of large bodies of troops, which has necessitated, with the hurried organization of the volunteer service, rethe hurried organization of the volunteer service, re-
taining the old regimental medical staff; but, with the taining the old regimental medical staff; but, with the
present availability of Red Cross aid; it is believed most of the defects inherent thereto will be obviated.
The United States army ambulance is a model in its way, consisting of a body 48×90 inches, protected by a canopy top and movable leather curtains, mounted on four wheels by platform springs. With the seats in, it carries eight persons; with seats stowed, it admits two litters, side by side, the handles of which rest on and are secured to brackets; or one litter can be entered, and yet space reserved for four persons in sitting posture. Lockers at the sides and under the box seat afford storage for supplies and the appliances essential to "first aid," while beneath the box are two water tanks. Formerly a two-wheeled ambulance also received official sanction, of the same capacity as regards litters, but admitting of but four passengers in sitting posture. For the campaign in Cubs it is under stood mule litters have been provided for use in such localities as cannot be reached by wheeled vehicles, and the French cacolet-two chairs, resting pannier fashion on a mule's back, with a hooded shelter-has been advised.
The Red Cross ambulance, as recently adopted, differs slightly from that of the United Statesarmy. Constructed in much the same way, it admits of a second pair of stretchers being inserted half way between the first and the canopy top : and the water tanks, beneath the driver's seat, are arranged to be surrounded by ice : the top and curtains, moreover, are of canvas instead of leather ; but leather padded litters replace the canvas stretchers of the ariny department.
No hard and fast rules can obtain, however, to any ambulance service. Both the character of the vehicles and the scope of their usefulness are necessarily modified by conditions and surroundings, and to meet the demands of military operations. Undoubtedly the present conflict will lead to many changes in medical military service and in medical organization, and such may entail a material modification of the ambulance and field hospital system. One of the great steps in advance, dictated by the exigencies of the present war, is the establishment of the hospital ships, such as the government steamer "Solace" and the Red Cross steamers "Relief" and "Red Cross."
One notable feature of Red Cross work brought out by the present war is the number of societies that have sprung into existence as auxiliaries. Every city and almost every town or village of considerable size possesses at least a "branch." Some of these, too, have greatly lightened the work of the Central Committee, by taking upon themselves certain lines of work. One of the greatest drawbacks, usually, to work of this character is the miscellaneous assortment of supplies forwarded, the useful often being neglected for the æsthetic, the amount in one line being greatly in excess of demand on one hand, on another equally deficient. Thus, one organization devotes all its energies to supplying a hospital launch, another to the procuring of hospital clothing, another to the forwarding of hospital delicacies, another to the furnishing ambulances, etc. Consequently, the supplies that reach the wounded and the hospitals are suitable to, and in consonance with, the demand. Far from being a charity, miscellaneous in its garnerings and applications, the Red Cross h as assumed the character of a self imposed, cheerful, definite taxation.

Waterproof

Mix glue water with inc-white, chalk or zinc-white, chatk or
barium sulphate and paint the paper with this liquid. As soon as dry, apply anoth er layer of soda wa terglass with a little magnesia, and final ly expose the paper for some days to a for some days to a temperature of $25^{\circ} \mathrm{C}$.
The sheets thus prepared may remain under water or be

NEW METHOD OF CONCENTRATING GOLD BY THE DRY PROCESS.
moreover, can be packed in a case carried on the bicycle. A rider is thus enabled to use his wheel not only on ordinary roads, but also on railway tracks.
The attachment is the invention of Henry J. Otto and Arthur E. Wielsch, of Butte, Montana.

RECOVERY OF GOLD FROM LOW GRADE ORES.

In the southern part of California mining is a fa miliar topic of the day among all classes. The wealthy are turning to this industry as a means of in creasing their revenues, and the poor are engaging in it with the hope of becoming rich. The study of mineralogy, with the technicalities of mining is the most popular of the many branches taken up by the Los Angeles Y. M. C. A. educational course this season. It is the first class of the kind conducted by this organization.

A large proportion of the 3,800 mines in Southern California, which yielded $\$ 1,360,000$ in gold last year, are on the great desert lying just west o the Colorado River. The region, as large as several Eastern States put together, is full of re sources that are yet unknown to the general pub lic. The most promising mining district in Cali fornia-the Rand, discovered two years ago-is in the heart of this desert, and already the towns of Randsburg and Johannesburg are thriving and comparatively comfortable places. Life here is infinitely preferable to the conditions on the Klondike, and if gold nuggets are not picked up so freely as in the Arctic region, neither is the search for them so hazardous or costly.
Scarcity of water and fuel, with the cost of trans porting ore to mills and smelters remote from the mines, are drawbacks on the desert. More water will ultimately be discovered and developed; meanwhile a dry process of treating ores would be of great value to this section and to all other arid mineral territo ries. Especially is some method needed by means of which low grade quartz may be made to yield a percentage of concentrates which will be profitable in bulk.
Such a process has recently been successfully tested in the Rand district, with new concentrating machines invented by an Eastern man, who has been in the habit of spending his winters in California, and wa advised, when in Los Angeles last winter, to turn his attention to something which would benefit the min ing interests of this section. He saw the difficulty chiefly resulting from a lack of water, of handling the vast bodies of low grade ore which are found on the desert, and began to experiment with the dry concen trating process.
After the machines were perfected, they were viewed with approvai by numerous mining men; and, in Sep tember, a plant was erected at Johannesburg, on th Alameda mine, where tests were recently made which Alameda mine, where
Rock which had been cast aside, on the Alameda dump, as unprofitable to ship to a stamp mill, wa put through a rotary crusher and reduced to what i known as "pulp" in mining parlance. It was then elevated by a conveyor to an inclined screen located in the second story of the mill, directly above the concen trators.
The screen is octa gon in cross section covered with fin wire, and divided into four inesh space running from 100 to 40. It receives the pulp at the upper end, and as it slowly revolves, the crushed rock is thrown from one flat surface to another, gradually reaching the lowe end, where all that passes over is return ed to the mill to be ground again. The screened pulp is sup plied to the concen trators in the room below through pipes A, which lead down to a hopper, F, on the top of each machine. Froin the hopper the pulp falls upon an endless tra veling screen, the up per half of which is inclosed in a rectan gular box as shown in the illustration Here it encounter two currents of air which are delivered by a rubber tube, E, and are admitted
at opposite ends of the box, one near the point marked H and the other at the lower end of the ma chine. The currents meet each other at right angles and the resultant wave-like action of the air separates the gold and the heavier portions of the pulp from the dust and lighter matter. The former settle on the slats of the screen and are carried around to the underside, where they fall off by gravity, or are detached by a light stroke on the screen arranged to fall automatically about twenty times a minute, as the screen slowly revolves. They are run off by spout, C , into a box. and form the concentrates. The rejections or tailings are delivered through the spout, D, at the rear of the machine, and fall upon an endless belt which carries them out to the dump.
The dust, which contains some gold in an extremely fine state of subdivision, is carried up by the pipes, B, B, to a larger transverse pipe which leads into a sepa rate building of perfectly close construction. Here the dust settles and is subsequently subjected to a spe cial treatment for recovering the fine gold which it contains.
Each concentrator has a capacity of ten tons a day They are operated by Foos gasoline engines, a machine requiring one-eighth of a horse power. All the bearings are boxed and dustproof, and the parts are so well adjusted that but little friction or noise is created by their operation.

The best result was obtained from ore which assayed only $\$ 1.25$ a ton in gold
It yielded concentrates to the value of $\$ 879.17$ a ton, a second test corro
tration of 700 to 1
Another lot, assaying $\$ 1.90$ per ton, produced con Antrates which would amount to $\$ 87.80$ a ton
In this condensed form, the gold can be shipped away for final treatment without difficulty, and many mines which do not rank high enough to pay when the ore is passed through a stamp mill can be worked by this process.

Artesian Irrigation

The results of irrigation the past season in South Dakota have been very gratifying, and demonstrate that the semi-arid portions of the State by this means can be made as productive as any part of the North west says The Chicago Record. There are two distinct me thods of irrigation in South Dakota-canals which re ceive their supplies of water from the spring freshets and from the overflow of rivers and canals, whose water is obtained from artesian wells.
The artesian basin underlies nearly the whole of that portion of South Dakota lying east of the Missouri River, and hundreds of artesian wells have been sunk throughout this vast region. In the southern part of eastern South Dakota there are numerous 2 -inch and 3 -inch artesian wells, which were sunk at nomina cost. Many of them are from 100 to 400 feet in depth From 100 to 400 feet in the southern part of the State the depth of the artesian basin varies to 1,000 or 1,200 in the northern portion. Some of the 2 -inch and 3 -inch wells in Hutchinson and other counties in that section cost less than $\$ 100$, and furnish sufficient water to irri gate large tracts of land.
Further north it is necessary to go deeper to reach the artesian basin, and in consequence the wells are of greater diameter, varying from four to eight inches. Brule county has thirty-five such wells, whose com bined flow aggregates many millions of gallons in twenty-four hours. A number of wells were sunk by the townships to supply water for stock, and canno be used for irrigating purposes without the unanimous consent of the taxpayers of each township. The surplus of water is carried away in ditches and affords an abundance of water for cattle, sheep, horses, and other farm animals. These ditches of running water, aggre gating several hundred miles in length, extend to practically all parts of the county. Other wells are used for power purposes, while still others were sunk or irrigating purposes only.
This season about 10,000 acres were irrigated in the county. Among the notable irrigated farms in Brule county are the Carpenter farm, belonging to W. O. Carpenter, a Chicago capitalist, and containing more than two sections of land, and the J. M. Greene farm of 640 acres. The owners are well satisfied with their success thus far, and next season will engage in irrigation on a still larger scale. The pioneer irrigated farm in eastern South Dakota is the Hunter-Salzer farm which has been raised to a high state of perfection.
The farm contains 800 acres of slightly rolling prairie land. The artesian well has an 8 -inch pipe down to sand rock. There the diameter was reduced, and a 6 -inch pipe reaches to the artesian basin, 1,000 feet below the surface. The normal flow of the well is 1,200 gallons a minute, sufficient to irrigate a tract of 1,200 acres. As a matter of precaution, the well is not permitted to.flow its full capacity, being reduced to a flow of 780 gallons a minute. The well was put down six years ago, and cost $\$ 3,500$.
cost not more than $\$ 3,000$.
Adjacent to the well is a circular reservoir covering
five acres. It is constructed on the highest point of the farm, at an elevation of $21 / 2$ feet. Three feet to the mile is found to be a sufficient fall for irrigating. The banks of the reservoir are formed by earth, thrown to a height of $51 / 2$ feet-- 22 feet wide at the bottom and 5 feet wide at the top. The inside of the wall thus formed has a slope of 2 feet to 1 . The inside of the reservoir is riprapped with stone. The original cost of the reservoir, all work by the day, was $\$ 650$. The cost of riprapping was about $\$ 600$ in addition, as the stone had to be shipped in. Where the stone can be obtained on the farm or on adjoining land, an expendi ture of $\$ 300$ would suffice.
The openings from the reservoir into the ditches ar two feet square. Each of the ditches follows ridge or slight elevations and the fields on either hand can flooded without difficulty. The ditches are 6 or 7 feet wide and 2 feet deep. When irrigation was in itsinfancy in this State, it was thought best to keep the ditche full of water all the time, but experiments on the various farms have proved this to be not only unneces sary, but detrimental to crops, the seepage furnishing too much water. After the adjoining land is irrigated the water in the ditches must be kept below the leve of the field.
The mode of irrigating which experience has de monstrated to be the best is to divide a field by throw ing up lateral ridges. A break is then made in the main ditch opposite the land to be flooded, and suffi cient water is permitted to run over the tract to thoroughly soak it. Then the break in the ditch is repaired and another made opposite the land embraced within the next set of lateral ridges, and so on. Thes ridges are low enough not to interfere in the least with the proper cultivation of the land. The principa thing is volume of water, and this is the chief advan tage of the reservoir system
One of the ordinary artesian wells, such as can b struck anywhere in the central portion of the State east of the Missouri River, will fill a five-acre reservoir in eight days. During the irrigating season the reser voir would be emptied in about thirty-six hours. Still the average well would irrigate from 1,000 to 1,200 cres, because it is customary to thoroughly soak the land in the fall, and when it is on
very little water to keep it moist.
The ditches, when all the work is hired, cost about 35 cents a rod, but when once constructed it requires very little expense to keep them in good condition. On the farms under irrigation there are usually four of these ditches to each quarter section of land. The cost of the ditches would be about $\$ 224$ for a quarte farmer does the work himself, is very slight. Small ditches are used only when an odd-shaped piece is to be irrigated, or when the tract is detached or cut up by "draws" or lake beds. The small ditches are easily Whe, being a matter of plowing two straight furrows When the soil is once saturated to the blue clay moisture will come to the surface fast enough to fur nish plant life with all necessary sap. Too much water is fully as disastrous as none, and extreme care is taken not to injure land by wetting it too much. By amiliar with the topography of his fields. can irrigat twenty acres in five or six hours. If the ditches have to cross hollows, the low places are graded up and the ater is carried along the top.
The benefits of irrigation are shown by the fact hat in the central part of the State, wheat, without rrigation, yielded an average of ten bushels to the acre, while on irrigated fields it yielded from twenty to thirty bushels an acre. In the western part of the State, notably in Fall River county, where irrigation is carried on by means of canals with rivers as their source of supply, wheat averaged about twenty bushels an acre, while without irrigation it probably would not have yielded more than five bushels to the acre. Other crops have yield in proportion, and next season will witnese a which will be irrigated.

Devices for Deep Submarine Operations.
Hitherto the capacity of a diving dress for resist ing the pressure of the superincumbent water has been the limit of man's activity beneath the surface of the ocean. This limit is about fifty yards, so that ships which have sunk in deeper water have had to lie unreclaimed with such treasure as they may have contained, because there existed no method by which a man could go to them. True, diving bells were available, but diwing bells, even when made of timber and steel, are crushed out of all recognition of their original shape when let down a greater depth than that in which they are intended to work. Only a little while ago one of these structures was sent down in the waters of Lake Michigan for experimental purposes; and, when brought up, it was found that the stee work was bent out of all relation to its former form. Previously some of the timber of which it was in part composed had been splintered and rose to the surface
a view, however, of resisting this pressure, some mahines have recently been constructed to aid the sub marine diver, and to enable him to go down to depths which he would not dare attempt in a diving dress, and could never expect to reach in a diving bell. Only a little while ago one of these structures was designed by M. Peatee del Pazzo, who has given his invention the name of the "Travailleur sous Marin," or "Sub marine Worker" It consists essentially of a huge sphere of cast iron. On the top of this is a hand rail, sphere of cast iron. On the top of this is a hand rail, allow the workers to enter the bell. It is covered with oilcloth three inches thick, to adequately resist the oilcloth three inches thick, to adequately resist th pressure, so that it cansink to a distance of about five
hundred and fifty yards, instead of the ninety which hundred and fifty yards, instead of the ninety which
has hitherto been the limit imposed on an ordinary diving bell. The inside of the "submarine worker, which, it need hardly be said, is absolutely airtight, is the room in which the men live, and it is hermetically closed by means of screws before it is lowered beneat the surface. In front of this sphere is placed a power ful lens, enabling the operators to view the surround ing water. This lens is lighted by means of an enor mous electric light stationed in iminediate proximit. to the bell and, like it, suspended from the ship above This machine can be moved or shifted from one place to another by means of three screws regulated by th rudder, just as a ship is steered on the surface o the water. Furthermore, it is furnished with shovels, pincers and steel hooks fixed to the outside. These are all manipulated by the men inside, who can thu grip or seize any object and take it to the surface, and an even grapple with wrecked ships or parts of them. It would, of course, be impossible forthem to attemp to work outside in these great depths, for the pressure of the water would crush them as flat as the traditional pancake.
In order that the people in the "submarine worker" may be able to communicate with the outside world, cable is attached to the bell. Along it run fine electric wires connected with a telephone, and this cable als serves to bring the bell to the surface when necessary If, however, the cable were to break, no serious conse quences would occur. The men inside the bell would neither die of asphyxiation after using up their supply of compressed air nor would the bell remain at th bottom of the ocean, or sink thither. All the me have to do would be to detach some bags of ballas with which the machine is furnished for the purpose of keeping it steady, when it would rise of its own ac ord to the surface.
Entirely different from this is the idea of a Swedish engineer. His apparatus consists of what may be described as a submarine telescope of gigantic porpor tions or a diving chimney-which latter is perhaps the better description, for it is a chimney which goes dow into the water instead of up into the air. The resem blance to the telescope is, however, readily appreciated when it is stated that the chimney is made up of pieces which fit into one another, exactly in the same wa as do the sections of a telescope, and it is lengthene in precisely that manner. Each section is about twenty feet long, and the largest, which is sunk to the reatest depth, has a diameter of fifteen feet. These sections diminish gradually upward until the smallest s only about half this diameter and to it is attached an inverted bell-shaped mouth, which forms the entrance into the long tube. It is made of the strongest aluminum bronze, and of such a thickness that it can withstand a pressure of four hundred pounds to the square inch. The bottom section, which is, naturally, closed, is supplied with windows all round the circunerence at intervals of about two feet, so that it offers opportunities for perfect examination of everything in the neighborhood on all sides. On each side of each window are attached rubber arms enabling the workmen within to fix grappling hooks and chains round about a sunken ship, for the chimney is designed especially for the purpose of enabling wrecks to be aised to the surface. Indeed, the passenger steamer "Soedra Scerige," which was sunk a couple of years ago in three hundred feet of water off the Swedish coast, has been recovered by the possibilities which the diving chimney has introduced, and she is now nce more sailing on the surface of the ocean, none the worse for her submersion.-Pearson's Magazine

The Hospital extols the virtues of hot oil as more efficient than boiled water in sterilizing instruments, especially syringes. Olive oil at a temperature of 320° to $356^{\circ} \mathrm{F}$. acts very quickly and with great power. To obtain complete sterilization of the instruments, it suffices to dip them for an instant into the hot oil, and in the case of syringes it is sufficient to fill them twice with oil at the temperature mentioned. The temperature of the heated oil may be determined by a thermometer, which certainly is the scientific way, but Prof. Wright, of the Netley Hospital, in England, suggests the very crude but rough and ready method of dropping a bread crumb into the oil, which becomes brown and crisp as soon as the required temperature is obtained.

Fluctuations in Rainfall

A correspondent, in a recent communication t Nature, pointed out that the statistics of rainfal which have been collected in various parts of England for many years past show that there is a regular recurrence of cold and wet periods every thirty-five or thirty six years, measuring from the centers of each period. The correspondent adds: "Curiously enough, otlier observations show the same rule to apply to many dis tant parts of the world as well. On the assumption that these fluctuations may be depended upon, the center of the next wet period should occur in the sec ond decade of the coming century, but in the immedi ate future we should have a preponderance of dry years for some years yet to follow."

The subject being called to the attention of Prof. Draper, who has charge of the meteorological observa tory in the Central Park Arsenal, he said he believed the statement made by Nature's correspondent to be at least approximately correct, and hazarded the guess that the correspondent is Mr. Symmons, who has charge of the British rain records, and receives result from 2,500 rain gages in the British Isles.

Prof. Draper produced records of the rainfall in New York from 1836 to 1886, and a chart which he had pre pared from them. This chart shows a well-defined wave, beginning in 1836 far below the mean rainfal and rising slowly (with one violent fluctuation) year by year until it crept above the mean line. It continued to rise for a number of years, and then began to fall going again below the mean line and remaining ther more than ten years. The violent fluctuation spoken of was one from a total rainfall in 1836 of 27.57 inchesthe lowest recorded-to one of 65.51 inches in 1837, the highest recorded.
Prof. Draper also has like charts of the rainfall at Washington, Philadelphia, and Providence, R. I., ex tending through a long period of years, which show results differing only in degree from those obtained in New York, and lead to the conclusion that the fluctuations vary with localities. He said that he had examined the French records for two hundred years and found only three decided fluctuations in that time.

The reason for these fluctuations in the rainfall Prof. Draper said, is not known to man.

The Temperatures of Animals.

A number of interesting observations on the temper atures of animals in relation to the temperature of the air or water in which they live are described by Mr. Alexander Sutherland in the latest volume published by the Royal Society of Victoria. It is well known that the temperature of the human body in health is 97° or 98° Fah., and this is the same within a degree both in winter and summer. The average body temperature of what are known as warm-blooded animals is a little higher than this, being 100° Fah., and except in constitutional disturbances, this does not vary more than three or four degrees at any time of the year. No mammal, indeed, seems in good health to be warmer than 104°; scarcely any descend lower than 98°. The warm-blooded animals are thus animals whose temperatures, whether the weather be hot or cold, are practically uniform. On the other hand, cold-blooded animals have no proper temperature of their own; they are warm in warm weather and cold in cold weather. A fish, a snake, a frog, or an insect, when at rest, is rarely more than two or three degrees warmer than the air or water in which three degrees warmer than th
it is living. Mr. Sutherland placed some lizards in cold water, which was then gradually heated, and he found that in all cases the lizards became warmer as the water was warmed and cooler as the water was cooled-in the water was conled-in other
words, they depended upon words, they depended upon external circumstances fo their heat. But this is not absolutely true, tor when an gry, cold-blooded animals, like human beings, become hotter than usual, even a fish rising several degrees above the temperature of the wate when it is exasperated. Un der normal conditions, how ver, fishes and reptiles have practically the same tempera ture as the medium in which they live; when it is warm, they become warm and active, and when it is cold they lose their bodily activity and be come torpid. The animals which are active in all weathers are those which are self-supporting as regards heat, and whose body temperatures vary very slightly. An interesting point brought out by Mr. Sutherland's observations of the temperatures of Australian animals is that the mammals which are classed lowest from considerations of body structure are not only of the lowest temperature, but also of the greatest range of
variability, being most affected by the temperature of variability, being most affected by
the air or water surrounding them.

the miracolous wineglasses.

by w. b. caule
As a rule, magicians are very generous fellows always ready to give their audiences something, such as coins and handkerchiefs, but just when one thinks

THE MIRACULOUS WINEGLASS

they have the gift safely in their grasp, it mesteriously vanishes. However, there are a few exceptions to this rule, one of whom is a very popular English performer.
This magician goes among the audience and bor rows a gentleman's handkerchief, and immediately produces from it a glass filled with sherry. This he offers to the ladies, then, shaking the handkerchief, he produces a second glass fall of port for the gentlemen, next one of ginger beer for the younger members, and one of milk for the very young, but there being present one or two teeto talers, he next produces a glass of water, and lastly a glass of stout for himself. All of these are pronounced by the audience to be excellent.
The glasses are of the small stem wineglass pat tern. On both sides of the
magician's coat, inside, of course, are large pockets and in each pocket is placed in a prearranged form three of the glasses. To prevent a possible spilling of their contents (and, as each glass is filled to the brim this would be very difficult), there is fastened over the mouth of each glass a thin soft rubber cap or cover as shown in the small engraving.
To produce the glass, the performer spreads the bor-

THE GLASS COVERED
WITH RUBBER.

THE MIRACULOUS WINEGLASS.

ver his breast in such a manner that one hand is concealed under it, and with this hand he reaches in he pocket and brings forth the proper glass, remov ing the rubber cover and leaving it in the pocket This move is repeated until all the glasses have been produced. After producing three of the glasses with say the left hand, he must spread the handkerchief so as to cover the right hand, leaving the left one free
to manipulate the handkerchief, as it would be most awkward to try and produce the glasses from both sides of the coat with the same hand.
This trick is a most effective one, as the spectators cannot understand how it would be possible for the performer to conceal a glass filled to the brim, as these are, about his person.
After distributing the glasses, and offering an pology for his inability to treat all present, he preends to overhear a remark that his audience is not satisfied, and that many think they have been slighted. He states that he will endeavor to comply with the demands of his thirsty audience, and retires to fetch a bottle. Off the stage he removes his coat and places under his right arm a rubber bag filled with wine. To the bag is attached a rubber pine with a sinall metal point, which pipe he holds next to his right arm and replaces his coat, leaving the metal end just within the repla
cuff.

The bottle has a small hole in the side, near the bottom, of such a size as to fit the metal point on the rubber pipe. In rinsing the bottle the performer keeps one finger over the hole, thus preventing the audience discovering that the bottle differs from an ordinary one. In rinsing the bottle the outside has become wet, and in drying it with a cloth the performer places the metal point on the rubber pipe in the hole in the side of the bottle, thus making connections with the bag of wine. By holding the bottle well down toward the neck, and close to his wrist, he can venture among the audience without fear of detection.
By pressing the right arm against his side the bag is compressed, forcing the wine through the pipe into is compress.
the bottle.
The glasses are of special make and of very thick glass, making quite a bulky appearance, but of very limited capacity. An assistant carries a tray contail. ing one hundred of the glasses.

Material from Space.

Recent researches have gone far to render possible the assertion of Nordenskjold and others that a large portion of the earth's constituents may be of cosmic origin-that, in other words, in the course of ages the distant stars and other heavenly bodies may have contributed of their substance to thicken the crust of our world. For example, at various times and in various places there has been collected from the snow a black powder containing metallic iron, and in some instances cobalt and nickel, while on the "inland" ice which covers Greenland a peculiar mineral powder, uamed kryokonite mixed with grains of metallic iron, has been detected.
This dust consists of small, angular, double refract ing crystal fragments, without any mixture of particles of glass, and is, therefore, very different from the glass dust that is commonly ejected from volcanoes. From these and similar data Nordenskjold ventures on the assertion that not improbably, if this dust falls in an equal amount all over the globe-and though the snow enables it to be detected more easily than on earth, there is no reason for supposing that it does not-something like half a million tons drop from the celestial spaces in the course of a year. The shooting stars must discharge an immense quantity of those luminous par ticles. For hours at a time we see them falling; aul when we remember that this has been going on during unnumbered geological ages, it is not impossible to regard it as an important factor in the history of ou planet. In brief, it may be found that "a considerable quantity of the constituents of our sedimentary strata especially of those that have been deposited in the open sea far from land, are of cosmic origin, and will throw n. unexpected light on the origin of the fire hearths of the volcanoes and afford a simple explanation of the re markable resemblance which unmistakably exists between plutonic rocks and meteoric stones, namely, by showing that the principal material of the plutonic and volcanic rocks is of cosmic origin, and that the phenomena of heat which occur in these layers depend on chemical changes to which the cosmic sediment, after being covered by thick terrestrial formations, is sub jected."
Without quite homologating this idea, it is certain that meteoric or native iron is and has from the remotest ages been falling on the earth's surface from the immeasurably distant regions outside of our atmo sphere.-Our Earth and its Story.

There were in 1801 only twenty-one towns in Europe with a population of over a hundred thousand.

