THE ACCIDENT TO THE BROOKLYN BRIDGE. Excessive loading of the central span of the Brookly Bridge, due to a blockade on the roadway, assisted pos sibly by extreme expansion due to the heat, caused, on the evening of July 29, a buckling of the botton chords of the four inside stiffening trusses. The accident occurred in the main span in the neighborhood of the point marked B in the accompanying sketch diagram, or about four hundred feet from the Brook lyn tower. A similar buckling is evident at the cor responding point on the New York side.

The main features of the construction of the bridge are as follows: The floor is suspended from four 15 -inch wire cables and stiffened against distortion under moving loads by six trusses. Two of these, 12 feet in depth, are placed on the extreme outside of the bridge Next to them come the road ways, and inside the road ways are two cable roads, each of which runs between a pair of 17 -foot stiffening trusses. A footway is car ried between the cable roads above the center line of the bridge. These six trusses are not continuous, but are all cut and provided with slip joints at three differ ent points in the bridge. One set of joints occurs in the center of each 900 -foot shore span, and there is another set at the center of the inain 1,595 -foot span The shore ends of the trusses rest upon the anchorages, and where the trusses pass through the main towers they are securely anchored to the ma sonry. The movement due to expansion in the trusses thus takes place from the shore anchorages outward and from the main towers toward the center of each span.

In addition to stiffening the floor by these trusses, Mr: Roebling, following a common practice of his day (since discarded), inserted in the bridge a large number of "land stays," $A A$, which are attached to the bot tom chord of the trusses and tie them back to the top of the towers, where the upper ends of the stays are rigidly fastened. These were introduced for the pur pose of further stiffening the floor and preventing de formation due to unequal loading. That they do pre vent deformation is undoubtedly true, and not only so but it is probable that they carry the greater part, if not all, of any moving load that comes upon that part of the bridge to which they are attached, and this, we think, is evident from the following considerations The main cable, being capable of deflection under a moving load, and the land stays being tied to the towers, it follows that a moving load at any part of the bridge to which the land stays, A, are attached,
say, for instance, at B, will exert a pull, not in the vertical suspender that runs up to the cable, but in the diagonal land stay that runs up direct to the top of the tower. For it is a well understood fact among bridge engineers that the stresses due to a given load on a bridge or other framed structure will always find their way to the abutment or pier by the most direct route, especially if the direct course be the most rigid. Even if the effect of the load at B were disposed (so to speak) to exert itself by way of the vertical suspender and the main cable, the cable would instantly begin to deflect and would throw the load entirely upon the non-deflecting land stay. What is true of one stay is true of all ; and if it were possible to cut all the suspenders and land stays and insert a dynamometer in each one, it would be found, we think, that practically the whole stress of a moving load, whether it was a train or a string of trolley cars, was reaching the piers by way of the diagonal land stays.
Now if the bottom chords of the stiffening trusses, to which, as we have seen, the land stays are attached, were continuous, the effect would be to produce a ten sion in them, the land stays and chords forming a kind of secondary suspension system between the towers. But as the trusses are cut at the center and fixed at the towers, it follows that the pull of the stays compresses that portion of the chords which lies be tween the stays and the towers. This compression in creases toward the towers, where the combined com pression due to the pull of all the land stays over a distance of 500 feet has to be resisted.
It is highly improbable that provision was made for taking the compression due to the whole live load on $\overline{\mathrm{n}} 00$ feet of the span ; it is more likely that the land stays, like the stiffening trusses, were treated as subordinate features in the bridge, intended to produce a more even distribution of the load upon the main cables. That this is the case is evident from the very light sections of the bottom chords of the trusses which, although they have been strengthened toward the towers, have not been reinforced in anything like the degree that the compressive strains due to the pull of the land stays would call for
There is no question that the Brooklyn Bridge i
designed to do. Since it was first opened there have been added two extra tracks for the cable cars, two lines of feeder rail for the electrical equipment of the cable road, two extra cables, two tracks of 90 pound rail for the trolley cars, two lines of brack ets of unusually heavy design for carrying the over head trolley wires, a line of heavy, 8 -inch, cast iron pipe for the pneumatic postal delivery, and, most se rious addition of all, a line of trolley cars, many of them modern two-truck cars of extra length and weight. All thisconstitutes a large though not a dan gerous increment in the dead and live loads over that for which the bridge was designed. While the increased loading does not materially encroach on the "factor of safety" (to use a good old term, which bridge engi neers are inclined to discard), it was certain that, i there was a weak point in the construction, the addi ional weight would find it out.
The board of experts who investigated the question perinitting trolley cars to run on the bridge stated that it would be safe for them to do so provided that a clear space of 102 feet was maintained between cars and the speed did not exceed 7 miles an hour. These wo limitations have been steadily ignored. The speed is frequently nearer 12 than 7 miles, and we have often een the cars strung out across the bridge or bunched in sections of it with less than a car's length intervening between them. This crowding invariably occurs when there is a congestion at either end of the bridge or when any breakdown or hindrance occurs on the bridge itself.
On the occasion of the Friday evening accident, a allen horse on the roadiway occasioned a blockade in which the cars becane closely bunched. It happened to be an exceptionally hot day, and there is evidence hat the ends of the trusses at the crown of the bridge may have been in contact. If this did occur, the trusses being fixed at the towers formed a very flat arch, and an additional compression would thereby The buckling is ords
The buckling is not an indication of weakness in the
bridge proper, the trusses merely serving to preserv

diagram showing tye arrangement of trusses and land stays on the brooklyn bridge

the true curve of the roadway by distributing a rolling oad over a considerable length of the main cables The occurrence is of great interest however as showing the action of the diagonal land stays under a live load. In the new East River Bridge, now under contruction, these stays are omitted, and the desired end is secured by making the stiffening trusses of grea depth and strength.

Shiploads of Brimstone

Alfred S. Malcomson has published an interestin tatistical table in which the world's consumption of brinstone is shown for seven years, says The New York Tribune. This commercial commodity is of great mportance in many branches of manufacture, but the fact is not generally known in business circles that 118,137 tons came to the United States from Sicily in 1897, and that the yearbefore the importation was even larger.
This commodity comes exclusively from Sicily, and o a great extent from the port of Palerino. It is shipped in bulk like coal, and looks, in its raw condiion, like pieces of broken stone about the size of thos which are used on macadan roads. It is a dull gray and from that to a bright yellow, according to its quality; the higher the grade, the yellower the stone It is-handled by the large importers in its crude form only, and these dispose of it to the manufacturers, by whom it is subjected to processes which eliminate th dross and bring to the surface its valuable properties It is used by the manufacturers of fertilizer materials and sulphuric acid, and large quantities are consumed by the manufacturers of wood pulp and paper.
The brimstone goes in great quantities also to the sulphur refiners, and after it becomes sulphur it plays an important part in the manufacture of vulcanized rubber. The addition of sulphur to plastic rubber vulcanizing the mass between two tin sheets as an ex periment, gave to the world the valuable commodity known as hard rubber; and no substitute has yet been found for the yellow dust in the process.
The brimstone statistics show that the United State receives inore of the material than any other country
For the same time that 118,137 tons reached the port
of New York, Baltimore, Philadelphia, Charleaton

Boston, Wilmington, and Norfolk, the following exports were made from Sicily to other parts of the world :

The wine growing districts of Europe use large quan tities of the material to destroy the insects which attack the vines, and, although many substitutes are em ployed, the most careful growers never abandon lr.m tone for that purpose
The supply in Sicily ready for transportation is arger now than it has ever been before, there being no less than 240,367 tons in storage.

Experiments Regarding the "Setting" of Plaster
J. A. Belcher reports (Treatment) the results of ex periments undertaken to determine the effect of vari ous agents on the "setting" of plaster of Paris : "Two drachins of plaster, mixed with one drachm of a five per cent solution of sodium chloride, hardened in two minutes. Mixed with one drachin of a five per cen solution of sugar, it hardened in three minutes and a half. Mixed with one drachm of a one per cent sodiun chloride solution, it hardened in five minutes. Mixed with one drachin of an 0.5 per cent sodium chloride solution, it hardened in five minutes. Mixed with one drachin of a five per cent calciun chloride so lution, it hardened in six minutes and a half. Mixed with one drachin of tap water, it hardened in nin ninutes. Mixed with one drachm of distilled water, it hardened in nine ininutes. Mixed with one drachm of saturated solution of sodium chloride, it hardened i eighteen minutes. Mixe with one drachm of a fiv per cent solution of gly cerin in distilled water, it hardened in nineteen min utes. Mixed with one drachin of a five per cent solution of white of egg in distilled water, it hardened in twenty minutes. Mixed with one drachin of a ten per cent solution of white of egg in distilled water, i hardened in twenty-fiv minutes. Mixed with on drachin of a ten per cent
solution of glycerin in distilled water it hardened in thirty-five minutes. Mixed with one drachm of a wenty-five per cent solution of glycerin in distilled water, it hardened in sixty minutes.
These figures tell, says Mr. Belcher, their own tale and show that where it is of importance to make plas ter of Paris set rapidly it should be mixed with a five per cent solution of common salt, and this may be made roughly by adding a tablespoonful of salt to a pintof water.

An Ancient Hospital.

At Baden, near Zurich, Switzerland, in connection with recent excavations at Windisch, the Roman Vin donissa, an ancient military hospital has been discov ered. It has fourteen rooms, which appear to have been well supplied with medical, surgical, and phar maceutical apparatus, including probes, tubes, forceps cauterizing implements, and even safety pins; medicin spoons of bone, silver measuring vessels, jars and pots for ointments, etc. Some coins were also found, those of silver being of the reign of Vespasian and Hadrian those of copper bearing the effigy of Claudius, Nero Domitian.
At Vindonissa, two great Roman military roads meet -one leading from the great St. Bernard along Lake Leman and then by A venticum and Vindonissa to the Roman stations on the Rhine; the other from Italy to Lake Constance by the Rhætian Alps, the present can ton of Winterthur, Baden, and Windisch. This last point was the station of the seventh and eighth legions.

Artificial Albumen.

A cable dispatch to The New York Sun says that Dr. Leo Lillienfeld, of Vienna, has demonstrated to the Chemical Congress in session in that city the discovery of the method of producing artificial albumen which is absolutely identical to natural albumen, which hither to has been believed could be produced only by chemi cal means. Dr. Lillienfeld calls the product " pepton." At present no further details are obtainable, so it is in possible to say whether or not the process is a practica one from a commercial point of view.

