of the vehicle pumps the gasoline and air mixture into the motor. The electric igniter then explodes the mix ture in the cylinder and the machine travels byits own power, the operator at the same time, by means of a lever, disconnects the foot crank and steers the forward wheel by the usual cycle handle bar. It travels at ten miles an hour and under, and is said to be an excellen hill climber.

A nother new gasoline propelled vehicle, on the south side of the room, was the Tinkham tricycle, for one per son. It is provided with a small, double cycle motor, hav ing the usual mixing chamber. The water for cooling the cylinder is in a tank the width of the machine locat ed over the motor between the two rear wheels, forin ing a cover for it. A hand lever on the left throws in or out a clutch which connects the driving shaft to a pedal crank conveniently operated by the feet like a bicycle. To start the machine, the driving shaft, when clutched to the pedal crank clutch, is rotated by the movement of the feet, the clutch is then disconnected by the hand lever and the feet raised and supported on two rests. The speed is regulated by pressure on a small lever attached to the steering handle bar, which cuts off the supply of air to the mixture. The electric sparking is produced by a small storage battery which is kept charged by a small dynamo geared to the shaft. A muffler is prorided at the rear to soften the sound of the exhaust. It has a speed of 15 miles an hour.
A third and most attractive looking gasoline motor carriage designed to carry two persons was called the "Hertel," made in Greenfield, Mass. The striking feature was its lightness and compactness and method of applying the power to the wheels. Beneath the seat is carried the supply of gasoline, water tank, and storage sparking battery, kept charged by a small dynamo geared to the main driving shaft. There are two cylinders placed horizontally, which operate the main shaft. One lever in the center near the seat brings to bear a countershaft in contact with the main shaft, and the driving pulleys on each end of the countershaft on the outside impinge by friction on special concentric rails secured to the inside of the rear whee's. Pushing the lever forward brings the pulleys in contact with the wheels and sets the vehicle in motion; drawing the lever backward puts on the brake and at the same time removes the driving gear from the wheels. The engine is also started by a back and forth movement of the same lever. By another lever the two front wheels are steered. The weight of the vehicle is 500 pounds. Its manipulation is said to be so simple that a lady can operate it without difficulty.
The wheels of all these vehicles are fitted with heavy pneumatic tires of large dimensions.
In the line of cycles, perhaps the most prominent improvement is the introduction of various chainless gears. The Pope Manufacturing Company have perfected their bevel gear driving mechanism during the past year in such a way as to make a smoother run ning wheel and prevent undue friction.
The Grand Rapids Cycle Company exhibit also a plain bevel gear bicycle called the "Clipper," well built and light weight.
In the Sager gear is shown a combination of a pe culiar shaped bevel spur with a roller gear on the axle of the driving wheel, designed to reduce the usual fricion of a bevel gear.
Still another form is the Bullis gear, in which miniature rollers on projecting spurs take the place of the usual spurs of a bevel gear and mesh into each other at an angle like a bevel gear.
A novelty in the chainless line was tandem chainless bicycles, located at the east end of the hall.
The usual sprocket pedal wheel had gear teeth on its periphery which geared into a run-around ring of large diameter, traveling on ball-bearings over a stationary ring supported on the frame of the bicycle and geared on the opposite side into a second toothed
pedal wheel. This in turn geared on a second large run-around ring and that into a gear wheel on the end of the axle of the rear wheel. The power is thus transmitted through the medium of these gears and runarounds directly to the rear wheel.
In the line of accessories and minor improvements there were on exhibition four or five different styles of acetylene lamps, unique devices for quickly adjusting the height of the seat on the seat post, notably that of the "Tribune" bicycle, novel contrivances for ringing a bell from bicycle wheel, and a curious adjustment of the bicycle pedals which could be immediately detached from the sprocket wheel by a slight back pressure, desirable in coasting. Numerous exhibits of adjustable handle bars were to be seen. On the "Cleveland" bicycle we noticed a new simple bi-speed gear arrangement operated by a rod running up to the seat, which permitted the rider, when in motion, to quickly change the gear from low to high speed or vice versa. There seemed to be a desire on the part of manufacturers to supply the public with the chain or chainless machines as it might select. In the Urient cycle exhibit we noticed a six-seated racing bicycle which had a main sprocket wheel twelve nches in diameter.
In another issue we shall give illustrations of some
of the novelties in the exhibition. As a whole it was particularly interesting, especially in the progress shown in automobiles.
the verdict in the tank collapse case.
Coroner Zucca and a jury concluded, on January 24, an inquest in the case of the eight men who were killed by the collapse on December 13 of the large tank of the Consolidated Cas Company at First
Avenue and $23 d$ Strect, which we have already illustrated. After taking expert testimony the jury returned a verdict that the deceased came to their death by asphyxia and by drowning, and that the construc tion and materials of the tank were in accordance with the plans and specifications, and that the workman ship was of good character. The jury recommended that in view of the fact that neither the design nor the construction of such gas-holder tanks is under the supervision of any city department, all such work in future should be subjected to proper municipal supervision and control

the heavens in february.

by garrett p. serviss.

In this month the great winter constellations which center about Orion gradually shift their places to the western half of the sky, while less brilliant star com panies, led by Leo and Virgo, occupy the east. At 10 o'clock P. M., in the middle of February, the Milky Way arches the sky in a nearly north and south line. The Great Dipper is high in the northeast and Cas iopeia low in the northwest.
Early in the evening Orion is on the meridian, and advantage should be taken of his favorable position for study of the beautiful star Betelgeuse, in the imaginary giant's right shoulder. This star is remarkable both for its color, a rich topaz, and for its irregular variability. Ordinarily Betelgeuse is about twice as bright as Aldebaran, the leading star of Taurus, but, according to an estimate recently made at the Cape of Good Hope Observatory, it is, this winter, but slightly superior to Aldebaran. It may lose yet more of its light, and attentive observation may result in the discovery of some law governing its variability. That a sun of such presumably enormous magnitude as Be telgeuse possesses should lose, for a time, one-half its radiant power is a phenomenon calculated to arrest attention and excite wonder. Together with observations on its brightness as compared with Adelbaran and with its white neighbor Rigel in Orion's foot, the color of Betelgeuse should also be carefully watched. There is here an opportunity for amateur astronomers possessed of normal color vision to add something of value to the stock of astronomical knowledge. The colored stars present a fascinating but difficult problem, and a careful record of their hues, arranged
on a simple chromatic scale, would be highly interon a simple chromatic scale, would be
esting and might prove highly important.
A hint of what can be done is conveyed by the fact that Betelgeuse and Aldebaran, although both are sometimes called red stars, have by no means the same color tone, while Antares, another red star, presents a still different tint.
the planets.
Mercury is a morning star, moving in the course of the month from Sagittarius across Capricornus into Aquarius. But it is too near the sun for observation.
Venus is also a morning star, and conspicuous for two or three hours before sunrise. She reaches her greatest western elongation on February 10. She is in the constellation Sagittarius.
Mars remains the most striking stellar object in the evening sky. He crosses the meridian about 10 o'clock in the middle of the month. He is in the constellation Gemini, south of the twin stars Castor and Pollux, and greatly outdoes them in brightness. His brilliancy diminishes, however, all through February, as the distance between him and the earth is widening at the ate of several hundred thousand miles in a day.
Jupiter, in Libra, is an evening star, rising before midnight, and in the course of a few weeks will take the place of Mars as the planetary cynosure. Recent tudies of his cloud belts indicate that the giant plachantinues to be the scene of stupendous surface envelop his globe, but which give rise to a wonderful and beautiful spectacle in the telescope.
Saturn is a morning star, rising several hours before daybreak, in the constellation Ophiuchus, near the place where the new star of 1604 appeared. Recent observations of Saturn by Monsieur Antoniadi show that the ball of the planet does not lie exactly in the center of the rings, but appears shifted slightly toward the west. The explanation of this singular appearance is obscure. Antoniadi's drawings of the planet, made within a few months past. also show very plainly the series of light and dark belts parallel with the equator, and the tendency of the outer ring, near the extremities of the larger axis, to break up into cloud-like masses. This appearance may arise from tidal waves, or waves of condensation and rarefaction running
through the masses of minute satellites that compose the ring.

Uranus is a morning star in Ophiuchus, five degrees lmost directly north of Antares.
Neptune is an evening star in Taurus.
THE MOON.
February opens with a waning moon, the satellite reaching last quarter on the 3d. New moon occurs on the 10th, first quarter on the 17 th and full moon on the 25 th. There will be a minimum of the variable star Algol en minutes before 0 o'clock on the night of February 8 ten minutes before a o'clock on the night of February 8.
There are no conspicuous meteor showers in February.

PHILIPPINE ARCHITECTURE.

According to Prof. Dean C. Worcester, the houses rest on four or more heavy timbers which are firmly set in the ground. The floor is raised some five or ten feet from the ground. The frame is of bamboo tied together with rattan and nails are not used. The sides and roof are usually of palm, and the former may be made by splitting green bamboo, binding the halves flat and then sewing them together. If palms are scarce, the roof may be thatched with long grass. The floor is usually made of bamboo strips with the convex side up. They are tied firmly in place in such a way that wide cracks are left between them. The houses are entered by ladders; in some cases there is only one room, and the cooking is done over an open fire built on a heap of earth in one corner, and as the opening for the exit of the smoke is inadequate, the room is sometimes rendered almost uninhabitable. In the beiter classes of dwellings the house is divided into several rooms, and there is a place partitioned off for cooking. There are windows which are provided with swinging shades. Prof. Worcester states that native dwellings which are properly arranged have much to recommend them. The ventilation is perfect and the air is kept much cooler than in a tightly closed building. The construction is so light that if they are thrown down by an earthquake or blown down by a typhoon no one is injured, as the material is too light to do any damage The richer natives sometimes build houses of boards with galvanized iron roofs and limestone foundations, but they are very much more expensive and are pronounced decidedly less comfortable than the more humble dwellings which we have described.

WINE STORED UNDERGROUND.

An experiment in handling red wine was tried last year at the Italian-Swiss colony's vineyard, situated at Asti, in the State of Calitornia. The grapes handled by the colony were far in excess of the cooperage facilities it possessed, and some means had to be devised to care for the surplus. Among the different plans suggested was that of building a concrete cistern, and this idea was finally adopted. An excavation was first made in a rocky hillside in the rear of the establishment. Next walls of concrete 2 feet in thickness were put in, and the floor and top were added to in an equally substantial manner, the latter being supported by fifteen steel girders. Then the entire surface was covered with a lining of pure cement, and finally this was glazed to the impermeability of glass. The whole cistern was buried beneath 3 feet of earth, the object of all these precautions being to preserve the wine at a uniform temperature. This cement tank is 104 feet uniform temperature. This cement tank is 104 feet long, 34 feet wide, and 24 feet high, and is capable of
holding 500,000 gallons. The wine was kept in this reservoir for four months or more, and the experiment is said to have been entirely successful. It was then drawn off by gravitation into wooden tanks, in which it will be allowed to mature previous to being placed in barrels for shipment. There are said to be several advantages derived from treating the wine in this manner. One is that it can be maintained at a cool, even temperature; another is the equal blending of such a large quantity of wine at one time, and a third is the great saving in insurance, which is expected to repay the cost of the construction of the tank in five years.

OUR IMPORT TRADE FOR 1898.

The import record of the calendar year 1898 is as renarkable as that relating to its exports, but for opposite reasons. The total imports of the year are less than those of any calendar year in more than a decade, while the exports of the year are the largest on record. The imports fall more than $\$ 100,000,000$ below those of 1897 and nearly $\$ 50,00 \mathrm{n}, 000$ below those of the years of great depression, 1896 and 1894, on which occasions the imports were phenomenally light. That the importations in the early part of the year 1898 should have been light was not surprising, because of the heavy im ports in certain lines prior totheenactment of the tariff law of 1897 ; but that they should continue light during the entire year in the face of the large home demand, which prosperous business conditions would naturally create, has proved surprising to those following closely the commercial developments of the year. The importation of a full year's supply of wool, sugar, and other articles of that class just prior to the enactment of the Dingley law naturally had a marked effect in reducing the imports in the closing months of the calendar year 1897; but that the imports of the closing months of 1898 should remain as low as those of 1897 is a matter of very considerable surprise.

