent for every 20 gallons raised; 1,800,000 tons were pumped out in 30 months. The experience of
identical.
The cessation of pumping caused the immediate flooding of the shafts. Some conception of the enormous task undertaken can be discerned from these facts The cost of raising these floods will be, it is estimated, only one-twelfth more as compared with the cost in ormer years.
The stocks of paying ore remaining in all of the ower levels of the Comstock are believed to be very great. In former years ores of low value were regarded as not worth mining, owing to the high cost of reduction. At present ores realizing only $\$ 4$ per ton can be mined at a fair profit. It is also believed that ores of as high grade as was ever mined from the lode still exist in the unexplored portions. The reports of all experts unite in supporting, as probable, this theory. That sufficient low grade ores will be found to pay for their extraction, and more than the cost, is a demonstrated fact. It has always been claimed by the geologists of the Comstock lode that the probability of a continuation of the great ore body to an indefinite depth is more than good, and that rich bodies of ore will be discovered, as soon as science, in some way, devises means of moderating the high temperature met with in the lower levels. It is believed that this problem can be solved. Another difficulty of a serious character is the subterranean bodies of water occasionally met with, and which have at times caused serious loss of life, but a pumping plant of large caliber will, it is believed, greatly diminish the danger from this source. The difficulty of mining in a temperature of 120°, sometimes reached in the lower levels of the Com-
can be provided for by later appliances than were used when formerly worked.
The Comstock lode was discovered in 1859, and up to the year 1879 it produced ore of the assay value o $\$ 363,961,205$. The value of its subsequent production is not known exactly, but to place the total to date at $\$ 500,000,000$ is not considered by well informed experts any exaggeration. The wild speculation following the development of this great lode forms an interestin: page in mining history. The abandonment of minin, in the lower levels resulted from the exhaustion of high grade ore and the high cost of extraction. Ore in the 1,600 foot level and above is about exhausted. With the draining and ventilation accomplished, develop ment will be resumed, and there are many who believe that great results will follow. The later history of this most wonderful of all lodes of precious metals may prove quite as romantic and miraculous as that of its earlier days.

NEW MACHINE SHOP FOR THE NEW YORK

 NAVY YARD.The formal result of the deliberations of Commodor Melville, of the Steam Engineering Bureau, and Com modore Endicott, of Yards and Docks, relative to the rection of a new machine shop at the New York navy yard will be sent to the Secretary of the Navy t is understood, however, that they favor the con struction of a machine shop for naval work on an en tirely different plan from the one destroyed. 'The present idea is to extend the boiler shop toward the dry docks a distance of 400 feet, moving the boiler making plant to the lower end of the structure and devoting the western end to the machine shop until the new building can be erected on the site of the old one.
The new building will be one story high, 365 feet long, and 150 feet wide; the added depth of 75 feet being taken from the length of the boiler shop. An office and administration building will be constructed so that the offices will be in no way connected with the shops. The setting-up shop is to be 100 feet deep, and in the space inclosed in the three sides of the square occupied by the buildings provides for a power house to be erected away from the main buildings. The tools and machines for the new shops will be of the most approved pattern, and it is thought that the shop will be the most complete one in the possession of the government and capable of turning out work with great rapidity and accuracy.

A CURIOUS ACCIDENT ON A TROLLEY CAR

An inspector in the Brooklyn Water Department is now at his home in Brooklyn suffering from an elec tric shock, which paralyzed him from the waist down which he received in a trolley car. He boarded the car while it was raining hard. He wore no rubbers, but had on very thick shoes, the heels of which were secured by rows of heavy nails. He stepped from the platform upon the iron plate which forms the threshold of the car, the door of the car sliding back and forth in a groove in this plating. He at once experienced a sharp shock, and the conductor puiled the helpless man away from the plate and carried him to a seat. The other passengers were then sent out of the car ; the car was run to the power house, and after a considerable time had elapsed the man was sent home in a carriage.
It is difficult to account for such a severe shock. The pressure carried by the trolley wires is about 550 volts, and the shocks which are ordinarily obtained do not do any harm. It is probable that the injured man must have received the current through the iron nails in the heels of his shoes. It is also possible that the car heaters were improperly wired, and that a loose wire may have touched the framework of the heaters and been thereby conducted to the iron plate which covered the threshold of the door, through the medium of the iron supports of the heaters.

A STRANGE SOCIETY

The Woman's Rest Tour Association is a curious little society which is now becoming quite well known abroad. It is an association having headquarters at Boston, and it might be termed a mutual bureau for information. The society means to furnish women who travel for purposes of rest and study with such practical advice and encouragement as shall enable them to make their trips independently, intelligently, and economically. It has more than 575 members. There is a library of Baedeker's guide books which are lent to members who may wish to use them on their travels. Foreign and American lodgings are listed in a small paper which appears from time to time, and information is given regarding travel abroad. The membership includes many school teachers of very small means to whom it is vitally essential to make every dollar go as far as possible in a European tour, which is expensive at the best. The association is a remarkable example of women's willingness to help one another.

the building of a watch

If we were asked to state the inost important element in our rapidly approaching industrial supremacy, we would name, without any hesitation, labor-saving machinery. If we were asked where labor-saving or automatic machinery was to be found in its very highest state of development, we would direct the inquirer to visit one of the great American watch factories, which are at once the pride of the watch industry in this country and the despair of all foreign competitors.
Time was when all watches were made by hand; they are largely so made in Europe today, and the prejudice against machine-made watches, based upon the mistaken supposition that they must be necessarily rough in their construction and uncertain in their running, dies a lingering death. The credit for the scheme of applying machinery to watch manufacture belongs to this country, and is due to a Boston watchmaker, Aaron L. Dennison, whose earliest work in this direction dates from the year 1848. Mr. Dennison's theory was that the substitution of special machines for human skill would insure such uniformity of product that similar parts would be practically interchangeable. The cradle of the industry was laid by Dennison and his partners, Howard and Curtis, in a small factory which they started in Roxbury, Mass., in 1850. Four years later the concern was moved to Waltham, and out of this venture, in spite of many early disasters, has sprung the vast establishment known as the American Walthan Watch Factory, where automatic machinery is now turning out watches at the rate of 2,500 a day.
Every one is more or less familiar with the appearance of the mechanism of the watch; but to comparatively few people is given the opportunity of observing the operations of the thousand-and-one machines, most of them marvels of ingenuity, which, with metallic fingers, pick up the crude material-brass, nickel, or steel-cut it into the desired forms in a number of swiftly succeeding operations, pass it from machine to machine, from tool to tool, and finally deposit it, completely fashioned, before the attendant, whose sole duty it is to supply the raw material at one end and receive the finished articles at the other.
There is something almost human and extremely fascinating in the motions of these phenomenal tools, and there is something more than human in the absolute accuracy of the finished product, much of which before it can pass the inspector must be gaged to one tenthousandth of an inch. The American watchmaker has proved, not only that watches can be wade by machinery, but that the machine-made watch has an accuracy of movement superior to that of the average hand-made article. This demonstration was made over twenty years ago at the Centennial Exhibition, where three Waltham watches earned the highest awards for accuracy, by running for ten weeks with a mean daily variation of only twenty-tiree onehundredths of a second and an average difference of only forty-four one-hundredths of a second between the first and the eleventh weeks of the trial.
In describing the construction and adjustment of

SaRuw
12.-Train Wheei Blanks and Cutting Arbor.
the machine-made watch, we have chosen the Waltham Watch Factory as being thoroughly representative, both in the size of the establishment, the variety and quality of its tools, and the excellence of its product, of the latest development of the watchmakers' ard in this country. The factory (Fig. 3), which still occupies the original site, has been entirely rebuilt since 1876. It is a four-story brick structure with a frontage of 746 feet, and six wings which, with the main structure, would make a building nearly half a mile in length. The operatives include about 1,400 women and 800 men , and as the total output is 2,500 watches a
day, it is evident that somewhat more than a watch and one-eighth is made by each operative every working day of the year.
Compare this with the work of the hand-labor watchmaker who required
A visitor to the factory has not covered very much of

11.--Automatic Pinion Cutting Machine.
the two-mile journey which is necessary to complete the circuit of the various floors before he realizes that to describe comprehensively or in a ny detail the build ing of a watch would require a volume of no small dimensions. This will be understood when we state that an ordinary watch movement is composed of 160 sepa rate pieces, requiring for their production 3,750 distinct operations. For it is to be understood that there is no part of the watch movement which is not made in this factory. It is the aim of the present article to present such a selection of views and as much descriptive matter as will give the reader some slight conception of the rare ingenuity, skill, and accuracy which char acterize both the tools and the finished output of this modern watch factory.
A watch may be defined as a self contained motor of the stored-energy type, whose duty it is to impart motion to a train of gearing, the speed and uniformity of which is regulated or governed by the vibrations of a small balance wheel. The energy is contained in a coiled main spring and is imparted to the balance wheel through a train of gears, which are so proportioned to each other that three of them will complete a revolution respectively in one minute, one hour, and twelve hours, while the balance wheel is vibrating at the rate of five beats to the second, or 18,000 to the hour.
Pillar and Top Plates.-The various members of the "movement" are carried upon delicate steel axles, which have a pivotal bearing in two plates known as the "pillar plate" and the "top plate," the bearings in the better grades of movements consisting of jewels set in the plates, and with holes of such exactness that the clearance between the pivots and the jewels is only one one-thousandth of an inch.
Blank punchings for the pillar and top plates of the hey are punched out of sheet brass or nickel, the latter metal being preferred for the Waltham watches. The preparatory machining is done in the ingenious machines shown in Figs. 4, 6, and 9. The plates are first faced on both sides in a fully automatic machine, of which two are shown in Fig. 9. The operations are hown by the diagram at the top of the cut. About 100 blank punchings are packed face outward in a
cylindrical magazine, A, from which they are taken one at a time. A similar magazine, E, receives the
finished plates at the opposite end of the machine. The facing is done by the tools, F and G. The operation is as follows: As soon as a full magazine of punchings has been put in place, a horizontally swinging arm, C, swings in front of A and lets fall a carrier, D, which seizes one of the plates; the arm then swings around and deposits the plate in the holder at F, where it is faced, as shown in the diagram. Another arm on the opposite side of the plate now swings over, picks up the plate, swings over to the next tool (meanwhile reversing the plate so as to bring its opposite face to the tool), and places it in the next holder at G, where it is again faced. The third arm then picks it up and carries it over and drops it in front of the receiving magazine, E, into which it is pushed by a plunger. The three arms always act in unison, and the motion of the machine is continuous until the magazine has been emptied. The operation is absolutely automatic, the operator merely having to supply another full magazine of plates at regular intervals. Fig. 6 shows a fully automatic machine for recessing the plates, which is even more elaborate, involving no less than seven transfers, which are made by the swinging arms, C, C, C. The problem is complicated by the fact that most of the recesses being eccentric to the plate, the latter has to be centered accordingly on the chucks, A, A, A, after each transfer. This is done automatically, and, as in the machine just described, the attendant has werely to feed the magazines of faced punchings at regular intervals at one end and remove the finished work at the other. When one arm moves, all move, so that a finished plate is turned out at each transfer. Most ingenious of all, however, is the automatic ma chine shown in Fig. 4, whose duty it is to drill with mathematical exactness as to size and position the holes in the pillar plate, numbering 39 in all. In this machine the magazines, A and C, are placed vertically, and the transfer arms swing in a horizontal plane. Five transfers are made and each of the turret heads contains six drills. As soon as the plate has been trans ferred to a new holder, the latter, which has a universai movement in a horizontal plane, moves the plate to the proper position, when the particular drill, corresponding to the required hole, rises from the turret head and drills a hole. The holder then shifts to a new position and the operation is continued until all of the required holes of that particular size have been drilled, then a second drill of a dif ferent size is brought into operative position and the operation is continued until about one fifth of the holes have been drilled. The piece is then transferred by the arm, B, to position No. 2 , where more holes are drilled, the operation being continued throughout the series.
Gears and Pinions.-The gears are made from sheet brass and the pinions from steel wire. To follow the manufacture of the former, we must first pass to a room in which we see rotary cutters cutting the sheets of brass into long strips, which vary from one-fourti inch to three-fourths inch in width. These strips are then fed by an attendant to a punching machine,

14.-A Non-magnetic and a Steel Hairspring,
where the gear blanks are punched out at the rate of 25,000 per day. The little wheels thus produced, ready for the gear cutter, are very perfect, with hub, spokes, and rim complete. Just here it will be well to say that all the parts of a watch that admit of it are fabricated rom punchings, and it is in this department that some of the greatest saving of labor is achieved. For such delicate work, of course, the dies have to be made with
the nicest care, and so well is the work done that the punchings are wonderfully clean and true.
By far the most delicate work of this kind is done in the production of minute, hour, and second hands. In this case the metal is too fine to admit of its being punched at a single stroke of the machine. Three operations are necessary. The flat wire is first run through a machine (Fig. 7) which produces rough punchings. These are then swaged in a second machine, which leaves the form of the hand standing out in clear relief; and the superfluous stock is then removed in a third machine, which punches out the delicate hair-like little pointers to finished size. Great care is exercised in preparing the dies for this work The die is held against a vertical file, of great fineness, which works through a table somewhat after the man ner of a jig-saw. The heads of the pointers are polished by means of a hard rubber block, A, Fig. 15, and Vienna lime, the former having a rapid reciprocating movement above a small table, B, in which is a recess of the exact size and form of the pointers. In order to secure a convex face on the pointers, the table is given a lateral rocking motion.
To return to the gears: The cutting of the teeth is done in a special machine, part of which is shown in Fig. 12. Fifty or more of the punchings are assembled on a split arbor, B, which is placed between the centers of the machine. A fly-cutter, A, then begins to cut across the gears, the arbor being rotated between each cut by an amount equal to the pitch of the teeth.
The pinions with the microscopic shafts on which they turn are made out of a special grade of steel wire. They are automatically cut to the right lengths, roughed out and pointed, and then are transferred to the machine (Fig. 11) which cuts the teeth. As it is necessary that these diminutive pieces should operate with the least possible friction, they are cut with epicycloidal teeth, and the cutting is performed by a tool carrying three milling cutters. The pinions are placed in a circular rotating magazine tray, A, from which they are picked up by a pair of tongs, B, one at a time, and placed between the centers, $C C$. The first cutter saws out the stock, the second shapes it, and the third finishes the teeth with a true epicycloidal curve. The pinions are then hardened and tempered and polished ready to go into the watch.

Screw Making.-In Fig. 8 is shown a little machine which perhaps more than any other appeals to the mechanic as exhibiting the very refinement of ingenuity in automatic mechanism. At one point there is fed into the machine a length of steel wire and at another point there issues from it perfect little screws, many of which are so fine as to call for a magnifying glass to discover at which end is the head and at which the thread. The wires enter long cylindrical split chucks, 1, 2 and 3 , etc., see diagram, and on each side of the head, are two cutting tools, A and B. At point 1 the screw is pointed. the head A and B. At point 1 the screw is pointed; the head nippers draw the screw forward; at 4 a die, C, comes forward and threads it ; at 5 the screw is cut off and a plunger comes forward, seizes the screw and carries it over to 6 , where the head is slotted; and finally at 7 a wire passes through the plunger and pushes out the finished screw. A stream of oil is di rected constantly at each point where cutting is being done, through the curved pipes, D, D, D. There are in this department 41 of these really wonderful little ma chines, and their capacity is 175,000 finished screws per day.

Tempering and Bluing.-All the parts of th watch which are made of steel are carefully tempered, and all of them are drawn to some desired color, in the case of the Waltham watches the preferred color being a dark blue. The heating is done in gas furnaces of the kind shown in Fig. 1. The articles to be tempered are placed in small cylindrical boxes, B, B, several of which are packed together in larger cast iron boxes, C of the kind shown at the bottom of the cut, and corered with powdered charcoal D, the latter being use to exclude the air. The boxes are then placed on a little revolving turntable, A, within the furnace and kept there until the contents have been raised to the proper heat. The hardness is then obtained by plung ing into oil or water. The coloring is done in the ap paratus shown in Fig. 5. It consists of a closed sheet iron case, A, in the bottom of which is a set of Bunsen burners, B, which play upon a revolving cylinder, C^{\prime} The articles are placed in a loose cylinder, D, which is placed within C, and rolls within the latter during the process of heating, the rolling serving to expose every piece fully to the action of the heat. The color is de termined by the temperature to which the content of the cylinder are raised
The Escapement.-Limits of space forbid our giv ing a detailed description of that most ingenious and delicate part of the watch known as the escapement,

Fig. 16. Its duty is to bring to a full stop at regular intervals every wheel of the train, and after a brief pe riod of rest permit it to start again. It has to do this five times in every second or 18,000 times in the hour. It consists of an escape wheel, E, with curiously shaped teeth whose top and side edges are so formed as to impart a rocking motion through the sapphire hooks, C, D, to a lever, B, which rocks upon a pivot, F. The upper arm of the lever has at its end a slot, which engages a little sapphire pin, G, set in and at right an gles to the face of a small disk, A, which is mounted on the same staff or arbor as the balance wheel. As the arm, B, of the lever or "pallet" rocks, it catches the pin, G, within the slot above mentioned, and car ries it alternately to right or left, giving it an impulse which causes the balance wheel with its controlling hair spring to vibrate in unison with the escapement wheel. The horns, C, D, and the roller pin, G, are made of some precious stone such as sapphire or ruby The escape wheel is cut by an automatic machine car rying six cutters, and it takes six cuts to form each tooth. The pallet stones, D, G, are ground to size in blocks of forty or fifty cut to proper length, and shel lacked into the pallet. The jewel roller pin is ground with copper laps and then polished with shell laps charged with diamond dust.
'The Hair Spring.-The duty of the hair spring
per day. If the motion of a balance should be de fective to the extent of making only 17,990 vibrations per hour (only ten below the standard), the watch will ose two seconds per hour, or forty-eight seconds per day-over three-quarters of a minute. Hence we can nderstand the necessity for making the "balance" ive fully up to its name To make the exact number of vibatio both its diameter and it weisht mber vibrations, both its diameter and bots weight must bear an exact ratio to the strength both of the mail:
spring and the hair spring, not merely at the time it is nserted in the watch, but under all the possible conditions of service. It is necessary, therefore, that the elastic strength of the hair spring should be at al times invariable. If, for some cause, such as change of temperature, it should increase, the frequency of the vibrations of the balance would increase, and vice versa. Moreover, the length of the spring is constantly changing. It lengthens with a rise and shortens with a fall of temperature. As it lengthens, the frequency of the vibrations reduces; as the spring shortens, it ncreases. Hence, unless some automatic compensation is introduced, the balance will vibrate faster in winter nd slower in summer.
The compensation is introduced by so constructing the balance that the heat which weakens the elastic force of the hair spring serves at the same time to re duce the diameter of the balance, so as to exactly adap force which the weakened spring is capable of exerting. To secure this end the balance is made of two metals, steel and brass. The arms, A, and inner portion, B, of the rim (Fig. 17) are made of steel and the outer portion of the rim of brass, the metals being carefully fused to gether in a special furnace (Fig. 2). The rim is cut through on opposite sides at 1 and 2 , the point of severance being located close to the arms, A. Now, since the expansion and con traction of brass is nearly double that of steel, it follows that under a rise of temperature the two halves of the rim will be curved inward, as shown in Fig. 17. This brings the center of gravity of the rim nearer the center of the wheel and lessens the degree of force that must be applied to give it a certain rate of vibration. Similarly, under a fall of tempera ture, the brass in the rim contracting more than the steel will tend to curve the rim outward, en larging its diameter; consequently, in cold weather the balance enlarges as the spring shortens and in warm weather it grows smalle as the spring lengthens, the compensation be ing wonderfully accurate. The little screws, C, C, around the rims serve two purposes. First, by increasing or reducing their number, we can change the actual weight of the balance; sec ond, by changing their position on the two halves of the rim and placing them nearer to or farther from the ends, we can change the effective weight of the rim in respect of vibra tion. For a screw placed near the supporting armir will not, under the changes of diameter due to temperature, be so effective as one placed near the point of severance of the rim. Hence, by shifting these screws, it- is possible to secure a marvelous nicety of adjustment, so exact that, as we pointed out early in this article, a watch can be made that will not 'vary more than twenty-three hundredths of a second in a day.
To facilitate the turning of the balance, the fine needle-like ends of the staff on which it is carried are borne by small end jewels, A, Fig. 13 ; and the holes in the jewels, B, in which the staff turns are rounded The bearing surfaces are so proportioned that the riction is the same whether the watch is in a horizo tal or perpendicular position.
Experience has shown that the best constructed bal ance may vary from five to one hundred and twentyfive seconds per hour when subjected to the influence of magnetism. Polarization of the parts of the move ment demoralizes the sensitive hair spring and bal ance. In Fig. 14 are shown two hair springs, A and B which are mechanically identical. The spring, A, however, has been polarized, and the effect when the two are brought near a magnet is very marked. One of the greatest achievements in modern horology ha been accomplished by the Waltham Company in sub stituting for steel as used in the balance, roller, hai spring, and pallet and fork, metals or alloys which are spring, and pallet and fork, metals or alloys which are
non-magnetic, but which possess the properties of non-magnetic, but which possess the properties of
elasticity and expansion in such relative proportions elasticity and expansion in such relative proportions
as to enable them to compensate for the varying condias to enable them to co
With this brief mention of what may be considered as the last and greatest triumph of the watchmaker art, we close our description, necessarily all too brie and fragmentary, of one of the most characteristic and successful of our American industries.

Buddha's tooth, presented by the people of Burma to a temple in Ceylon, has been seized by the custom house officers. The relic is inclosed in a jeweled case The Burmese do not wish to pay any duty, and ap pealed to the Secretary of State for India for relief.

A PERCOLATOR PACKAGE FOR MAKING COFFEE. The accompanying illustrations represent a novel percolator package or bag which has recently been invented by Henry M. Humphrey, 4 to 8 Water Street, Brooklyn, New York, and which is designed to contain the coffee to be boiled or infused. The bag is made of a porous fabric, such as muslin or cheese cloth, and is provided with a weight which keeps it in proper position in the water. The weight assists the package in its downward course, and serves constantly to change the position of the package, so that the hot water is always in contact with the coffee.
Of the accompanying illustrations, showing the various positions assumed by the percolator package in a coffee-pot, Fig. 1 represents the first action of the weight in drawing the slack bag down into the water. In a few minutes the bag assumes the position indicated in Fig. 2. As the water hoils up the bag rises, as shown in Fig. 3, the weight serving to keep the swelling coffee in the hottest part of the water. When the boiling is stopped, the bag sinks to the position represented in Fig. 4; and the coffee is then ready to be served.
Although it is intended that a clean percolator bag be used every time that coffee is made, it is, nevertheless, possible to use a bag several tiues. This new
visions the exports to Germany in 1898 show a marked gain in nearly all classes. In salted or pickled beef the exportations increased more than 25 per cent in 1898 over 1897. Exports of bacon increased 25 per cent, or nearly $10,000,000$ pounds ; those of hams increased from less than $5,000,000$ pounds to nearly $12,000,000$ pounds those of pork, fresh and salted, from less than $3,000,000$ pounds to nearly $13,000,000$ pounds ; those of lard pounds to nearly $13,000,000$ pounds ; those of lard,
from $205,000,000$ pounds to $238,000,000$ pounds ; while in fruits and nuts the exports of 1898 were nearly 50 per cent in excess of those of 1896 , and but slightly below those of 1897.

SIMPLE PIPE CUTTING AND THREADING TOOL The inproved pipe cutting and threading tool illus trated herewith is designed to be used on pipes of various diameters, and to take the place of the usual costly pipe-cutting machinery which can be used only in the shop.
The tool is designed to be attached directly to the piece of pipe which is to be threaded or cut off, and is held in place by means of a universal chuck having threaded and flanged collar surrounding the pipe. In connection with the chuck, there is also provided a carriage having a threaded sleeve engaging the col lar. Upon the carriage two slides are mountedprimary slide and a secondary slide. These slides are connected by an adjusting bolt having a swivel whereby the two slides can be separated and drawn together. By means of this device the two slides can be separated so as to adjust the cutting-tool nearer to the center when it is desired to thread a smaller pipe. The primary slide is directly in contact with the carriage, and the secondary slide is mounted to move on the primary slide. The primary slide may be moved to ward or from the pipe by means of a radial adjusting shaft. To the secondary slide the tool-holder is pivoted.
The carriage has a longitudinally extended portion which is provided with guides receiving two rack-bars which extend paralle with the pipe and are adapted to be en
method of making coffee, it will be observed, does away with the possibility of leaving grounds in the coffee-pot, and does not require the use of eggs in caus ing the coffee to settle.

The Inventors' Bank in Austria.

The Austrian government has granted provisional concession for an Austrian inventors' bank. The company's capital is to consist of $\$ 100,000$ in shares of $\$ 80$ each. The amount can be eventually raised to $\$ 200,000$ and to $\$ 400,000$ on ratific ation by the government and stockholders. The statutes designate the aim of the company to be the utilization of inventions and patents for the mutual benefit of the inventor and the bank, which may involve the erection of factories for such patented articles, the founding and management of trade enterprise for the sale of these articles, and the right of the bank to carry on all other legally licensed businesses which are adapted to encourage the activity of the inventors in Austria. If the capital for the new enterprise is not procured at the end of an establishment, if indorsed by the government and administered by fully reliable parties, cannot but prove of interest to the inventor.

Trade Relations Between Germany and United

A good deal of unnecessary anxiety seems to be ex hibited both in Germany and in the United States about the trade relations between the two countries. Some figures just prepared by the Treasury Bureau of Statistics showed that the supposition that American trade in Germany or German trade in America is being disturbed or depressed by existing conditions seems to be unfounded. Certainly the United States is giving to Germany a larger percentage of her import trade than ever before and is selling to Germany a larger percentage of her exports than ever before. American exports to Germany increased over 11 per cent in the past six months compared with the corresponding six months of the preceding year, which of themselves were phenomenally large, and the imports from Germany into the United States in the past six months were nearly 25 per cent greater than those of the corresponding six months of last year. The share of our import trade given to Germany has steadily increased during the past decade, as has also the share which she takes of our exports. A decade ago 10 per cent of our imports was taken from Germany, while now 13 per cent comes from that country; a decade ago 8 per cent of our exports went to Germany, now over 13 per cent goes to that country, and in the last half of the calendar year 1897 our exports to Germany were $\$ 32,632,122$, and in the last half of the calendar year 1898 were $\$ 40,615,770$, an increase of nearly 25 per cent. Our exports to Germany in the last half of the heavy export year 1897 were $\$ 77,132,053$, and in the last balf of 1898 were $\$ 85,903,120$. Even in meats and pro-
gaged by a pinion on the upper portion of the adjust ing-shaft of the primary slide. By means of this con-
struction the threading or cutting tool can be autostruction the threading or cutting tool can be auto matically fed.
The carriage, the slides and the tool are made to travel by means of a long handle, a portion of which is shown in the illustration. As the carriage passes about the pipe it is gradually worked toward the clutch, as the sleeve on the carriage moves along the collar of the clutch.
The tool may be fed manually or automatically. In the latter case, the adjusting-shaft of the primary slide is revolved by the engagement of its pinion with one of the previously described racks, as the carriage travels toward

A SIMPLE PIPE CUTTING AND THREADING TOOL
ing-shaft will cause the tool to be automatically fed oward the pipe in order to cut a taper thread. Th ool may be fed away from the pipe by bringing the other rack into engagement with the pinion. When it is desired to cut a pipe, the carriage-sleeve is loosened o that it will not turn with the carriage; by this means the carriage will be held in one position relative to the pipe, and the cutting-tool may be fed inwardly by hand, until the pipe has been severed
The tool has been patented by the inventors, Ferdi hand C. Walter and Herman F. Repkow, of 149-15 East Huron Street, Chicago, Ill.

A VARIABLE BICYCLE DRIVING-GEAR

An ingenious mechanism has been invented and patented by Charles G. Evans, of Nelson, British Columbia, Canada, by means of which the drivingpeed a bicycle may be changed
Fig. 1 is an elevation showing the device applied to

EVANS' VARIABLE BICYCLE DRIVING-GEAR.
a bicycle. Fig. 2 is a sectional view of the sprocket wheel. Fig. 3 is a fragmentary front elevation showing the means for controlling the sprocket-wheel Fig. 4 is a cross-section of a link of the sprocket chain. Fig. 5 is a detail section showing the action of the sprocket-chain on the sprocket-wheel.
From the top bar of the bicycle there extends down wardly a vertical front brace, forked at its lower end to carry the crank-stbaft. From the rear end of the top bar there extends a diagonal brace likewise forked and joined to the fork of the previously mentioned brace. The rear wheel is held in a fork pivoted to the rear end of the top bar. For the usual back stays of the bicycle, toggle-links are substituted, which are pivotally connected with a forked, link-controlling rod running vertically through the top bar. On the rear portion of the top bar is a nut engaging a thread on the link-controlling rod. The nut is grooved to re ceive a band which runs to a pulley carried on the front portion of the top bar and operated by a hand wheel. The hand-wheel also controls a rod, which runs through the front brace, and which is provided at its lower end with a bell-crank lever, engaging the sprocket-operating devices (Fig. 3)
The main driving-wheel consists of two sprocket sections, as shown in Fig. 2, on each side of which sections, extension plates are held to slide. These plates are pivotally connected with links, which are in turn pivoted to a collar sliding on the crank-shaft and engaged by the lower member of the bell-crank lever, shown in Fig. 3
By turning the hand-wheel on the front portion of the top bar, the rod extending through the forwar vertical brace will be caused to operate the bell-crank lever in order to adjust the sprocket-wheel. When the hand-wheel is turned in one direction, the collar of the crank-shaft will slide and cause its links to force the extension plates radially outward, as shown by dotted lines in Fig. 1. When the hand-wheel is turned in the opposite direction, the extension plates will be retracted.
The sprocket-chain, as indicated in Fig. 4, consists of links, the under surfaces of which are formed with four V-shaped grooves running longitudinally with the chain and designed to engage the edges of the extension plates. When the plates are extended in the manner before described, they will grip the fou V-shaped grooves of the chain links as shown in Fig. 5. Simultanecusly with the extension of the drivingwheel, by means of the hand-wheel, the toggle-links between the rear wheel and the crank-shaft will be raised by means of the rod pivoted to their inner ends and connected with the hand-wheel by the band passing around the rod-nut and the hand-wheel pulley In this manner the variations in diameter of the driv ing wheel and the change in position of the rear wheel are compensated for.
It will be observed that the gear is not limited in its changes to a fixed set of speeds, but that the adjusting devices and the construction of the driving sprocketwheel enable the bicycle to be geared to any degree within the two extremes.

An Italian medical journal states, according to The New York Medical Journal, that while water will not quench the flame of burning petroleum in a limited space, milk accomplishes the object by forming an emulsion with the oil, disturbing its cohesion, and thus attenuating the combustible element.

Sclence Notes.
The statue of Von Helmholtz by Herter is completed It will be placed in the court of the University at Ber lin, between the statues of the two Humboldts.

Vienna has begun the construction of bicycle paths through the streets. Ground has been conceded for the purpose of building a new street on condition that a strip be prepared for the use of bicyclists.

A young French artist is the discoverer of a fine and genuine example of the Spanish painter Velasquez. The canvas was found on a recent tour to Spain. It is a life sized portrait of a man and is in the best style of the master. It has been submitted to eminent critics who have pronounced upon its genuineness.
The city councilors of Ulm, Germany, have decided to utilize the spire of their magnificent cathedral as a meteorological observatory. The spire is one of the highest buildings in the world. The instruments will be supplied by the Royal Observatory at Stuttgart, and the registrations will be made by the watchmen of the cathedral under the direction of Dr. Schimpf, a meteor ologist. Next to the Eiffel Tower in Paris, the cathedral spire of Ulm will be the highest artificial post of meteorological observation in the world.

Letters have recently appeared in The London Lancet, in reference to the colors of newly born negro children. Several medical men have given the result of their experiments, and the evidence shows that the children are of the color of a light quadroon. It is recorded, in a paper published in The Journal of the Anthropological Institute, of the natives of the W.arri district of the Niger Coast Protectorate that when pure negroes are born they are pink like young rats, but at the end of three or four months they become black. From this it would seem that atmospheric conditions seem to be necessary to produce the full black colored negro.
The Park Department of Boston has for a long time thought that parks were something more than simply inclosures where citizens and their children could walk dressed up in their best and look at the grass and trees. Playgrounds have been provided in different parts of the city and in these the children can play in the sand and make mud pies to their hearts' content while older ones have outdoor gymnasiums and kall grounds to attract them from the sickening and vicious life of the pavements. The idea is an excellent one, as it is a one-sided policy to neglect a child's physical
development while spending large sums upon the equipment and maintaining of schools for its mental training.
Four submarine mines broke away from Castle Island and fluated on the beach at Marine Park, at South Boston, Mass. For a time it was thought they were floating barrels, but when their real nature was discovered they were taken to a place where there
would be no danger of premature explosion. It apwould be no danger of premature explosion. It ap-
pears that the mines had been anchored in a little pears that the mines had been anchored in a little
cove at the southerly end of Castle Island. They cove at the southerly end of Castle Island. They
were placed there in order that they might be exploded as soon as the weather permitted. The storm was sufficient, however, to sever the mooring lines which held them together as a group, which accounted for their going adrift.

A very curious case of telegraphic disturbance is reported from Utah, where the Oregon short line lost six teiegraph wires for a distance of eighty miles north of Ogden, Utah. It was found on inspection that the cross arms and insulators were heavily coated with salt varying from one-sixteenth to a quarter of an inch in thickness. This coating, when wet, taken in connection with the snow lying on the cross arms, formed sun was shining brightly, the salt appeared to dry out and the wires could be used to some extent. When and the wires could be used to some extent. When
the cause of the trouble was determined, an engine the cause of the trouble was determined, an engine
was started out equipped with a large hose which was used with hot water for washing off the coating. The salt was carried by the winds blowing over the Great Salt Lake, and as salt is a conductor of electricity, the short circuiting of wires is easily explained.
A cable dispatch from Paris, dated January 28, says that an important discovery was announced in the French Academy of Medicine, by M. Georges Janbert. He has been experimenting on the supply of air, or the renewal of oxygen in atmospheric air for the use of a man in a hermetically inclosed space like a diving bell. He believes that 79 per cent of nitrogen contained in respirable air remains intact after 21 per cent of the oxygen has been consumed, and the same nitro gen mixed with another fresh supply of oxygen becomes respirable air when the carbon dioxide and the water
vapor produced by breathing are removed. He found that his hypothesis was correct, and it is stated that he had discovered a chemical substance which by contact with the atmosphere clears the vitiated air of all the impure gases produced by respiration and refurnishes automatically the requisite quantity of oxygen. The author states that six or eight pounds of this sub diving bell.

Miscellaneous Notes and Recelpt
The Porcelain Gate at Nanking. - In 1430 of our era,
after nineteen years of incessant work and an after nineteen years of incessant work and an expense
of almost $\$ 4,000,000$, the Chinese government finished of almost $\$ 4,000,000$, the Chinese government finished
the wonderful porcelain gate of Nanking, which remained in existence until 1856, i. e., for almost four and one-half centuries. It was octagonal in shape, 260 feet in height, having nine stories, each with a cross and a gallery. One hundred and fifty-two bells were fixed thereon in such a manner that every motion of air moved them to and fro, causing a constant ringing -Keramische Rundschau.
A quickly hardening cement is obtained, according to the Deutsche Maler Zeitung, by cooling off blast furnace slag in the promptest manner. The slag sand thus obtained is mixed with slaked lime and well inter mixed in mortar engines. This mortar is aliowed to harden in moderately thick layers on the paved ground and after solidifying is broken into pieces of suitable then ground in mills into fine powder. By regrinding cement already solidified, and the addition of slag sand and lime, it is in one's power to more or less retard the and lime, it is
solidification.
A new coating, which is said to successfully protect posts and other timber surrounded by earth from rotting, is given by the Baugewerkszeitung. Take resin, 50 parts; finely crushed chalk, 40 parts; fine white sharp sand, 500 parts; linseed oil, 4 parts; native red cupric oxide, 1 part; and sulphuric acid, 1 part. First heat the resin, the chalk, the sand, and the linFirst heat the resin, the chalk, the sand, and the lin-
seed oil in an iron kettle, then add the oxide and the seed oil in an iron kettle, then add the oxide and the
sulphuric acid with caution, mix everything carefully sulphuric acid with caution, mix everything carefully
and paint the wood with the hot mass, using a strong brush. If the mixture is not liquid enough, it is diluted with a little linseed oil. When the coating is dry, it forms an extremely hard varnish, which allows no noisture to enter.
Innovation in Decorating China.-The process of porcelain painting heretofore consisted in baking the moulded porcelainware at once with the glaze and to paint the finished article afterward with colors, which were then burnt in at a slight heat either in groups or ingly in succession, thus not infrequently causing the piece to crack and destroying the whole work of the painter. The new method is based on colors which are applied on the dead-baked, unglazed porcelain, the socalled bisque, and are burned in simultaneously with the glaze in the sharp fire at a temperature of $1,600^{\circ}$ C. A greater permanency of the decoration is insured thereby and the colors protected by the glaze receive uster and adhere mors intimately to the porcelain because they are fused with the glaze. The whole is of a handsome harmonizing effect which is more adapted to the article than that produced by the ormer method. The said process relies on the resist ance of the $n \in w$ colors to such high temperatures as
re necessary for the glazes, while the old colors used are necessary for the glazes, while the old colors used peratures.-Zeitschrift des Vereins Deutscher Zeichen lehrer.
Decorating Glass and Distinguishing False Diamonds y Means of Aluminum.-According to a discovery by Mr. Charles Margot, assistant at the physical cabinet of the Geneva High School, aluminum seems to be des ined to play an important part in the decorative arts Mr. Margot found that, with a pencil of aluminum distinct writing can be done on smooth surfaces of materials containing silicic acid, such as glass, porcelain, etc., and that the letters adhere so firmly to the respective materials that even continued rubbing with noist substances will not remove them. If the characers are treated with strong hydrochloric acid or caus ic potash, the metal disappears gradually, but leave n the writing surface traces as if etched. Hence th oft metal must actually enter more or less into the hard, siliceous substance by virtue of a yet unexplained power. An indispensable condition for the production of distinct characters or designs is a most thorough cleaning of the surface and the removal of even the slightest traces of grease by polishing with chalk, a even the thinnest grease layer would disturb an inti nate connection between surface and pencil. Shortly before writing the material is coated with a thin water ayer by breathing on it, whereby an easier touch of he pencil is effected. The metallic characters and designs can be given such a luster by treatment with
the burnisher and oil that it is not possible to distinguish them from works of inlaid silver. Magnesium cadmium, and zinc also possess this writing capacity for glass and similar materials, but their easy oxida bility renders them too perishable and without perma nent gloss.
Furthermore, this property of the said metals to act upon substances containing silicic acid can be practically utilized for distinguishing genuine diamonds from he imitation article. The latter, as regards fire, can not, sometimes, be distinguished from genuine ones although they are but paste, as a rule. But they are characterized as such, beyond a doubt, by aluminum magnesium, cadmium, and zinc pencils.-Deutscher Uhrmacher Kaiender.

Great Britain Our Best Customer.
Great Britain continues to be the greatest customer of the United States, despite the fact that our purchases from her continue much below those of former years. The figures of the Treasury Bureau of Statistics covering the calendar year exports and imports show hat our sales to the United Kingdom in the year 1896 were $\$ 538,661,787$, against $\$ 48 \%, 695,024$ in 1897 , while our imports from Great Britain in 1898 were but $\$ 111$. 361,617 , against $\$ 159,002,286$ in 1897. Thus our sales to the United Kingdom are nearly five times as much as our purchases from her. The exports to the United Kingdom increased $\$ 56,000,000$ over those of 1897 , while at the same time the imports from that country into he United States were decreased $\$ 48,000,000$.
The following table shows the value of leading articles imported into the United Kingdom from the United States in the calendar year 1898 compared with 1897, as shown by the "Account of Trade of the United Kingdom" for the month of December, and the calen ar year, just received by the Treasury Bureau of Statistics:

Articles	1897	1898
Wheat.	¢20,193,864	£24,743,021
Bacon.	5,353,624	6,438,239
Lard.	1.927,162	2,796,281
Copper, unwrought.	1,474,578	2,058,820
Raw cotton.	24,557,513	27,513,032
Leather	2,606.406	3,036,811
Hams.	3,411,559	3,651,414
Норs.	280,453	838,074
Tallow and stearine.	240,617	538,243
Fresh beef.	4,609,130	4,67¢,341
Indian corn.	6,623,230	7,314,935
Oats.	1,913,478	2,294,021

These reductions in our imports from the United Kingdom are, however, merely an incident of the general reduction in our imports, which during the calendar year 1898 were $\$ 107,637,000$ less than those of 1897 Indeed, the United States is proportionately to her im ports a better customer of the United Kingdom than the average foreign country. The countries of the world, omitting the British colonies, took but about 15 per cent of their imports from the United Kingdon while the United States in 1898 took over 17 per cent rom the United Kingdom. Indeed, our purchase from that country were far in excess of those from any other part of the world, being 50 per cent in excess of those from Germany, double those from France, more than the total from Asia, Africa, and Oceanica combined, and more than one-third of the entire importa tions from Europe.
The reduction in our purchases from the United Kingdom during the year 1898 has been altogether in the class of articles whose manufacture is being in creased in the United States, and in certain raw ma terials of which last year's importations were in the early part of the year abnormally large, as shown by the following statement of exports from the United Kingdom to the United States given in the official reports of the British government for the year ending December 31, 1898, compared with those of 1897 :

Articles	1897	1898
Beer and ale.	£159,796	£146,113
Salt	94,405	81,146
Spirits.	160,242	145,941
Wool, sheep and lamb's.	1,238,285	128,503
Cotton piece goods.	1,508,246	1.247,856
Jute piece goods.	1,253,494	840,198
Linen prece goods.	1,925,861	1,634,288
Worsted yarn..	67,623	13,475
Woolen tissues	868,574	2i6,501
Worsted tisaues.	2,431,221	764,761
Tin plates and sheets	927,751	683,913
Alkali.,	439,706	169,221
Bleaching materials.	236,886	194,309
Earthen and china ware	643,323	534,209
Carpets.	53,970	43,699
Worsted yarn.	67.623	13,475
Apparel and slops	54.380	46,46
Paper..	58.951	47,285
Cement.	107,177	87,875
Hardware, unenumerated	154,463	85,891

A Locomotive for Columbia University.
A full sized locomotive, built and presented by the Baldwin Locomotive Works, has recently been placed in the laboratory of mechanical engineering at Columbia University, and will be used to give the students proper instruction in the construction and operation of locomotives. It has been set in position on a short length of track at the western end of the engineering laboratory. Of course, means must be provided to prevent any actual forward movement of the engine, and this is accomplished by a set of friction wheels
which support the driving wheels and are free to rewhich support the driving wheels and are free to re-
volve with them. Resistance to these wheels is obvolve with them. Resistance to these wheels is ob-
tained by four large brakes which are each capable of taking up 400 horse power. They also act as dynamometers and serve to measure the power. When the locomotive is running at a speed of 40 to 45 miles, 1,600 horse power has to be taken care of. There is also a draw-bar pull amounting to 20,000 pounds. The measuring device is applied so that the hauling power of the engine at various speeds can be ascertained. The mechanical engineering laboratory will soon be one of the finest equipped laboratories in the country, if not the finest.

RAISING SUNKEN VESSELS

The usual method of setting afloat a vessel that has sunk at a place where the water is not very deep is based upon the principle of closing all the apertures in the submerged part of the hull and then pumping out the water. Such an operation, however, is not unattended with difficulty, since, in addition to fothering tended with difficulty, since, in addition to fothering
the leaks, it is necessary to have the hull and deck carefully strengthened by divers, in order to permit them to support, without yielding, the great pressure that is applied to their surface at the time of exhausting the water.
Vessels that have simply sunk without sustaining any serious damage, and the larger part of which remains above water are usually more easy to raise but in order to set afloat such as have sunk to a considerable depth in mud or sand, it is necessary to overcome the great friction that the grounded portions exert upon the bottom. With vessels of medium size this is effected only with difficulty, and when it comes to having to do with the great modern ships of war it is necessary to have recourse to special processes, since the traction effected by tugs would, as a general thing, be inadequate to disengage them. As it is impossible directly to overcome the friction opposed by the bottom, the idea has occurred to suppress it by disintegrating the mud or sand either by means of jets of water under pressure or of suction dredges, or even, in certain cases, by means of the two systems combined.
Two interesting examples of such methods have recently been described, one of them applied to the Russian cruiser " Rossia," which sank in shallow water in the river Neva near Saint Petersburg, and the other to the British armorclad "Victorious," which ran aground to the northeast of the jetty of Port Said.

The "Rossia" meas ures 480 feet in length between perpendiculars, 75 feet in width and 24 feet in depth
determined by the lines, and, by means of rods placed against the lateral keels, succeeded in taking (and transmitting by telephone) a series of levels, which, combined with the successive frames of the vessel, the draught of water, etc., allowed her position to be

Fig. 1.-OPERATION OF RAISING THE CRUISER " ROSSIA."
obtained with great accuracy. In order to disintegrate the sandy bottom of which we have spoken there was tied up alongside of the vessel a lighter that carried a force pump of which the pipe was 25 inches in diameter. The divers inserted this pipe into the bottom beneath the keel to such a depth that its
he let go in succession two anchors, the chains of both of which snapped. Reduced to a state of helplessness, she ran aground, in 25 feet of water, and about a mile from the extremity of the jetties.
An attempt was made in the first place to displace the vessel by connecting her stern with two tugs that both together, developed 1,500 horse power. But this merely caused her to turn about; with the advantage, however, that it placed her head in a better direction. On the next day (February 15) the operation was re sumed, this time at the bow, but without any appreciable result. However, in hauling upon one of her anchors, the vessel was made to slide upon the bottom for about 300 feet. At the same time, the crew pro ceeded to unship the coal and some of the projectiles in order to lighten the vessel and permit her to float as soon as she should reach a depth of 26 feet.
As may be seen, the results were but middling. At this point, M. Quellennec, engineer-in-chief of the Suez Canal Company, made a proposition to the commander of the "Victorious" to excavate a canal under the ship by means of a suction dredger operating on the port side and of two tank boats provided with force pumps that should direct upon the starboard side jets of water under pressure against the bottom. Fig. 4 gives a representation of the work.
The suction dredger, lying abreast of the ship, was held on the side of the offing by two anchors through which it was hauled from stem to stern and recipro cally. The debris sucked up was thrown back into the sea. At the same time, the jets of water of the tank boats kept disintegrating the muddy sand on the starboard side, and the tugs kept pulling away. All at once, on the morning of February 17, the vessel start ed forward a hundred and fifty or two hundred yards, and then foundered anew. This spurt caused the cables that connected the vessel with the dredger to snap, but fortunately no injury was done. The operations we of the ice. In this way they suc

Fig. 2.-DISINTEGRATING THE MUD AND SAND UNDER THE " ROSSIA." ceeded in softening all the parts in contact. The direct explora tion of the bottom (which they proceeded with after the stoppage of the pump), as well as the settling of the cruiser both fore and aft, permitted of ascertain ing the results obtained. The operation, which was begun on the 19th of November, was finished with entire success on the 15 th of December. It was, of 15th of Dech prolonged by of course, much prolonged by the preliminary studies of which we have spoken and by the freezing of the river. On another hand, the vessel was not placed in a dangerous condition, as was the "Victorious," as we shall see, and the duration of the work was not as lengthy as it was in the case of the latter.
This ship (Fig. 3) is one of the most powerful of the British

Fig. 4.-OPERATION OF SETTING THE "VICTORIOUS" afloat.

With a full load, she displaces 12,200 tons. At the and 75 in width, and draws $271 / 2$ feet of water. She resumed at half past seven o'clock in the evening; but. With a full load, she displaces 12,200 tons. At the
time of the accident her displacement was 10,800 tons. has a displacement of 15,140 tons and has a speed of $\begin{aligned} & \text { and }\end{aligned}$ She settled to a depth of about 30 inches into a bed of 18 knots. On February 14 last, just as she came in time as the ship, no anchor was thrown out from it. fine and muddy sand, mixed with a large proportion front of the prolongation of the jetties of Port'Said, Half an hour later, the "Victorious" began to start of pebbles, and, as a consequence of the lowering of she was driven toward the east under the influence of forward with slight jerky motions and then commenced the level of the water, exerted upon the bottom a pres- the wind and a very rough sea. After endeavoring, to float. This was at eleven o'clock at night. On the sure of 2,500 tons. Unfortunately, it was in the month unsuccessfully, to make a resistance with her engines, next morning, at daybreak, the dredger was anchored of November, and the river having frozen over, the ice formed so thick a layer around the hull that the effort to break it had to be abandoned. It having been reported by divers that the stern was free and that the lateral keel on the left side was free also for nearly its entire length, an endeavor was made, but without success, to float the ship by pulling her sideways. The school of divers of Cronstadt was then put in charge of the operations. The divers donned their suits under a tent set up on the ice (Fig. 1), and descended two at a time, accompanied with electric lamps and telephone apparatus, and were able to stay under water for half an hour.
The idea occurred to make a diagram of the bottom upon which the ship lay, and to this effect the hull was divided into ten parts, each marked with a white line. The divers were lowered successively in each of the vertical planes

Fig. 3.-General view of the british armorclad " victoriods." near the shore, and the ship, completely disengaging herself, was in a condition at eight o'clock to be towed to a depth of 35 feet, where she became mistress of her own movements. From the 17 th of February, at noon, to seven o'clock on the morning of the 18th she had made a passage of 450 yards in water 25 feet deep, that is to say, 22 inches less than her draught.
The operation was, therefore, entirely successful and the British armorclad was drawn out of a very critical position, since, in a bottom of sticky sand like that in which she ran aground, the adhesion of the keel is such that a foundered vessel may, under the influence of the tides that necessarily hollow the bed, chance to sink progressively up to the masthead. Such a disaster has happened several times, especially in the roadstead of Bilbao. For the above particulars and the illustrations, we are indebted to La Nature.

THE BANANA AS THE BASIS OF A NEW INDUSTRY.

The banana grows well in our new possessions in the West Indies, and we have no lack of delicious fruit which has great food value as well. Unfortunately, however, bananas do not stand long sea voyages, and the result is that a six or seven days they are sufficiently dry them. Bananas can, however, be dried and converted into a flour called "bananine," which may prove to be the basis of a very valuable industry. France, understanding the advantages it will be possible to derive from the banana plant, has sent a commission to the United States and Central America for the purpose of studying the banana industry upon the spot, and it has also been suggested by M. Charles Patin, of Belgium, who has investigated the subject, that the banana plant will prove the sub ject of important agricultural operations in the Congo and destined to produce cheap food for the working classes in Belgium. According to Humboldt the banana has for ty-four times more nutri tive value than the potato and according to another authority on dietetics it is twenty-five times more so than good white bread Since flour can be produced from it at less expense than that obtained from wheat it is permissible to believ that the products of the banana plant will furnish the working classes of many countries with wholesome, nourishing food at the lowest possible cost. Bananas besides being nutritious are very easy to digest and may be used by the sick, since they are perfectly adapted to weak, delicate stomachs. The article is a direct product of the banana that has reached its complete development. The fruit is peeled by slitting the skin longitudinally and giving it a rotary motion with the hands. The peel having been thus detached the fruit is cut into thin transverse slices which are dried in the sun or in a furnace. It is then only necessary to bray or grind these slices in order to obtain a fine flour therefrom. In Central and South America hand mills are in use for grinding corn for corn bread, and such apparatus are admirably arranged for obtaining from the slices of banana either the banana meal or an impalpable flour made through simple grinding without any passage through a sieve.
There is another branch of the banana industry this is the drying of the plantain which is done in this is the following manner. The bunches are gathered in
quantity as they approach maturity and are suspend-

buildings and also one of the ladders incrusted with icicles

For the next ten days the firemen were constantly being called out. Over three hundred and fifty alarms were sent in within a few days, and the blizzard of February 13 and 14 made it almost impossible for the engines and other fire apparatus to get through the streets, and in some cases they were stalled. The streets, and in some cases they were stalled. The
firemen of New York deserve great credit for their heroic conduct during the severest test to which they have ever been put

New Uses of Glass.

Early in October, 1898, a paving company of Lyons, France, began laying on the Rue de la République a piece of pavement of ceramo-crystal, ceramic stone, or devitrified glass. During the months of November and December of 1898 and thus far in January, 1899 this pavement has been driven over during all hours of the day and night. It has stood as hard usage as any pavement could be subjected to during that time, and is still in an admirable state of preservation. The glass, or ceramic stone, pavement is laid in the form of blocks, 8 inches square, each block containing sixteen parts in the form of checkers. These blocks are so closely fitted together that water cannot pass between them, and the whole pavement looks like one large checkerboard. Like all thoroughfares in France, the roadbed slopes gently to the walk on each side. Some of the edges of the checkers have been broken off during their three months' service. United States Consul Covert counted some twenty of them that have been slightly chipped on the edges. It is contended that this does not argue against the value of the material as a pavement, and that any kind of stone would have suffered just as much or more in the same time.
Mr. Covert visited the Ceramo-Crystal Manufactur ing Company's works at the suburban village of DemiLune, about six miles from Lyons. The factories cover nearly 8,000 square yards of ground. Work is now stopped in them while additions are being made to the buildings in the shape of second stories. In the yards are many tons of broken bottles, which the superintendent told me was their "raw material." On the four sides of a large brick smokestack are specimens of ceramo-crystal for buildings and interior decoration, some of the pieces as smooth as highly polished marble others being rough, like cut stone, and still others hav ing a surface like common brick.
The advantages attributed to this ceramo-crystal by the manufacturers are: As a pavement, it has a greater resistance than stone; it is a poor conductor of heat, and ice will not form upon it readily : dirt will not accumulate upon it as easily as upon stone, and it will not retain microbes; it is more durable than stone and just as cheap. The Central Architectural Society of France made a report recently on this ceramic stone.

This subject is being discussed in the press and is receiving general consideration. An elaborate and ex haustive article in the Revue des Deux Mondes for November treated the question under the heading of "A glass house," the writer asserting that a large house constructed entirely of glass would be an attractive feature of the coming world's exposition in 1900 . He said that glass could be used for tubes, pipes, vats, tiles, smokestacks for factories, and for buildings. Dou ble glass walls in a house would admit of the circula tion between them of cold or warm air, thus regulat ing the temperature.

The glass house, or the luminous palace, which it ha been decided to build on the grounds of the 1900 ex position, is now being constructed

The Electric Fus

Incandescent light and electric power are commonly distributed from what are known as constant pressur circuits.
The distinct feature of constant pressure circuits i that a uniform electric pressure, measured in volts, is maintained between the wires to which lamp and mo tors are attached
Now, the fundamental formula governing the flow of electric currents in any conductor, measured in am peres, is that the amperes equal the volts between the ends of any conductor, as a lamp or motor, divided by the electric resistance of the conductor measured in ohms.

Expressed as a fraction, above rule becomes

$$
\text { amperes }=\frac{\text { volts }}{\text { ohms }}
$$

It is evident from the relation just stated that when the volts remain constant, as in constant pressure cir cuits, the amperes flowing through any circuit will be very great when the resistance of the circuit in ohms is very small.
For example, the pressure of the ordinary lighting circuit for incandescent lamps is 110 volts; if a con ductor is connected to the wires, which has a resistance of 110 ohms , the resisting current in the conductor will be one ampere; if the conductor has resistance of 1 ohm ,
one-tenth ohm, the resulting current will be $1,100 \mathrm{am}$ peres.

The heat developed in any conductor depends on the number of amperes flowing, and if the amperes ar sufficiently increased in any case, the conductor may be made red hot, white hot, or melted.
As the electric current is costly, we cannot afford to let much of it be wasted in heating conductors that produce no useful effect thereby, and we, consequent ly, proportion the wires of an electric circuit so that their resistance in ohms is small, and there is but lit the heat produced in them by the electric current.
Lamps and motors form most of the resistance of th uced and work done
Thus it is comme
To require electric wiring to b roportioned so as to have from 0.02 to 0.5 of the re sistance of the lamps or motors attached to it, so that from 0.95 to 0.98 of the total electric energy is expended n the lamps and motors.
From the above it is evident that, should a lamp or motor with much less than the usual resistance be connected to the wiring, a very large current would flow through the wires, and the loss in them, and, con sequently, their temperature, would be greater than intended.
Suppose again that, through some defect in a lamp or motor, or in the devices for connecting same, as witches and sockets, the service wires are connected by a resistance even less than their own.
A current in amperes ten, twenty, or even fifty time as great as intended may now flow through the wir ing, heating it red hot or even melting it and setting fire to surrounding materials.
The enormous flow of current, corresponding to the slight resistance, takes place much quicker than one can think of it, and the first notice of any trouble may be the melting of a wire or the blaze of surround ing materials.
Experience has shown the dangers from a rush of electric current through an accidental low resistance connection between the wires to be so great as to ab solutely prohibit the use of constant-pressure circuits without some device to interrupt or disconnect the wiring when a low resistance contact is made. The device almost universally employed to disconnect a circuit of electric wiring, when a connection of too low resistance occurs, is the electric fuse.
This fuse usually consists of an alloy of tin, formed into a thin strip and furnished at each end, in all but the smallest sizes, with a copper terminal adapted to o under a screw head. Fuses are proportioned to carry any desired number of amperes, and to melt thus breaking the connection, a little beyond rated ca pacity. To confine the hot fuse metal when it melts, the fuse is mounted by clamp contacts on a block of slain or slate, and the block provided with a cover blocks are in, or some incombustible necssary points, the principle being that every part of the wiring must connect to the source of current through a fuse that will melt and break the connection before enough cur rent flows to heat the wire to a dangerous point. Th result of this arrangement is that near the dynamo connecting it to large wires, carrying the entire current are placed large fuses, perhaps of hundreds or even thousands of amperes capacity. As the dynamo is left behind, smaller wires are used, branching in various directions, and each connected to the larger wire ampere fuse may be used to protect the flexible card of a single lamp.
On the flow of too great a current, then, through any part of the wiring, the protecting fuse melts, in stead of the wire, and disconnects the wiring where the fault exists, without damage. Two distinct advan ages are gained through the use of fuses: First, the temperature of the molten metal is reduced from about 1930° Fahr., the fusing point of copper, to 442°, the fus ing point of pure tin, or to even less than 200°, if some of the alloys of tin are used; second, the melted metal, instead of dropping at various points across a room onto inflammable materials, is confined at one point in an
The fuse can be replaced at once, for an insignifi cant sum, while, to replace a line of wire, would nvolve time and material expense. Fuses are some times supposed to be used for the protection of lamps and motors, but this is incorrect, as their main and primary purpose is to protect the wiring. It is impos sible for a fuse to protect incandescent lamps to any definite extent, as, under greatly increased line pres sure, the only possible case for the fuse to save lamps the lamp filaments will usually break before the fuse blows. A fuse may sometimes protect a motor from continuous overload, but its use for this purpose is not ery satisfactory. Some persons in charge of electric plants have been known to replace burned-out fuse with wire, nails, or strips of sheet iron; but considera ion of the fire risk involved should insure for thi practice the strongest condemnation.

The New Y from the Upper o its geologic collections ons the most remarkabl ossils that has been unearthed in recent years. It is fragment of a large fossil plant, about 12 feet in length, with an average cross section of 15 by 11 inches the short diameter was perpendicular to the plane of bedding, and was probably caused by the pressur of the superincumbent rock. It was collected by J. Nelson Nevius, of the museum staff, from thin bed ded, blue sandstone of the Hamilton group, near Mon oe, Orange County, N. Y.
Both flattened surfaces show prominent transverse ridges, which evidently were the natural contour of the plant. The rounded surfaces are so badly weati ered that it was impossible to collect several feet of hem, but where they are in better condition the how that the ridges extend entirely around the trunk These ridges are irregular in distribution, but averag $41 / 2$ inches apart, with an amplitude--from the depres ion to the crest of the ridges-of $1 \frac{1}{4}$ inches
One end of the specimen includes the stumps of sev ral branches. Before the specimen was removed from its bed, six branches were counted, all branching within a distance of 4 feet along the trunk. They wer from 4 to 7 inches in diameter, and were so compressed that it was difficult to trace any particular one for a onsiderable distance particularly as the composition of the fossil and the surrounding rock are very simi ar. On the side of the excavation opposite that from which the specimen was taken, and 20 feet from the point where the branches diverged, the continuation of two branches were perfectly distinguishable on the face of the rock ; the larger of which was $51 / 2$ inches in diameter, and of nearly circular cross-section.
The composition of the fossil varies considerably The greater part of the interior of the trunk varies in no visible particular from the surrounding blue sand stone, and is homogeneous entirely across the trunk At some places the center of the specimen is a crumb ing mass of carbonaceous sand and impure limonite hile in other places the material is almost a quartzite. The latter condition prevails particularly in the branches, which usually show more of a cellular struc ture than is noticeable in the trunk. Many of the limb are hollow, and have a tendency to fracture along the rings of growth.
Most of the exterior of the trunk was covered with a thin layer of limonitic, earthy material, having a fibrous ppearance which suggested bark; a d many of the roughs between the ridges contained thin layers of soft coal. These materials were so fragile that the reater part of them was unavoidably destroyed in emoving the specimen
Thin sections of the plant, under the microscope, show a more marked cellular structure than is appar ent to the eye.
Evidences of plant life abound in the sandstone and shale at this locality. Strata overlying those from which this plant was taken are filled with fragment of what appeared to be sea-weeds. At several local ities the black, carbonaceous condition of the shal has led to considerable excavations in a search for coal, which is, of course, fruitless. Small quantities of shale, sufficiently carbonaceous to burn on a grate ave been found
As no paleobotanist has yet studied this specimen its identity is unknown, but the consensus of opinion of those scientists who have seen it indicates that it is gigantic sea-weed. It has been suggested that it may be the species described by Dawson as Cellu loxylon primaevum, which Penhallow says is an alga or sea-weed, and belongs to the genus Nematophycus, a synonym for Prototaxities, concerning which there is a difference of opinion as to whether it is a marine or a land form.
This specimen had lain exposed to the weather for ome time, and upon being raised it fell into hundred of fragments, which Mr. Nevius has reunited, and the entire specimen is nearly ready for exhibition in the nuseum, where it is already attracting much attention Whatever the family and genus of this plant may prove to be, it is extremely rare from the Hamilton group. Large trees were verv abundant during the Carboniferous era, and fossils of them are common; but this specimen probably was in exactly its present con dition ages before the vegetation of the Carboniferou era began.

The time is undoubtedly coming very rapidly when he isolation of the farmer will become mitigated, owing o "neighborhood telephone lines," by means of which they can communicate with each other without refer ence to the condition of the roads or press of work. A local paper of an inland city in New York State de cribes an interesting line where the subscribers con tructed the line, furnishing the tools and doing the work themselves, the expense for wire, instruments tc., was equally divided among them, and the cos was only about $\$ 14$ per share. The line, of course, is free to subscribers, but others can make use of it by the payment of a small fee. At present there are ten subscribers to the line.

NEW RAILWAY ENTERPRISES IN PARIS.

The transportation facilities, always good in connection with former expositions, will be vastly improved during the Exposition of 1900. First, the Paris terminal of the Orleans Railway, now located in the eastern portion of the city, near the Pont d'Austerlitz, is to be brought closer to the business center and to the very gates of the Exposition grounds, on the south bank of the Seine.
Then a small portion of the proposed great belt line, which is to be constructed by the Paris Metropolitan Railway, as a " subterranean boulevard," a nd somewhat similar to the London underground, will be ready by 1900 , which will also land its passen gers at the Exposition.
The other railways enter ing Paris have the termi nals of their lines well placed, the terminals of the Compagnie de l'Ouest being especially convenient through the march of city improvements, that known as the Gare Saint Lazare being most central, Lazare being most central, has suffered therefore from has suffered therefore from the powerful competition
which, naturally, has followed. Such a state of affairs has neces sitated the extension of its lines into the heart of Paris, and the establishment of a new terminus, with convenient stations for suburban traffic at other points.
The present terminus is at Hace Valhubert, on the east side, not far from the Place de la Bastille, but on the south bank of the Seine. Such an improvement has been contemplated for many years, but the main difficulty in the way was to secure the necessary seven or eight acres of land which would give proper track facilities. Recently, the opportunity to profit through the acquire- Fig. 1, which gives a transverse view of the line along ment of lands, which were to be disposed of on the the Seine. A metal ceiling supports the causeway, there left bank of the river, and the fact of the approaching Exposition, decided the company that the time for the desired extension had come. A law passed in December, 1897, ceded to the Orleans Railway Company the lands occupied by the former Cour des Comptes and the barracks contiguous, and, the project having been previously planned in all its details, the work began almost immediately upon the company's obtaining possession of the ground, and the ruins of the Cour des Comptes were soon demolished.
In 1892 the company purchased the old Sceaux line, which had its station at Place Denfert, somewhat remote from the city proper. The old road, which was antiquated, was at once reconstructed under its new proprietorship, and it was deemed a necessity to transfer its distant terminus to a point, provisionally secured, near the Jardin du Luxembourg, in orde eventually, to effect a junc tion with the other lines which would terminate at the new station of the Orleans Railway on Qua d'Orsay at the gates of the Exposition.

The extension of the Orleans Railway proper, the present terminus of which is at Place Valhubert, will follow the Seine in the direction of QuaiSt. Bernard up to the approaches of the Quai d'Orsay. Referring to the accompanying map. the present Orleans map. the present Orleans Railiced stan will be noticed on the extreme
right, from which point it proceeds to the left toward the Exposition Grounds along the Seine, as indicated by heavy dotted lines, and terminates between Pont Royal and Pont Solferino. The unbroken part of the line broken part of the line shows the location and tent of the open cut.
Starting from the old station, the new tracks will be laid below the surface, so that the line will pass under existing

4.-PARIS 1900 EXPOSITION TERMINAL, GARE DES INVALIDES, OCTOBER, 1898.
ork of excavation and construction, there has been, practically, no interference with surface traffic, and, in fact, the public have hardly realized what was going on. En passant, New York city might profit from examining into this admirable system in carrying out any future underground rapid transit projects. An attempt of this kind was made in Boston while the greatsubway was being constructed, but not without complete obstruction to public circulation, at certain points. The work on the Orleans Railway extension is being carried on by the construction of subterranean vaults, the roof soil being held in place by large metal shields which are pushed along, as the work advances, by hydraulic jack screws, the masonry work immediately following, while the debris is removed automatically. The shield used is the same in principle as that invented and used by the late invented and used by the late
Alfred E. Beach in building a section of road under Broadway, New York, in 1869. This system was followed in the construction of the Clichy Electric Line with perfect success, and it will be employed by the Metro Seine. A metal ceiling supports the causeway, there new belt system is begun being no indication above ground of a railway line. Light and air are supplied through frequent apertures placed in the wall, which are apparent in the outline. It is needless to remark that all precautions have been taken against danger of flooding the subway through any pressure that might be caused by a rapid rise in the river. Attention is called to the inverted arch below the bed of the railway in the outline, for which we are indebted to Le Moniteur des Expositions. An acqueduct or drain is also placed between the tracks to carry off the water, and when the natural drainage carry off the water, and when the natural depended upon, as in time of inundation cannot a rise in the Seine, pumps have been provided at intervals.
The construction of the subway between the Sully Pont and the Petit Pont, a few hundred yards
west of Notre Dame, is on a different plan, as shown the sorting of trains, and the point of departure for
troops or other large bodies of men.
The work on the new station at Quai d'Orsay has progressed no further than the foundation, which is a superb piece of engineer work.
The accompanying il lustration shows the state of the work about the first of October, 1898, at which time the photograph was taken. The anticipated ex pense of the work of extending the Orleans Railway to its terminus is stated to be $40,000,000$ francs.
The Paris Metropolitan Railway project is a much greater undertaking While it is said that a por tion of the system will be in operation during the Exposition, the work in it entirety will require a decade for its completion. The portions of the new line that, it is hoped, will be in operation in 1900 are: a section from Place du Danube to the round point of La Villette and another from the Tri umphal Arch to the Trocadero, the arch being a the highest point on the Avenue des Champs

Elysees，and the point of intersection of several im－ portant a a enues．
From a recent number of Nineteen Hundred the fol－ lowing statements are gleaned regarding the differen lines which，connecting with each other，will form the ＂ill＂when completed．The first line，subterranean， will run from Parc Vincennes to Porte Dauphine，a The second line is circular in shape and follows the ex－ The second line is circular in shape and follows the ex－
terior boulevards．Starting in the immediate vicinity terior boulevards．Starting in the immediate vicinity
of the Arc de Triomphe，it runs（underground in the of the Arc de Triomphe，it runs（underground in the
Avenue Wagram）to the Boulevards de Courcelles，de Batignolles，de Clichy，de Rochechouart，along which the line is intrenched．It becomes an elevated line on Boulevard de Rouchechouart and continues thus as far as the Rue de Meaux．Thence，it proceeds to La Villette，and on to Belleville and Ménilmontant，and the Lyons Railway terminus，where it connects with line No．1．It next crosses the Seine，and after reach－ ing Place Denfert－Rochereau and Montparnasse，ex－ tends as far as Grenelle，where it crosses the Seine again and passes beneath the Trocadero and Avenue Kleber． Its total length is $141 / 2$ miles，with forty－six stations． The third line，subterranean，runs from Porte Maillot to Ménilmontant， $53 / 4$ miles，with sixteen stations

The fourth line will start at the Porte de Clignan－ court and work its way to the Porte d＇Orleans，via Boulevards Ornano，Barbes，de Magenta，de Strasbourg and de Sebastopol．As it emerges from Rue du Louvre it will pass under the Seine，and when it reaches the left bank will continue its route via Rue de Rennes and Boulevard Raspail as far as Place Denfert－Roche－
reau．It then follows Avenue d＇Orléans．It is nearly reau．It then follows Avenue d＇Orléans．It is nearly
seven miles in length and will have twenty stations．

The fifth line starts from Boulevard de Strasbourg and runs about $21 / 2 \mathrm{miles}$ to Boulevard de la Contrescarpe， when it joins line 4，with eight stations．It passes Austerlitz Bridge，Place de la République and Place de la Bastille．The sixth line runs from Cours de Vin cennes to Place d＇Italie，via Pont de Bercy，about $33 / 4$ miles，with nine stations．A study of the location the stations shows that the line connects with all pro－
minent points in the city，and it will therefore give minent points in the city，and it will th．
The Chemin de Fer de l＇Ouest will also be connected with the Exposition，and a new line is being extended from the Gare St．Lazare，running around to the west ward of the Exposition grounds，thence passing down the Seine through an uncovered way，below the sur face，to the Exposition terminal，the Gare des Invalides． Our iilustration gives an idea of the present appear－ ance of the excavation and foundation of this terminal station，the line being known as the＂railway des Moulineaux．＂so called from its first terminal．This will be wholly covered，and at the surface will，in fact， form a part of the new Avenue Alexander II．，which crosses the magnificent Alexander III．Bridge，now in process of construction．The station，therefore，will be wholly underground，and directly beneath a centra point of that portion of the Exposition grounds which lies nearest the Place de la Concorde and the heart o Paris．

A cippus，a low pillar belonging to the early re－ publican period，has been found in the Forum，at Rome，close to the arch of Severus．The inscription on the
place．

The Current Supplement．

The current Supplement，No．1209，is a very im portant issue．The first article is＂Progress of Ex periments with Kites at the Blue Hill Observatory； his article illustrates，for the first time，the mechanism mployed in flying kites carrying meteorological instru nents．It is accompanied by sixteen illustration showing the kites and all parts of the flying mechanism tis by Mr．S．P．Fergusson．＂Memorandum on the Mineral Resources of the Philippine Islands＂is a re port by George F ．Becker，published in the Mineral Resources of the United States．The usual notes are published and they number some twenty－two．＂The Toy Industry of Nuremberg＂describes a curious indus try carried on in the old German city．＂Acetylene， by Vivian B．Lewes，is the fourth lecture and is ac companied by important tables．＂Apparatus fo Nickel Plating Numerous Small Objects at a Time escribes a form of apparatus concerning which eaders have often inquired．＂The Economic Statu of Insects as a Class．＂by Dr．L．O．Howard，is an in eresting and scholarly article．

recently patented inventions．

Bicycle－Appliances．

gear－case．－Congtant A．Chevalier and Nor bert G．Vasseur，Caen，France．The essential charac－
teristic of this novel construction is that the chain－ wheel may be fixedly attached to the crank－axle between the ball－bearinga，while still maintainng the axle in one prece and fixing on its ends，as usual，the two cranks． There－is hence secured a normal traction action of the chain，which prevents all twisting motion and which increases the rigidity of the machine．Particular arrange－ ments for mounting and fitting the ball－bearings，com－
bined with a novel system for lubricating the moving parts，complete the improvements．

Electrical Improvements．
ELECTRIC PRINTING－MACHine．－George L． CAmpbell，Dushore，Pa．This invention provides an
improvement in electrically－operated printing－devices， improvement in electrically－operated printing－devices，
and has its especial object the printing of bulletins in public places．The improved machine is so constructed
that a large number of printing devices may be simulta－ neously operated from a central point．The machine comprises a frame carrying a sheet of paper with proper mechanism attached thereto for rolling the paper from one roller to another．Mechanism is also provided，by means of which the frame carrying the paper is given a traversing motion in order that a line may be printed typo－wheel，which is rotated by an electromagnet，and a type－impressing mechanism，also operated by an elec－ omagnet，the ewo magnets being in the same circuit， rreater strength than the normal．

Mechanical Devices．

FAN－ATTACHMENT FOR SEWING－MACHINES： －Alpheous Russel，Wickliffe，Ky．The attachment omprises essentially a fan carried by a vertical spindle shifted in and out of engagement with the fly－wheel of the sewing－machine．The fan may be adjusted so that the sewing－machine case may be applied when the fan－
attachment is out of operative connection with the attachment is out
sewing－machine．
drilling－Machine．－Robert Binnie，Bolivar， DRILLING－MACHINE．－Robert Binnie，Bolivar，
Pa．The machine is mounted upon tripod，carrying Pa．The machine is mounted upon tripod，carrying
a standard on which the drill frame or carriage slides． The drill－spindle can be reciprocated and rotated，
or merely rotated．To impart a reciprocating motion， or merely rotated．To impart a reciprocating motion， and is pivotally connected by a pitman with a crank－ ar：n，driven by a motor through the medium of gear－
ing．The novel arrangement of springs provided ing．The novel arrangement of springs provided，
prevents the transmission of shocks to the cross－head． prevents the transmission of shocks to the cross－head．
In order to impart a continuous turuing motion to the drill，in addition to the reciprocating motion，the crank－ shaft is provided with a worm，by means of which the drill spindle is rotated．When it is desired to dispense with the reciprocating motion，the pitman is disconnected from the cross－head and the crank－shaft，and only a An arrangement is provided whereby by the worm． feed motion can be imparted to the frame．

Railway Appliances

CAR－COUPLING：－Joun O．STow，Lawrence，Mich． This car－coupling is so constructed that a brakeman can uncouple the cars while they are in motion．The coup－ hook is pivoted in the bifurcated portion，and a link is connected with the hook．On the counling a link fulcrumed and connected with the link．When the levers rest on the solid portion of the beams，then the coupling is closed，the arrangement of the parts serving to prevent the hooks from swinging out to release the
couplings；but，should one of the levers be drawn aside， couplings；but，should one of the levers be drawn aside，
the strain on the coupling will throw out one of the the strain on the coupling will throw out one of the
hooks，and the couplings will be released．

RAILWAY－SPIKE．－John R．Kunzelman，Still water，Minn．The spike has a shank and a laterally－ sharpened lower edge：its lower portion is of greater thickness than the upper portion．A spike thus con－ structed，when driven into the wood，will be firmly held
in place．The spreading action of the rails will no in place．The spreading action of the rails will not
throw the spike out of place，owing to the action of the throw the spike out of place，ow
wings as they engage the wood．

Miscellaneous Inventions．
LOCK．－Adolphe Mirot，Manhattan，New York city．The bolt of this lock is thrown by an eccentric， notched throwing－arm provided with a projecting pin
concentric with its journal．The key of the lock has a concentric with its journal．The key of the lock has a
hole in the end of its shank adapted to receive the pin， and has slots in its side communicating with the hole Dogs，each pivoted by one end in the slot，are spread by engagement with the pin so as to enter the recesses in he throwing－arm．When the bolt is thrown by the ec－ entric，it is given a half－revolution，the eccentric acting as a lock to prevent the bolt＇s being forced backwardly
by engagement with a knife inserted in the crevice be－ tween the door and jamb．It is，hence，impossibte to throw the bolt by any other means than a key of the haracter described．
temporary－binder．－Charles T．Rosenthal lower member having hinged comprises an upper and a are provided with means for holding leaves between them．Guide－plates are secured to the inner faces of the members，extend in opposite directions and are
placed out of vertical alinement．Each guide consists a body and of a hook－section carried by the body． locking p．ate is held to slide between the hook and the body－sections of the guides，and is provided with re－
cesses arranged to register with the hook portions of the cesses arranged to register with the hook portions of the
guides．Each section is capable of iudependent use． guides．Each section is capable of independent use．
By reason of the peculiar construction described，the By reason of the peculiar construction described，the
leaves contained in a section may be removed without disturbing those of an adjoining section
GatE．－Charles Rice，Durbam，Ill．This gate is to each side of the gateway，so that the gate can be opened or closed by a horseback rider or by a person seated in a carriage，without the necessity of dismount－ ing or descending to the ground．The novel features of the invention are found in a construction whereby the end of the gate is adapted to strike against the abut－
ment－posts in such a manner as to relieve the latch from undue shock and also permit＇a quick operation from ndue shock and also permit a quick operation
as the gate moves to its open or closed position．

> VEHICLE TRACK. .-- SANFord B. Dicki Corning，N．Y．This improved vehicle．trackinson Corning，N．Y．This improved vehicle－track is adapte
especially for wagons and bicycles，and is designed t render more easy the passage of such vehicles over stree and roads．The track comprises a series of supported columns provided at their upper ends with vertical slots in alinement with one another．The track itself con－ sists of a length of sheet metal provided with a marginal
flange at each side，and with a central flange between the marginal flanges．All of the flanges are projected down－ wardly．The marginal flanges are located，one on each side of the columne；while the central flange is projected into the slots of the columns．
SNAP－hook．－Charlef M．Beard，Elroy，Wis． The body of this book is provided at one end with a
hook and at the other end with a loop．A tongue is hook and at the other end with a loop．A tongue is
pivotally mounted on the body adjacent to the loop and pivotally mounted on the body adjacent to the loop and
has its．free end adapted to engage with the hook at the has its free end adapted to engage with the hook at the
limit of the outward movement of the tongue．The free limit of the outward movement of the tongue．The free
portion of the tongue is formed with a head comprising by two lugs formed on the body of the are engan hook thus constructed can be readily opened with gloved or ungloved hand．
WINDMILL－－Albert J．Smalley，El Reno，Okla－ homa Territory．The wind－wheel of this mill com－ blades are attached．The spiders are connected with blades are attached．The spiders are connected with a
shaft，to one end of which a crank is secured for operat－
ing the pumping－rod．A boxing extends around the
tower to cut off the lower portion of the wheel from wind furce．Above the bosing，the tower is wholly open at opposite sides．The openings are desigued to be
closed automatically by doors controlled by the gov－ ernor－shaft．On the outer end of the governor－rod a the governor－rod to draw the doors upwardly as the velocity of the wind increases，in order to cut off a por－ tion of the wind．When the wind becomes exceedingly violent，the doors will rise to the top of the towers and
entirely cut off the wind．The mill is thus enabled to entirely cut off the wind．The mill is thus enabled to
run at a uniform speed，no matter what the velocity of run at a uniform
the wind may be．
Compass．－Ludwig Rellstab，Kiel，Germany This compass is designed especially for use on ship－ board，and is constructed so that the deflection of the netic bodies will be automatically corrected．This end is attained by mounting on the compass－card an electro－ magnet，which，upon the deflection of the card carrying the main and auxiliary needles，is energized so that a counter influence will be exercised and the card returned oits proper position．
ROADWAY．－John W．Maltbr，Gates，N．Y．In the construction of a roadway according to this inven－
tion，metal plates are so placed between receivers to contain concrete，that the road－bed may be made in sections．The sections of the roadway are completed by introducing asphalt or concrete into the receivers dation may be laid in the receivers，in which blocks of granite or other material may be introduced，if preferred．
APPARATUS FOR DISTILLING PETROLEUM．－ Frederick W．Mann，Franklin，Pa．In the fractional distillation of petroleum，a residuum of heavy hydro decrease the proportion of this residuum a proces known as the＂cracking＂process is employed，which submits the hydrocarbon vapors to the action of heat in order to break up the molecules into other arrangements
resulting in the production of a larger proportion of valuable compounds，The inventor of the present pro－ cess has discovered that the results produced by the ＂ngacking＂process may be improved upol，by subject heat and pressure．
IRONING－BOARD．－Edward G．Hummell，Lan ster，N．Y．The present invention is a combination ironing－board，wash－bench，and portable shelf．There sible brace consisting of sliding sections is connected with the table and leg．One of the sections is tubular and has its free end bent laterally；while the other sec locking－member is fitted to slide in the lalar section．A of the tubular section and to engage the toothed section of the brace．
Note．－Copies of any of these patents will be furn－ the name of $\&$ Co．for 10 cents each．Please send of this paper．

NEW BOORS，ETC．

Azimuth and Altitude Astronomical Charts．Cambridge，Mass．，and 29 Forty－fourth．Street，New York City：
F．R．Coar．Four sheets and ex－ F．R．Coar．Four sheets and ex－
planatory pamphlet．Price $\$ 1.75$ ．
Each star sheet is centered on the visible horizon for 40° north latitude and for the middle of its right ascen－ sion or hour angle at the middle of the three month period of each star sheet，so that there will be but little
variation of the stars from the zenith point for the three variation of the stars from the zenith point for the three
months designated on each sheet．The outlines of the constellations are given，with the positions and magni－ tude of the principal stars to be seen by the naked eye The star sheets and pamphlet ara very complete com－ pendiums for indicating star positions for amateurs
and students．

PBusiness and Personal．

line fer or insertion under this head is one Dollar a line for each insertion：about eiaht worrds to a line．
Advertisements m mst be received at publication office Advertisements must be received at publication office
as early as Thu rsalay morning to appear in the follow－ ing week＇s issue．
Marine Iron Works．Chicago．Catalogue free
＂U．S．＂Metal Polish．Indianapolis．Samples free． Schwaab Stamp \＆Seal Co．，Milwaukee．Send for cat＇g． Gasoline Brazing Forge，Turner Brass Works，Chicago． Kande \＆ Automatic Variety Wood Turning Latbes．H．H． ary，Waterbury，Vt
Machinery designed and constructed．Gear cutting． The celebrated＂Hornsby－Akrosd＂Patent Engine is built by the De La Vergne Refrigerating Ma－ The best book for electricians and beginners in elec－
tricity is＂Experimental Science，＂by Geo． tricity is＂Experimental Science，＂by Geo．M．Hopkins．
By mail，\＄4．Munn \＆Co．．publishers， 361 Broad way，N．Y．暲 Send for new and complete catalogue of Scientiffc
and other Books for sale by Munn \＆Co．， 361 Broadway New York．Free on application．

hints to correspondents．
Names and Address must accompany all letters
or no attention will be paid thereto．This is for our or no attention will be paid thereto．This is for our
information and not for publication．
References to former articles or answers should give date of paper and page or number of question．
In uirite not answeren in reasonable time should
סe repeated：correspondents will bear in mind that though we endeavor to reply to all either by lette，
or in this department．each must take his turn．
 houses manufacturing or carrying the same．
Special Vaters of rititen Incormat ion on matters of
personal rather than general interest cannot be
expected without remuneration．
 to may be had at the oftice．Price 10 cents each．
pris referred to promptly supplied on receipt of
miner．
marked or labeled．
（7603）H．E．asks the meaning of the familiar expression，＂Too cold to snow．＂A．＂Too
cold to snow＂means that it is not probable that there will be snow till the weather becomes warmer．It is at the North Pole in great quantities，but during a period of great cold the air over large areas is very uniform in temperature and pressure，and also in dryness．The re－
sult of all this is a continuance of good weather until， sult of all this is a continuance of good weather until，
on the approach of a＂low＂area，the wind hanls into on the approach of a＂low＂area，the wind hanis into
the south，the temperature rises，and ere long snow be－ gins to fall．The warm air from the south on being
chilled cannot contain as much water vapor as before， and the excess freezes and falls as snow．
（7604）F．H．writes：1．I intend to con－ etruct a 50 watt dynamo for the schoolroom．Which should I prefer－ 50 volts 1 ampere，or $1 / 2$ ampere at 100
volts？I would like to show the arc if possible，besides other experiments．A．There is little difference between a dynamo giving 1 ampere at 50 volts and one giving $1 / 2$ a dynamo giving 1 ampere at 50 volts and one giving $1 /{ }^{1}$
ampere at 10 ontes．Fifty volts are all you can use in one arc，but one ampere will not，five a strong arc．A
dynamo giving 5 amperes at 10 volts，or 10 ampere at dynamo giving 5 amperes at 10 volts，or 10 amperes at ． volts，would be more serviceable for experiments in
schoolroom．2．Is there any book for amateurs in the line of Bottone＇s＂Instrument Making for Amateurs，＂ dealing with the construction of apparatus for differen branches of physics？A．Hopkins＇＂Experimenta Science，＂＂price \＄4，is the book you need．A good boo
to go with it is Weinhold＇s＂Experimental Physics．＂
Whoertisements.
ORDINARY RATES.
 Hivile rotesare requisirea.

 Star $\star \substack{\text { Foot power } \\ \text { Screw..... } \\ \text {..cutting }}$ Lathes | Automatic |
| :---: |
| cross feed |
| $\substack{\text { i.c.using }}$ | 9 and $11-$ inch 5 wing. Sencal Fauls Mif. Componiv.

THE BICYCLE: ITS INFLUENCE IN

physical and school apparatus
 SELF CHARGING MACHINE

The Coburn Patent Trolley Track Store Ladders.
 The Coburn Trolley Track Mfy. Co.

THE WATERBURY Emery Grinder,

BLAKE Send for Iirculars. P. O. BOX ${ }^{\text {T. }}$
WATERBURY, CONN.

The Forbes Patent Die Stocks for Hand Power
 CURTIS \& CURTIS,
6 Garden St., Bridgeport, Conn. $\begin{array}{r}\text { No. } 56 \text { Hand Machine } \\ \text { Range } 22 / 6\end{array}$

you want the best CHUCKS, buy Westcott'

Cucks, Independent Lathe Chucks. Made by
ROCK DRILLS
AIR COMILRESSORS
SIMPLEST, Most EFFIIENT and DURABLE.
RAND DRILL CO.
(100 Broadway, New York.

INDEX OF INVENTIONS
For which Letters Patent of the
United States were Granted FEBRUARY 21, 1899,

AND EACHBEARINGTHATDATE Adverisisin, means for, Hawking \& Wright...... 620.03

 \qquad haing, appating ling R. .for mavies me cuiting, E. B :

 WhY NOT SAVEIT?
 WE HAVENOAAGENTS

What the great soloists of Sousa's Band think of the Gram-o-phone. "We consider the Gram-o-phone the only T ralking
Machine
tualities of of our perfectly reproduces the true tone [Signed]
 The Gram-o-phone brings within the famil circle actual reproductions of a hundred cele ebrated
artist and is used by the weath hand and refined for
hish-c ass home entertaiment

PRESSES, DIES and SPECIAL MACHINERY For Sheet Metal Workers.
WEST MFG. COMPANy
Buffalo, N.
C., U.

DRAWING TABLES

 Adjustable Drawing Table Co.
Powers Opera House Block,

DYNAMOS Send for particulars, and how actual subscriber
to the SCIENTIFIC AMERICAN may purchase this
wonderful instrument on the installment plan. THE NATIONAL GRAM=0=PHONE CO.

 $\frac{\text { F. B. MILLS, Seedeman, Box 187, Rone Hill, N. } \mathbf{Y}}{\text { BABBITT METALS.-SIX IMPORTANT }}$

 WOODWORKING MACHINERY, \sim

REPAIR BICYCLES FOR A LIVING:
 THE FRASSE COMPANY,

TELEPHONES

 Send stamp for complete catalogue of Elect

Buy Telephones
The difference in cost is little. We guarantee against loss by patent suits. Our guaranWESTERN TELEPHONE CONSTRUCTION CO argest Manufactu Clinton St.. Chicago.

American-Hunnings" TELEPHONES.
 ur telephones in successful operation
Used by War and Navy Departments. 1 , single line or metalilic circuit, and number of
felephonesto be bused on one line.
for cond Send AMERICAN ELECTRIC TELEPHONE CO.
173 South Canal St., Chicago, III.

FIRES

Fritutino
asiolinm
Hinainc

 his betts Wind, Steam. or Hors GAS ENGINE

WITTE GASOLINE OR GAS ENGINES

marine engine
 Spaceno cesingini iccupien Ever powerio required.
Either stationary or ma
rine No fre, no heat, no
smoke. No licensed engin

"WOLVERINE" GAS AND GASOLINE ENGINES, STAAT TMORARE:

 (How to make an electrical

Lakin street cars, route indicating, Lamps, protective device for incandescent tric, R. Kaes. atch, gate, J. F. Martin. Lathe, W. Buckley. L . Lens grinding and polishing machine

ford
Loom for weaving ufied fabrics. T. W. Head oom temple, U. Wi. Willemain.
oom warp stop motion
Loom warp stop motionain. Hardsiey
Lubricato, Kaccander $\&$ Huddy....

Magazine. oading, G. B. sparrow...............:
Matazine plate boider, Butard Smith......
Malting corn. barley. etc., apparatus for, H.

Medicine case, W. F. Barnes.
Metal pate catcher. brander, à
ehine, J. E. Burson
\qquad

Hensch..................iös. Muzzle. animil. Nailing machine. H. W. Morgan.

 Paper rolling machinery, guide
Suaceie.,
Pavement, wooden biock, j. Büchtei Pencill, R. R. Rakestraw.
Permutation lock, A.
Phen

$\begin{aligned} & \text { Per } \\ & \text { Pho } \end{aligned}$

Sturck
Pliers for

Pliiers for clamping clips on w Plow, Arft Pesting Pocket, safety, E. H. Burger.

Pror tabie, D. A. Fletcher.,
Printing machine. clyinder, Cotiter
Printink press, J. . . .
Prones...
 Pump, curb reservoir, C. A. Ards. Batiifit
pump, doubleacting, M. L. Koogler
 Rail joint and forming same. A.C. Hei.
Rail joints., forming, A. C. Heidelberg...
Rail was conduit, F. S. Pearson.

 Steering apparatus, i. W. Cook.
Steering neeranis. J. Lyill.
Stone boat or sled.awsin
Stove attachment. Winner \& M

Tamplpg and roiling machine, comb
Mannage hides or skins, s. S. Sadier

Revolutionary Dewspapers, Magazines, Broadsides, etc. Any one wishing to dispose of any colonial or revolu-
tionary papers, etc., may correspond with the undertionary papers, etc., may correspond with the under-
signed. Please describe the condition and state price.
M. A. C., care Scientific American Office, New York.

IMGERSOLL '99 BELL, 25c.

Chain a belting of Various Styles, elevators, conveyors, COAL MINING And HANDLING MACHINERY.
EFrEY MANUFACTURING COO., COLUMBUS,
tor ateen

 VOLNEY W. MASON \& CO Friction Pulleys, Clutches \& Elevators
 PROVIDENCE R.

LEAVE NEW YORK 5.30 P. M.

ARRIVE CHICAG0
4.30 P. M. next dav,
by the New York Central's " Lake Shore Limited." The most comfortable and lusurious long distance train in the world. 1,000 MILES IN 24 HOURS.
THE MACHINERY OF A NAPHTHA

CROOKES TUBES AND ROENTGEN'S

WATER

 The Sanitary Still

No Money in Advance!

 ACETYLENE GAS AND CARBIDE OF

THE SCIENTIFIC AMERICAN
Cuclopidia oid Receipots, Notias of duerias 12,500 RECEIPTS. 708 PAGES.

convenient for ready uee. Almost every inquiry
that can be thought ot, relatiny to formula use be thound answered macturing industries, will here

 MUNN \& Co., Publishers Office of the SCIENTIFIC AMERICAN.
361 BROADWAY, NEW YORK.

Trap. trap. electric railmay, E. M. Bentley
Trube forming apparatu, E . F. Holingei
 \qquad

wre. A. Cowies. $\begin{aligned} & \text { or stringing drawing dies upon, } \\ & \text { win }\end{aligned}$

Wire twisting machine L. W. Woyes.
Wool, cotton, etc... machine forclean

DESIGNS.

> TRADE MARKS.

PRINTS.
Alone on the Summit,", for glazed kid leather,
American Leather Company
LABELS.

CAN I BECOME AN ELECTRICAL ENGINEER?
Address THe Eleefrical engineer instifute of correspondence instrdction, Ded. a.
Endorsed by Every Prominent Electrical Engineer. \quad 120-122 Liberty Street, New York, U. S. Ω

PN:HE Anyone sending a sketeh and description may
quickily ascertain our opinion free whether an

scientific Fmerican.

MUNN \& Co. 66 Broaduex New York

LIFE PRODUGERS LIFESPRESERTERS
 HALF A CENTURY OF CYCLES.-AN

PROPOSALS.

FOR SAL Forelen patants protecting a annque
MODELS

Experimental \& Model Work
NOVELTIES \& PATENTED ARTICLES

INVENTORS ${ }^{\text {Hem make spotial Mat }}$

GASN GASOLINE ENGINES
 WATER MOTORS

A LARGE AND SURE

 INCOME IN THIS WANTED Asistant Foreman for Maching shop

DID YOU EVER COLLEGT STAMPS?

S3a Day Sure

"The Perfected American Watch."
An interesting book of information about Waltham Watches. Sent free upon request.

American Waltham Watch Company, Waltham, Mass., U.S. A.

IT'S A EUROPEAN FAD

and easily does best

The New Models work emington
Standard Typewriter
wyckoff, SEAMANS \& BENEDICT 327 Broadway, New York

ACETYLENE APPARATUS
 ecent, simple or howe made and commercial' apparatus
ar generating acetylene on the large and small scale
 chen
rice 10 cents prepaid hy mpil. For other numero
aluable artices on this subject we refer you to pare gIIMETILLLEMRICATES AHOTATT GHBESLY8CO

Foot:Power Lathe $\$ 70.00$
and Ouffit of Cools. SPECIAL OFFER!

List price of the No. 41/ Lathe is $\$ 66.00$. We will furnish the Lathe
with Set of Slide Rest Tools, Three Lathe Dogs, Five-inch Chuck with 'Two Sets of Jaws. Lathe A rbor, and Set of Morse Twist
Drills, $1-16 \mathbf{x} 1 / 2 \times 32 \mathrm{ds}$, in all amounting to $\$ 85.00$, for $\$ 70.00$. Drills, $1-16 \times 1 / \times 32 \mathrm{ds}$, in all amounting to $\$ 85.00$, f
carefully packed and on board cars at Rockford.
W. F. \& JOHN BARNES CO.

- Of Course You Do, Everybody Does . PEERLESS and CORBIN Fdjustable Levers and Pushb Buttons !
 The Bristol Bell Co., Bristol, Conn., U.S.A

APOLLO BEST BLOOM GALVANIZED IRON.
First-class work of all sorts is done with Apollo. Some sorts can be wellenough done with inferior iron. It don't pay.

Apollo takes less time and saves money. You can't afford to use refractory iron. Apollo obeys the tool and makes no fuss.
Apollo Iron and Steel Company, Pittsburgh, Pa.
An Aluminum Gover
 A. gea $\begin{gathered}\text { printed with the latest } \\ \text { style scripttype all for }\end{gathered}$

All about every known Tool for everg
trade Descriptive cuts of each with
present market prices. Send 25 cents
at CLIADGUE $\begin{aligned} & \text { at onee for } \\ & \text { MONTGOMERY'S TOOL CATALOGUE }\end{aligned}$ for 1898. 510 pages with index at back. Ar handi. book fages eviry madex athit back, mand
foreman of workshop or factory. The
 Book is pocket size, it d 4 it inches,
with rounded edges. Adres
MONTCOMERY \& CO. MONTGOMERY \& CO.
105 Fulton Street. New York STERLING METAL POLISH
 MILLER BROS. \& CO., 300 Greenwich St., New York. Graphic pataitulime

NOVEL POCKET KNIVES

 Made of the best materials in the most artistic styles. Fourphoto. or photos of eeleobrities, and nameand adoress un-
derneath handles. Handome, useful, indestructible. Every knife warranted. Send stamp for Circular. Ageonts Wanted.
NOVELTY CUTLERY COMPANY, 2 Bar St., Canton, Ohlo.

Cribune e Bicycles

THE BEST IN THE WORLD.
 Che Black Mifg. Co., Erie, Pa.

There is no Kodak but the Eastman Kodak.

By the

KODAK

 SYSTEMof film photography the instru-
ment loads and unloads in broad mentight.
daylads in broad The film is put up in cartridge form and is perfectly pro-
tected from light by a strip of tected from light by a strip of length of the film and several inches beyond each end. To load : simply insert this
cartridge in the Kodak; thread up the black paper ; close the camera and give the key a few. carimioge. turns, thus bringing the film into position.
The picture taking may then begin The picture taking may then begin pleted the black paper covers all, and the cartridge can be removed as easily as it was inserted.
Film Cartridges weigh ounces where plates weigh pounds and are non-break
able. All Kodaks use light-proof film able. All Kodaks use light-proof film cartrid Kodaks $\$ 5.00$ to $\$ 35.00$ Kodaks \$5.00 to \$35.00.
$C_{\text {atalogues freeat ine }}^{\text {dealers or by mail. }}$ EASTMAN KODAK CO

PRINTING IINKS

