A GREAT CALIFORNIA DAM

The largest concrete structure in the world, and the highest dam in the United States as well, is located Francisco, from which it is distant about twenty miles. the rock were cut out, leaving the hard rock undis- he The Crystal Springs dam is celebrated among engineers for its magnitude as wel as for the origina methods and prin ciples which are involved in its construction. It was determined to avoid the difficul ties met with in damsof ever much smaller di mensions, con structed on the monolith plan from the shrink age and cracking of the concrete and the engineer of the company, Mr. Yerman Schussler devised Shust latise a dam of large di mensions com
posed of individ ua! blocks, build ing each block separately, so as to give the block an opportunity to set and harden by themselves.
The site for a great artificial reservoir at this point could not

6.-General View of the Sweetwater Dam During Construction. have been surpassed. The lower terraces of the range|turbed, thus allowing the superstructure to dovetail|manner construction of the dam continued until of mountains which start from the Golden Gate and itself into the rock base. In order to insure that the finished to its present height. In all, 500 of these traverse San Mateo County from north to south here foundation should be absolutely watertight, a trench blocks were used. approach the lower bay of San Francisco, and at the 17 feet deep, 10 feet across at the top, and 5 feet wide For their construction, a framework of varying didam site the rocky walls of the canon, rising to a at the bottom, following the center line of the dam height of over 200 feet above the bed of the creek, meet from end to end, was hewed out of the rock base down within 700 feet, inclosing a valley of large dimensions to the absolutely watertight ledge below. The excathat spreads out in either direction for long distances, vation will be noticed in the hillside at each end of the and with the dam at its present height, 145 feet, forms dam, in illustrations 6 and 7 . This trench was then an artificial lake nearly nine miles in length. The filled with concrete and heavily rammed.
task, therefore, of this great structure is to restrain an \quad The bed rock foundation having been thus carefully enormous body of water, and to withstand, perpetually, prepared, the laying of the concrete blocks to form the a pressure of 130 ,000 tons against its face at its present beight.
The present height of the dam is $\mathbf{1 4 5}$ feet. At the base it is 176 feet thick. On the summit it is about 700 feet long and 40 feet thick. The plans contemplate an addition of 30 feet to its present height, making a total of 175 feet in extreme height with atole what of about 830 feet. The lake thus occasioned will contain 29,000 million gallons of water.
Fortunately, the geological forma. tion of the locality was favorable to securing a reliable foundation The rock is hard blue sandstone, extremely dense and compact, and entirely free from cracks or fissures. The site for the dam was scientifically exploited, and hundreds of borings, some to a

7.-Staging and Platforms Used in Preparing and Mixing the Ooncrete and Wheeling it to the Dam. CONSTRUCTION OF THE CRYBTAL BPRINGS DAM, CALIFORNIA. set and hardened the spaces beween them, which represent the white squares on the chess board, were filled in by the second series of blocks. The niches and projections in the blocks of the first ier fitted closely into the secondary blocks (see Fig. 2), breaking joints with them so perfectly that not only were the blocks tied to gether in a most substantial manner, but watertightbroken joints were made joints were made eries of the two The primary tier of the next stra tum of blocks was then commenced, these primary blocks being so placed that their centers came ap. proximately over the junction of he junction o our of the forme ensions and irregular in outhne, according to the lace on the dam requiren, was built up at its prope place on the dam. Concrete was gradually dumped was thrown in it was carefully spread out and rammed down with heavy iron rammers into a compact mass The block was allowed to remain in the framework for The block was allowed to remain in the framework for
several days, or until the moisture had evaporated, by become as har as the rock upon which it stood. This method wa followed with each block. No two blocks were identical in shape or size, each inter locking with it neighbors and contributing com bined support to all of the others The device of building this dam with a large num ber of separate blocks, instead of as one great mas of concrete, is the distinguishing feature of its con struction, and pro vides the elasti city which secures it from damage in the event o shrinkage.

The sand used in mixing with the concrete was procured at North Beach, San Fran cisco. Rock of the required den sity and streng 1 was procured in unlimited quanti ties, only a mile away from the depth of 100 feet, were driven into the rocky sides of the cañon. All re-|superstructure began. The bed rock was first cleaned dam, from a quarry cowned by the company. Me quired conditions were found at the site selected. Pre- from all debris and dirt and thoroughly hosed. These chanical devices for making the concrete and trans paratory to laying the foundation the whole bottom and sides of the canon were cleared of all soil and vegetation until the bed rock was uncovered. The entire
blocks (see Plate 1) averaged 40 feet in length, 30 feet in width, and 8 feet in thickness, and each was a day's work in itself. Two such blocks were built daily.

A great framework consisting of three platforms was
first erected (see Figs. 6 and 7.) On the first platform the great rock-breaker was placed, which reduced the rock to a bout the size of a walnut. On the platform below was stored the sand and cement. The broken rock, after being washed, was dumped through a chute into a large iron drum holding six barrels or about twenty-two cubic feet. A car holding two barrels of sand and one barrel of cement was brought forward, and in this proportion the whole was dumped through a chute into a mixer placed on the platform below, water for the concrete being fed in proper quan tities through a nozzle in the axle of the mixer.
Power for operations was supplied by three detached engines situated on the lowest platform. After the sand, rock, and cement were thoroughly mixed, the material was dropped into cars running upon a trestle and carried over the dam where the last block was being formed, each car load being dumped through a large pipe to a platform, and thence by wheelbarrow (see Plate 7) into the frame on the dam site where the block was to be stationed. This plan was followed successively until the dam was completed. The capacity of the concrete machines was 450 barrels, or about 10,000 cubic feet, daily. The amount of material consumed gives some indication of the great size of the work. It included 205,000 barrels of the best Portland cement, 410,000 barrels of sand, and $1,230,000$ barrels of rock.

The front slope of the dam is 1 foot horizontal to 4 feet vertical ; the rear slope commences 1 foot vertical to 1 foot horizontal, ending in the upper 60 feet with a slope 2 feet vertical to 1 foot horizontal, the two rear slopes being connected by a curve of about 300 feet radius. The convex side of the dam, which is up stream, is curved with a radius of 637 feet.

Enos Brown.
GUNS RECOVERED FROM THE SPANISH CRUISERS There has recently heen brought up from Cuba, and unloaded at the Washington navy yard, a considerable amount of material which was recovered by the wrecking companies from the wrecks of Cervera's fleet. It is a miscellaneous collection, of guns, gun shields, guns, gun shields projectiles, chains ship stores, and gen eral fittings.
The most conspicuous part of the salvage is the breechloading rifles, from the secondary batteries of the Spanish cruisers, and the shields and mount which accompany them.
Our illustrations arefrom photo graphs taken at the Washington navy yard, soon after the material had been unloaded from the United States collier "Leonidas" and it Le be seen that th will be seen that the trophies carry upon them the unmistak able mark of the two agents, shell fire and conflagration, which

1.-A $51 / 2$-INCH GUN FROM THE "OQUENDO."

Shieki penetrated by shell at Santiago. Saddle of 13-inch gun for the "Kearsarge " seen to the right.
brought about the speedy destruction of the Spanish fleet.
Theguns shown in our illustrations have been recovered from one or other of the three sister ships, "Vizcaya," "Maria Teresa," and "Oquendo." These vessels carried as their main armament two 11inch rifles and ten $51 / 2$-inch breech loading rifles. The 11-inch guns were in two turrets, one forward, one aft, while the 51/2-inch guns were arranged in broadside, amidslips on the main deck In the case deck. In the case

3.-SPANISH GUNS, WITH THEIR MOUNTS AND SHIELDS, AT THE WASHINGTON NAVY YARD, TAKEN FROM THE spanish wrecks at santiago.
per and lower carriage, the turn-table, and the rack, without the casing, of one of these mounts, are shown in the lower right-hand corner of cut No. 1.
The gun is traversed to right or left by means of the hand wheel to the left of the breech, which, by means of a worm, worm-wheel, vertical shaft, and a pinion engaging the circular rack, rotates the carriage about the rack, the latter, of course, being bolted to the stationary foundation plate. The elevation and depression of the gun is accomplished through another hand wheel which acts on a pinion and a circular ver tical rack attached to the gun.
Two of the circular racks are shown in Fig. 3, resting upon a dismounted Spanish gun.
All of the guns were provided with shields of compar atively light construction, the thickness, even at the ver tical front end, not being over one inch. They are carried on the bottom carriage, to which they are attached by bolting at the front end, and by means of a square frame of angle-iron, which passes round the interior of the shield and extends inwardly to meet the carriage, to which it is bolted. These shields are of sufficien size and thickness to protect the gun crew from ma chine bullets at close quarters, and from one and six pounders at long range; but, for protection against any thing above a machine gun at close range, or above a sixpounder at any fighting range, these light shields are worse than useless. They cannot keep out the shells, and they merely serve to afford sufficient shock to burst a shell. which, but for the shield, might pass harmlessly by without striking any of the gan crew. In any case, it is not likely that more than one mem ber of the detachment would be struck, whereas a shell that burst in passing through the shield, migh calibers. The total weight of the gun is $4 \cdot 1$ tons, and kill every man at the gun.
ora pattern, of the year $18\llcorner 3$. They have a total length of about 17 feet, the length of the bote being 35
it fires an armor-piercing projectile weighing 86 pounds and a common shell weighing 75 pounds. For the armor-piercing projectile the firing charge is $44 \cdot 1$ pounds of powder, which gives the shell a muzzle veocity of 2,001 feet per second, equivalent to a muzzle energy of 2,386 foottons. At the muzzle the penetration would be about 14 inches of iron The mounting is seen ery clearly in the illusration (Fig. 2), showing the breech and inside of the shield of one of these guns of the slow-fire pattern. The gun is trunnioned in a top carriage, which travels during the recoil upon the slides of the lower carriage. The trunnions are formed on the gun, as is usual in all

2.-VIEW showing breech and mounting of a $5 \frac{1}{2}$-INCH GuN. The third shield (from the "Vizcaya") shows effect of shell passing through from the inside the gun, as is usual in all slow-fire weapons, and they can be seen on any of the All the guns baar evidence of the attempt of the dismounted guns shown in our various engravings. The Spaniards to render the guns valueless before they fell lower carriage rotates upon a circular bed of rollers. into the enemy's hands. It will be noticed that t !. below which, encircling the foundation plate of the breech-blocks are all missing. They were unhinged mount, is a circular verticalrack, the rollers and rackbe- and thrown into the sea before the surrender. If our ing protected from projectiles by a circular casing which government wished to use the guns, however. it would is bolted to the carriage and rotates with it. The upbe easy to replace the blocks, as the Navy Departmen
has drawings of them on file.
It is not likely that any of these gruns will be put to active use, for it would entail the introduction ail the introduction of another size of ammunition into the navy, where there is a natural desire to keep down the number of different patterns of guns to the lowest practicable limit. It is not unlikehithat the puns will ly that the guns will be mounted as tro-
phies at the Naval Academy, and in various public places throughout the country.

A BROKEN-WINDED horse is rarely seen in Norway. A bucket of water is always placed within his reach when feeding, and the animal alternately takes a mouthful of hay and a sip of water.

