THE OLD LINE-OF-BATTLE SHIP "PENNSYLVANIA." Our sense of the marvelous has been so dulled by the swift-succeeding triumphs of naval science that few of us realize, if we ever stop to think, what prodigious strides have been made in the past half century of war ship construction. It is only at such a time as the present, when, with the tumult of battle still in our ears, we turn from the sight of our swiftly moving and destructive modern fleets to the contemplation of the sluggish wooden frigates and three-deckers from which our forefathers fought the enemy, that the full force of the contrast comes home to us. Yet it must be admit ted that while in speed, fighting power, and defensive qualities the modern ship of steel is incomparably superior to her wooden prototype, in point of pictur esque beanty the older type is beyond comparison.

Of her type and time, the old line-of-battle ship "Pennsylvania," launched after fifteen years of build ing in Philadelphia, on the sixteenth day of July, 1837 was the grandest example ever built by this govern ment, and, as it turned out, was a luxury too dear fo fitting maintenance; for excepting her brief cruise of five days from Philadelphia to sea and into Norfolk her years of usefulness were spent in performing the prosaic duties of a receiving ship.

The accompanying drawing of this noble ship was made from the original plans on file at the Navy Department; those who are familiar with the subject will agree that it is one of the most successful repre sentations of a three-decker under full sail that has ever appeared. Built of wood throughout, 210 feet in length 58 feet of eet in length, 58 feet o bluff as her ows as bluff as her seamen' ways; her sides of heavy sak, proof at a mile to ner own gun-fire, vary lug in thickness from 18 inches at the spa deck to 32 inches at the waterline, and pierced upon her four fighting decks by one hundred and twenty smoothbore, muzzle-loading cannon; with two full acres of canvas spread out aloft on masts that were as long as herself designed for a comple ment of over eleven hundred souls -- she must in truth have been a sight to gladden a sailor's heart as she bowled along under royal stunsails, her bulwarks bristling with cannon, her bulky sides aswell as if with conscious dignity as they bore aloft her tapering masts that towered heavenward glistening with their pyramids of whiteness.
In days when wood was the material of construction, it was no easy task to build the hull of a ship of nearly 5,000 tons displacement which should be capable of mounting a battery of 120 guns, and carrying aloft some two acres of canvas. Although only the best selected oak was used, the various timbers of the hull had to be of enormous size, and the impossibility of securing single sticks of the length required led to an elaborate system of splicing and scarfing, the joints being arrang ed so that as few as possible would occur in any given section through the vessel.
'I'he accompanying diagram, for which we are indebted to London Engineering, shows the method of construction of Nel . son's flagship, the "Victory," on which he lost his life while leading pis fleet to victory at

From a drawing bs R. U. akerrett.

THE OLD LINE.OF-BATTLE SHIP "PENNSYLVANIA."
Dinnensions: Length, 210 feet; beam, 58 feet; draught, $25 \frac{1}{2}$ feet; freeboard, 32 feet; sail spread, over two acres; height of main truck above waterline, 210 feet; width from tip to tip of lower stadding sails, 198 feet. Displacement, about 4700 tons. Maximum Speed, 12 knots. Com-
plement, 1,110 officers and men. Protection: Sides, 32 inches oak at waterline, 18 inches at spar deck. Armament : Sixteen 8 -inch shell and one hundred and four 32 -pounder shotguns. Maximum effective range of guns, 2,000 yards. Launched July $16,1837$.
the memorable battle of Trafalgar. It is fairly re presentative of a first-rate of the early part of this century, and gives an impressive idea of the great massing together of timber that was necessary to give the needed strength. Even as it was, the old men-of-war showed structural weakness, frequently hogging at the ends-the old "Victory" herself, now stationed at Portsmouth, England, being fully 12 inches lower at the ends than in the middle. It will be seen that the cross section of the hull, especially of the submerged portion, varies greatly from that of a modern warship. The flat floor extends only about 8 feet on either side of the keel, when the hull begins to round up in a great continuous sweep to the level of the middle deck the sides having a "tumble-home" of 7 feet from the waterline to the quarter-deck. From the middle deck the contour of the sides is concave. This form above water was discontinued when the era of the steel ships came in; but it has been revived in the French navy, and is seen in a very pronounced form in our own "Iowa" and "Brooklyn."
The keel consisted of massive single timbers 20 inches square, and was laid in as great lengths as were procurable. The frames were 18 inches deep in the floor, 12 inches at the waterline, and 8 inches at the quarter-deck. The bull was double-planked, the outer planking being 6 inches thick on the floor and bilges, from which it increased gradually to 12 inches at the waterline, reducing again to 6 inches at the middle deck, above which it was 4 inches in thickness. The inner planking varied from 4 to 8 inches, the latter being the thickness at the waterline. Upon the inner planking was laid a system of "riders," which varied from 12 to 18 inches in depth, and extended around the interior of the hull, forming a sort of interior framing, adding immensely to the trength and stiffness of the structure. The whole shell of the ship thus laid together was secured by innumerable bolts and treenails, the bolts being from 3 to 4 feet long and passing from the outside planking to the inner face of the riders. The treenails were long oaken pins, which were driven through the frames and both layers of planking, and were secured in place by splitting their ends and driving wedges tightly into them.
The various decks were carried on oak beams which varied in depth from 16 inches on the orlop-deck to 10 inches on the quarterdeck. Support was given to the beams amidships by massive oak pillars, a row of which extended continuously down the center of each deck. At the sides the beams rested upon chocks which were bolted to the frames. The hull was stiffened against distortion or racking in a vertical plane. by "hanging knees," massive vertical angle pieces of oak, which were bolted to the beams and to the sides of the hull, and similar stiffening was afforded in the plane of the decks by a system of kriees that tied the beams to the sides of the hull and sides of the hull and lay fit against the All the bolts holding the knees to the sides passed through to the outer planking.

There were five decks, named as shown in the
diagram. The battery was disposed in broadside upon the upper, middle, and lower decks, the last named being the strongest deck and devoted to the heaviest guns. The orlop-deck was used as the "cockpit," or operating room, during an action, its location below the waterline rendering it safe from the enemy's shot It was a dismal quarter, faintly illumined by the light of a few small dead-lights, assisted by the horn lanterns in vogue in those early days.
The guns were mounted on rude wooden carriages, and they were traversed and run up to the firing position by means of rope tackles secured to eyebolts in the deck and sides of the vessel. Solid shot was used against the hull and chain shot against the rigging. At close quarters the guns were usually double or even treble shotted, while grape-shot was used with deadly effect in sweeping the crews away from the guns.

The crowded condition of the decks on ships like the "Pennsylvania," which carried over 1,100 men, involved a frightful carnage when ships were fighting at such close quarters that the muzzles of the guns frequently touched the sides of the enemy's ship. The maneuvering was mainly directed to gaining and keeping the "weather gage" (to windward) of the hostile fleet, and the most destructive work was done with a raking fire. To rake the enemy it was necessary to sail past his bow or stern (preerably the latter) and pour in a broadside down the full length of crowded decks. In some of the most fiercely contested
battles a single ship would lose as many as 500 men One of the most striking features of the old battleships was their enormous sailspread, the "Pennsylvania " having over; two acres at|her disposal. The masts and yards were of vast dimensions, such as are never een in the present day. Not content with yards that were in some of the French ships 120 feet in length, smaller spars, known as stunsail yards, were fitted to smaller spars, known as stunsail yards, were fitted to
slide out in iron rings secured on the ends of the yards and thus extend the stretch of the sails by as much as 70 to 90 feet. The stunsails are shown very clearly in the drawing of the "Pennsylvania."
The great size of her spars may be judged from the following dimensions: The end of the jibboom was 124 feet from the cutwater. From the keel to the main truck was 235 feet, and it was 198 feet from tip to tip of the main studding-sails. The main yard was 110 feet, main topmast yard 82 feet, main topgallant yard 52 feet, and the main royal yard 36 feet in length.
It is impossible to state exactly the power of the old smoothbores of that early day; but probably the -inch guns were capable of penetrating about 18 inches of oak at 1,300 yards, and the 32 -pounders 24 inches. The maximum effective range was less than 2,000 yards. The rate of fire depended largely upon the ris of the carriare and trainhe ris of the caw and it training of tow ay that the average fire was not more than one shot per minute.

A NEW and expeditious method or driving piles is described in the instructions as to technical works for the Russian Engineer Corps. On two sides of the pile o be driven are made longitudinal grooves of sufficient width and depth to receive ordinary iron gas pipes of 1 inch or $11 / 2$ inches diameter, terminating in nozzles like those of hose pipes, and turned toward the point of the pile, being fixed to it by light staples, while the upper ends are connected by gutta percha pipes with a force pump capable of injecting water under a pressure of five atmospheres71 pounds per square inch. It is said that the outflow of this water at the point of the pile causes the latter to sink three or four times more quickly than it would under the action of a pile

A SNARE-INFESTED REGION IN OREGON.
reflector is placed a glass bulb holding a small quantity of carbonized filament (this will be seen enlarged at right of the picture). From this bulb a tube runs through the back of the reflector and is connected by a rubber tubing to small ear phonograph tubes.
At the time we heard it a cornet was playing in front of the transmitter; the notes came out clear and distinct in the parabolic receiver about 350 feet distant, and about one-third as strong in volume as the sonnd heard in the ordinary electric telephone receiver. The fluctuation of the temperature of the fiber in the bulb due to the variable impinging heat waves causes like fluctuations of the volume of air in the bulb which acts upon the drum of the ear. The light is only projected or brief intervals at a time, as a continuous heating of the carbonized fiber reduces the sound. The instruments are placed in the regulation telephone booths, one side of the booth being partly open to allow the electric light beam to freely pass. It is said that signals and speech have been transmit ted a distance of two miles, from a vessel to the shore, by means of larger and nore powerful search lights.

New Port for Montevideo.
The Hon. W. R. Finch, United States Minister to Paraguay and Uruguay, informs us that a contrac: for building a new port at Montevideo for Uruguay is to be given out. The amount of money required to complete the job wil not be far from $\$ 10,000$, 000 , and he believes the government, of Uruguay will give American capital ists and contractors more than an equal chance of obtaining the contract for building a port. Contract ors may communicate with him at Montevideo, and the information as to what is required is also on file at the State Department at Washington.

ANIMAL COMMUNITIES.

by c. f. holder.
The schooling, swarming, herding or flocking of animals presents a fascinating subject, and the cause which govern the various movements constitute an elaborate study. Recently the writer while duck shooting in a California tule swamp became so interested in the flocking of birds that he forgot the ducks. Before the blind extended hundreds of acres of tule swamp which resounded with the notes of the blackbirds. As the sun rose, there was a concerted move ment among the birds, and as near as could be judge from five hundred to one thousand birds would rise, from five hundred to one thousand birds would rise,
as though a signal had been sounded, and sweep on, as though a signal had been sounded, and sweep on,
filling the air with their sounds, then as suddenly drop into the tules on the edge of the swamp. This ap peared to be the rendezvous, as though some general officer was appointing the birds to certain farms and ranches for the day, as from this spot other divisions, each composed of hundreds, rose as one bird, flying off in different directions-a proceeding which was kept up for several hours until every ranch within five miles must have received its flock of red winged blackbirds.

Many of the birds appear to form in flocks at the time of migration. The Pacific brown pelican is prone to fly in flocks of from ten to fifty, while its cousin of the Gulf of Mexico is to some extent a solitary bird.
Among the fishes the swarm ing or schooiing is particularly noticeable. The herrings, sar dines and their allies are alway banded together, in all proba bility for mutual support, and the study of a school is an inter esting pastime. The fishes seem governed by some one impulse, and the greatest order is pre served; the school hurrying up down, or to the side as a single fish. Yet this schooling is often their undoing. The writer ha seen a small seal so intimidate a

