3110 deg , or 1728 cubic inches 1.8 deg. ; 273 times that amount will double the volume of the air, while it will take 1184 times the same absolute amount of heat to change the water into steam, giving the proportion of 4.34 in fa vor of air. The difference from the proportion 4.45 is made by using 91 deg . in place ot 479, which I think is more correct. It also requires more than 50 per cent. of heat to raise one cubic foot of steam at 212 deg ., a given number of degrees, more than it does to raise one cubic toot of air the same number of deっrees; that is, the relative heat is, by the books as 153 to 1 , weing as 3 to 2 in favor of applying heat to air rather than steam, and about as 3 to 1 in favor of applying heat to steam rather than to water, to change it into steam. Why, then, has air not been used? I suppose one reason is, that it takes half or more of the power to do the necessary pumping. Mr. Ericsson uses two thirds nearly the remaining difference is balanced by the power gained by condensation of steam and the application of the expansion principle applied to high pressure steam, leaving them, perhaps, not far from equal. But when Mr. perhaps, not far from equal. But when Mr.
Ericsson saves fivesixths of the heat, and Ericsson saves five-sixths of the heat, and
consequently the same proportion of fuel, that consequently the same proportion of fuel, that
is a different metter, and it becomes evident is a different metter, and it becomes evident
that if necessary, human ingenuity and powthat if necessary, human ingenuity and pow-
er will be taxed to their utmost capacity to insure the success of his experiment. I think you will have to give it ctp at last.
$\begin{array}{ll}\text { A bron, Ohio, } 1853 \text {. } & \text { S. H. Bass. }\end{array}$
[For editorial remarks on the above tw
LFor editorial remar
letters, see page 189.]
Machinery and Tools as they are.--Saws and Saw Mills..
(Continued from page 179.)
No tool is used in a greater variety of industrial occupations than the saw, and when made in a circular form it is even more useful than when rectilineal, finding alike a place among the minute tools of the optician and among the rough but rapid working instruments of the backwoods. In employing the ments of the backwoods. In employing the
circular saw to cut lumber, the primary subcircular saw to cut lumber, the primary sub-
ject of inquiry is concernitig its diameter,-as ject of inquiry is concernitig its diameter,-as
a rule it is generally advisable to employ a saw of as small a diameter as circumstances will permit, for the resistance, the surface friction, and likewise the waste from the thickness of the plate, rapidly increase according to the size. But if the saw is so small as ding to the size. But if the saw is so small as
to be nearly buried in the work, the metal beto be nearly buried in the work, the metal be-
comes heated, the escape of the dust is precomes heated, the escape of the dust is pre-
vented, and the rapidity of the sawing is consequently diminished. As a general rule it appears best to use that part of the saw which is nearest to the centre, and to allow its diameter to be about four times the average depth of the log. Circular saws are usually fixed on mandrels, which revolve in bearings securely united to the stationary frame-work of the saw bench, the end play of the spindle being prevented by collars, as it is highly important to check any lateral motion. The saw is placed between two plates or flanges, which are firmly pressed against the former by a nut, so that they compel it to accompany their revolutions as the mandrel revolves, and to further ensure the saw's rotation, steady pins are passed both through the saw and the fixed flange. When the diameter of the saw is considerable, compared with that of the flanges, the blade is very flexible and liable to be diverted from the true plane. In order to prevent this, there are many diffeent contrivances; when a wooden bench is employed, the saw works in a narrow groove, which it cuts for itself in the bench, or a metal plate with a suitable slot is sometimes used, but a preferable method is to inlay a piece of hard wood and allow the saw to form the groove. Other methods, namely, to guide the periphery of the saw by rollers, or to employ two small saws in lieu of a larger one, are devices familiar to our readers. Sa wing apparatus of both these and of nearly every other description, will be found illustrated and explained in the back and current volumes of the "Scientific American." When it is designed to use this tool for cutting wood at any angle, it is customary to make the platform adjustable, and that to an extent commensurate with the exi gency of the case; a more simple way is to
use supplementary wooden beds placed to the use supplementary wooden beds placed to the
angles required. A plan for cutting weather-
boards out of a sound \log, has been proposed, when the timber is placed between centres
over the revolving saw, which makes a verover the revolving saw, which makes a ver-
tical and radial incision, the tool is then released and the wood shifted on its axis for a new cut, so that the entire tree is sawn into feath-er-edged boards. In this instance the saw is er-edged boards.
novel in design, on account of its being buried novel in design, on account of its being buried
so deeply in the wood, a circular plate is fitso deeply in the wood, a circular plate is fit-
ted with four pieces of steel, each having two teeth, while a great velocity atones for the paucity of these latter.
The cutting of veneers is undoubtedly the most remarkable instance of the precision that can be attained in the operation of sawing; for this description of work the saw is gene rally large, and here advantage is taken of the pliancy of the veneer, which allows the saw to be thick towarus the centre, whilst ${ }^{\circ}$ it is thinned away towards the edges. In the large application of the principle, the saw is compo sed of many segments, and is often 18 feet in diameter. For sawing ivory in thin leaves, the saw is a single plate from 6 to 36 inches diameter, when frequently a block only one inch thick yields thirty leaves. But when a large log of timber is to be cut into venears, and the saw exceeds four feet in diameter, it is formed of segments firmly secured to an iron plate, whilst the timber has two motions, the one longitudinal and the other lateral, to advance it sideways between each cut. This latter object is effected by adjusting screws and worm wheels moved by a handle, which makes 50 or 60 turns to advance the \log one inch, the veneer, as it is cut, being guided off from the saw. There is a mode of superseding the saw in veneer cutting, which has several times been proposed, and probably originated in Russia, where a machine is employed capable of cutting an entire tree into one spiral veneer with a knife, as if the veneer were uncoiled like a piece of silk from a
roller. In France, the plan has been applied to iron and sheets obtained measuring 150 by 30 inches. This plan, however, is not adapted for brittle woods, and does not expose the most ornamental section to view, which is the desideratum in veneers, on account of the purposes for which they are alwavs employed namely, fine cabinet work, and to give a superior appearance to the exterior of furniture Circular saws have likewise been applied to cut off the ends of railway bars whilst redhot, the saw making 1000 revolutions per minute, and having the lower ends immersed in water.
Marble has, for several years, been extensively sawn by machinery driven by steam power, although the processes are closely analogous to those pursued by hand. The ordinary arrangement is to torm a frame by fixing vertically four strong posts well connected together, within this the block of marble is placed, and over the marble is suspended
the saw-frame, which reciprocates horizontalthe saw frame, which reciprocates horizontal
ly, and rolls on pulleys which slide in vertical guides, and are suspended by chains connected to a counterpoise weight, so adjusted as o allow the saw frame to descend when left to itself, and which supplies sufficient pressure or causing the penetration of the saws. The distances between the saws and their parallel-
ism are adjusted by iron blocks, and every blade is separately strained by its wedge until sufficiently tense. The blades, it must be observed, are merely slips of sott iron without teeth, so that the blade itself does not cut but simply serves as the vehicle for the applica. tion of the sand, which acts as the teeth of
the saw, and performs the cutting process, the action of the saw being assisted by a small stream of water supplied from above. The introduction of the sand and water at the proper time is the chief difficulty in stone-sawing, to allow the cutting material ready access beneath the edges of the saw blades, the frame is slightly litted during each stroke and by the usual system the end of the stroke is the period chosen, but a recent patent points at the central position as most eligible. The traverse of the frame is, perhaps, preferably given by a jointed connecting rod attached by an adjustable loop to a long vibrating pendulum put in motion by steam power. The circular saw is also employed for cutting slabs o ed a saw, in work of this kind it is, in reality.
only a disc of iron without teeth, several of these being fixed on a revolving mandrel, whils the merble is placed on a reciprocating ber which travels with a slow traversing move ment.

(To be Continued.)

[For the Scientific American.]

Burning Fluid and the Newell Lamp.
As I am willing to avow myself the writer of the article in the "Haverhill (Mass) Gis zette," respecting burning fluid, and the New. ell Lamp, an extract trom which, with some comments thereon, you publish on page 160 o your useful journal, I trust you will suffer me to say a word in vindication of its justness and entire correctness. since it has been called in question by the statements of Dr. C. T Jackson, Newell, and others.
I wish to be briet, and therefore I will say at once that every statement contained in that article is strictly and entirely correct, and 1 challenge the parties denyirg them to prove them otherwise. I am ready to show by proof, which will not be questioned a single moment, that hundreds of gallons of" turmeri colored" burning fluid is sold every week ir Boston. I will produce a highly respectable manufacturer of burning fluid, who will testi fy that he has been provided with a glass mea sure, and been directed to add it full of tinct of tumeric to each barrel of burning fluid, by a dealer in "Safe Patent Oil." Who will connive at and deny the existence of such outrages ? Is this gentleman, who is a "distin. guished chemist," willing to meet me on this subject? This gentleman uses a "hydro-car bon fluid, with diluted alcohol, containing 20 per cent. of water, which makes it less dangerous," \&c. No chemist would ever make statement like this. I profess to be some what intimately acquainted with the exact chemical nature of all volatile hydro-carbon mixtures used for purposes of household illumination, and do not believe in such a mixtur as that, containing 20 per cent. of water. Wil he give me the formula for the mixture he uses, I wish to examine it?
I stated in the article in the "Gazette," " that if Newell was to be believed these holes in the cap of his lamp were ordered by Jack. son." Gentlemen of the highest respectability in Boston have signified their willingness to testify, under oath, that Newell has stated to them, repeatedly, that Jackson would not give his certificate until the holes were made. It is generally understood that Dr. Jackson proposed them. The holes still continue to be made in the cap, and it is a mild term you use, Messrs. Editers, when you call them a "scientific blunder." You state that you have been unable to find a record of Jennings' old patent for wire-gauze tubes, like Newell's, taken out in 1836. You will not find it in the books; it was, I think, destroyed at the time the Patent Office was burned. A record of the patent is on file at the Department. one who has any doubt respecting the grant ing of this patent can receive positive infor mation by writing to the Commissioner. have, in my hand, at this time, one of Jen nings' gauze tubes probably a dozen years old. There are many of them in existence in Bos. ton at the present time. In respect to burning fluid, I wish to say that I have not, and never have had, any interest whatever in the manufacture or sale of the article.

Jas. R. Nichols.
Haverhill, Mass
[See some remarks on this letter on page 189.-ED]

The Tunnelling Machine.

Messrs. Editors-I perceive in your paper of the 5th inst. a paragraph, that, trom a similarity of phraseology, seems to have been copied from a paper in this city. It announces with much plausibility that "the Hoosic Tunnelling Machine has proved a failure.? To enable youto see how much truth there is in that assertion, I wish to quote the very lan guage used by one of the most distinguished engineers of Western New York, in a conversation between himself and one of our city lawyers of high distinction; in answering the question," what is your opinion of the machine ?" he said, "I have seen the machine
operate and have examined it well: it is my deliberate opinion it will cut out more rock
in a day than can be removed by any mens
known to me." If that can be called a failure, what must it be capable of doing to entitle it to the appellation of a successful machine? As I am a constant reader of the "Sclentific American," such an expression of opinion on its page must, of course be somewhat annoying to me, as I claim to be the inventor of said machine, and have ever entertained the highest respect for the candor as well as the scientific character of your paper. I take the liberty of sending you an article on the doings of the machine by an eye-witness, who has honestly given the dark as well as the bright side of the matter It you have not seen this before, it may afford some additional light on the subject, and I cannot yet believe you are one of those who prefer darkness to ight.

Boston, Feb. 9, 1853

[The article reterred to by Mr. Wilson ap peared in the " Boston Transcript" of the "th nst., which confirms the opinion expressed by he engineer mentioned above. We enter tain something of a dread to notice anything that appears in some papers, as news, about inventors, for the very reason that nine time out of ten it is incorrect-either walfully o by mistake.

Basket Willows.
I have lately seen in several papers, articles on the basket willow, and in your last paper you give the amount paid for the foreign article. There is perhaps not a place in the country where the willow could be cultivated to as good advantage as on our alluvial meadows along the Connecticut river. It grows here spontaneous of all sizes and sorts from the fine seedling to the coarse, which is just fit for hampers. There is no attention paid to it here, except to clear it out of the land, which is a work of much labor. I have seen the finest work made frem it, of all kinds, from the most beautifal fancy baskets, to the largest and best willow cradles. There is a celebrated basket maker here, who makes all his work trom those willows; he has been all over Europe, and he has repeatedly told me that there is no place where he has ever been, where willows grow so fine and good as here. His prepared willows have often been exhibited at our fairs, and as far as I could judge, were of very superior quality. Any quantity can be gathered in our mea $\begin{array}{lll}\text { dows. } & \text { Yours, } & \text { W. Bi } \\ \text { Hartford, Conn., } & \text { Feb. 14th } 1853 .\end{array}$

Labor Law in thode I land.

The Senate of Rhode Island have passed a bill regulating the employment of minors in factories. The act provides that children under twelve years shall not be employed in any manufacturing establishment in that State and children between twelve and fifteen shall not be employed more than eleven hours in any one day, nor more than nine months in any one year, and these children must attend echool at least three months in the year. The bill provides that ten hours shall constitute a day's work.

Sperm 01.
The New Bedford, Mass., "Standard" has the following:-"We understand that $\$ 1,30$ per gallon has been refused for sperm oil during the past week. The last sales that have come to our knowledge were made at $\$ i, 28$. The quantity in the market is extremely small. The vessels which are to arrive here within the next tew weeks will make profita. ble voyages for the owners."

United States Surves

The United States Survey in Califomia is apidly progressing, the base line being already completed seventy miles. It will probably touch the sea coast some four miles north of Los A,net s. Mr. Gray is follow. ing Col. Washington, and is surveying a range of townships.

The French Navy.
No less than twenty ships of the line are now building in the French dock-yards, and for the greater number of them screws have been ordered. In addition to these there are eighteen frigates and fitteen other vessels of different classes building, which are to be all
propelled with screws.

