mast in the fighting top, in which is placed a part of the rapid-fire batteries, which consist of six 6 -pounders, four 1 -pounders and two machine guns. Her engines, which are illustrated on page 31 of our NAvy SUPPLEMENT, are of 5,244 horse power.
The "Monadnock" is the sister ship to the "Miantonomoh," "Amphitrite" and "Terror," although these ressels differ somewhat as regards their engines, speed and armor. The "Monadnock" was built at the Contiuental Iron Works, of Vallejo, California. She is 259 feet 6 inches long; her extreme breadth is 55 feet 6 inches; her mean draught is 14 feet 6 inches; displacement is 3,990 tons; she has twin horizontal triple expansion engines, which drive her at 12 knots per hour. Her maximum indicated horse power is 3,000 . She has two steel barbette turrets. The steel armor belt varies from 5 to 9 inches. Her turret is $71 / 2$ inches thick, and her barbettes have $111 / 2$ inches of armor. She has $13 / 4$ inch pròtective deck. She carries four 10 -inch breechloading rifles and two 4 -inch rapid-fire guns. Her secondary battery consists of two 6-pounders, two 3 pounders and four sinaller guns. She has one military mast. Her complement consists of 26 officers and 157 men. The "Terror," "Amphitrite," and "Miantonomoh," which all resemble the "Monadnock," are fully illustrated in our Navy Supplement
Our engravings were made from photographs taken at San Francisco just before the departure of the monitors.

Krypton.

On June 6, 1898, the discovery of yet another element was announced, in a communication made by Prof. Ramsay, of London, to the Academy of Sciences, of Paris. The communication was read to the Academy by M. Berthelot. This new element is a gas, and makes a fifth constituent of the atmosphere ; it is, however, present in very minute quantities, viz., one part in ten thousand of its volume. Krypton belongs not to the argon, but the helium group ; its density is greater than that of nitrogen, being, according to the corrected measurement, $22 \cdot 47$.
The discovery of this new gas is in a way due to the kindness of Dr. Hampson, who supplied Prof. Ramsay with about 750 cubic centimeters of liquid air; this was allowed to evaporate away slowly, until not more than 10 cubic centimeters were left. This gaseous residue was freed from oxygen and nitrogen, and then sparked in the presence of oxygen and caustic soda, when a spectrum was obtained showing the argon lines feebly, but in addition to this a new spectrum was observed.
This spectrum is not yet entirely disentangled from the spectrum of argon : it is, however, characterized by two very brilliant lines, one almost identical with D_{3}, and another one very strong in the green.
Measurements made with a grating of 14,438 lines to the inch give :
$\mathrm{D}_{1}=5895 \cdot 0$
$\mathrm{D}_{2}=5889 \cdot 0$
$\mathrm{D}_{3}=58759$
$\mathrm{D}_{4}=5867 \cdot$

The green line, which is comparable with the helium line in intensity, has the wave leugth 5568.8 , and the somewhat weaker line which accompanies it has the wave length $5560 \cdot 6$.
The wave length of sound was determined in the gas by the method described in the "Argon "paper. The data are:

Wavelength in air...................... $34 \cdot 17 \quad$ IT. \quad II. \quad II.
Calculating by the formula :
λ_{2} air \times density air : λ_{2} gas \times density gas :: γ air : γ gas $(34 \cdot 33)^{2} \times 14 \cdot 479 \quad:(30)^{2} \times \quad 22 \cdot 47 \quad:: 1 \cdot 408: 1 \cdot 666$ it is seen that, like argon and helium, the new gas is monatomic, and, therefore, an element.
The atomic weight of krypton will probably be found to be 80.-Chemical News.

Kussu Honey.

The Pharmaceutische Post is responsible for the statement that King Menelik, of Abyssinia. made an experiment to determine whether honey made from kussu flowers (Brayera anthelmintica) could be used as a tænicide. He planted numerous Brayera trees in his garden, and at the flowering season placed several hives of bees close by. After the honey had been stored a test was made. It was proved that a tablespoonful of honey dissolved in water speedily caused the expulsion of tapeworm.

The Quinine Industry in Germany.
During the ten years 1887-1896 Germany imported cinchona bark to the value of $35,500,000$ warks, while her exports thereof were only $2,000,000$ marks. Her exports, however, in quinine and quinine salts reached the enormous total of $58,000,000$ marks, of which the greater part was to the United States. Russia, Italy and Holland absorb large quantities also. The im ported quinine totalled, during the decade in question 2,100,000 marks. -Suddeutsche Apotheker Zeitung.

MORRIS, THE "INDIA RUBBER MAN."

Oxen, horses, cats, dogs and many other animals have the peculiarity (fortunate from certain points of view) of possessing an extremely elastic skin, which almost floats, so to speak, around the tissues that it envelops, and which may be easily stretched without the animal experiencing any painful sensation. This is a faculty that does not belong to us poor human beings, who are scarcely able to raise the skin of our hand as much as an inch by pinching it with our fingers.
But to all rules there are exceptions, and one of these is offered in the case of Mr. James Morris, who is now exhibiting himself in England in Barnum \& Bailey's famous circus. Mr. Morris, whom we are able to present to our readers through the intermedium of a photograph sent to us by Mr. Bailey, is known indifferently by the names of the "Incia Rubber Man" and the "Elastic Skin Wonder." Observed outside of his performance (and as may be seen from the right side of his face in the picture), he presents nothing abnormal. He is a strong man, in the prime of life, with pretty regular features and an excellent education. He was born at Copenhagen, N. Y., in 1859. and was first employed in a cotton mill. It was in 1873 that he ascertained that he possessed a skin that was more than usually elastic. He was at that time accustomed to stretch it for the amusement of his companions (the other lads employed in the same mill), but it did not occur to him to profit by his phenomenal faculty, and when he left the cotton mill it was only to enter a rope-walk in the State of Rhode Island, which he finally forsook for military service. Here he gave representations to mis regimental comrades. The offi cers soon got wind of the thing, and wishing to witness

JAMES MORRIS, THE "INDIA RUBBER MAN."
the phenomenon, got up an exhibition to which they invited some friends and journalists.
The manager of the Westminster Museum learned o the existence of the man with the elastic skin, and suc ceeded in engaging him for a year. Since then, hav ing found his vocation, Morris has traveled around the country drawing profit from his "elastic skin," as the posters call it. For the last fourteen years he has exhibited himself almost everywhere in the United States and Canada, and has now come to visit the old world or at least to show himself thereto.
The spectacle that he gives cannot be truly considered as pleasing; and from this point of view the repro duction of the photograph that we present herewith will prove more eloquent than anything that we might say. He stretches the skin of his forehead, cheeks and breast in a truly fantastic manner; and does the same
with the skin of his nose, which, according to the picturesque language of a spectator, then takes on the as pect of an elephant's trunk.
Apropos of this singular plasticity with wb 11 Morris' face is endowed, we may recall the very singular example mentioned by M. Albert Tissandier in the account of one of his interesting voyages around the Morld. It was a question of the Japanese grimacer Morimoto, who succeeded in raising his lower lips and
chin so as to cause the end of his nose to disappear chin so as to cause the end of his nose to disappear,
and who concealed his mouth in the folds of his cheeks. -La Nature.

The fine red color of certain rubber goods often turns into a nondescript white much to the disappointment of the shopkeeper, who is anxious to show goods of perfect finish. A writer in the Gummi Zeitung offers a few useful hints on the manner in which the red color may be maintained. The white is due, in the first instance, to French chalk, which does no
lahow much as long as the goods are not perfectly dry
and which may easily be removed by wiping with naphtha. 'I'he other cause of trouble is the sulphur, which slowly makes its appearance on the surface after weeks. The sulphur can be got rid of by boiling the article in five per cent caustic soda; many articles will not stand such treatment, however. Rubbing with cotton waste soaked in naphtha is again said to be useful. Goods which have to be exposed in shop windows inay be rubbed with glycerine, soap, chloride of calcium, or other hygroscopic substances. The treatment makes the goods rather slippery, but it answers its purpose. In the same issue Dr. Treumann publishes analyses of five rubber cements, all with English names. The analyses do not show why those cements should do more than clog the pneumatics and valves and render the real repair difficult.

Truing Bicycle Wheels.

Truing bicycle wheels is not so difficult as many cyclists imagine, and can be easily accomplished if the following points are observed
Having the wheel sideways toward you, holding one of the top spokes on the side of wheel next to you with a. pair of pliers to prevent it twisting, and turning the nipple so that its side next you moves from right to left, will tighten the spoke and draw rim over toward you. Turning the nipple the reverse way will have an opposite effect on the rim, and loosen the spoke.
Having placed the bicycle in such a position that the wheels will turn freely, proceed as follows: Take hold of the front forks, or rear stays, as the case inay be with the fingers, close to the rim of wheel you wish to true up, and hold the thumb (or a piece of chalk) sta tionary, in such a position that the edge of rim wil touch it in places when the vheel is revolved. Revolve the wheel slowly and notice where the rim touches the chalk; then tighten spokes on the opposite side at that place, if spokes are slack; should they be tight (which is rarely the case), loosen those on the side where the chalk mark is. A quarter to half a turn of the nipples is generally sufficient. Now, revolve wheel slowly and repeat the above operation at every "high" place in rim, i. e., every place that touches the chalk.
Of course, should the rim touch all the way round except in one place, you will tighten the spokes on the side next you at the place where it does not touch.
In tightening or loosening spokes, hold them with a pair of pliers close up to the nipple and turn nipple with a nipple wrench placed firmly upon it. The most convenient nipple wrenches the writer has seen are concave disks with milled edges, having a slightly V shaped slot running from the edge to a little past the shaped
Having trued the rim so far, i. e., made it so that the edge keeps in contact with the chalk when the wheel is revolved a full revolution, the next operation is to get the rim concentric. To do this, see that the frame is firm and steady, sight some object on the opposite side of the rim a little distance away from it and in a line with the inside of rim and your eye and revolve the wheel slowly; at the places where the rim looks to be nearest the hub, loosen the spokes on both sides equally, and where the rim is farthest away from the hub, tighten the spokes on both sides equally. Re peat the operation until the rim is a circle with the hub in the center.
The rim is now true, but it is most important that it should be central with the hub sideways. If it is not the bicycle will not steer properly. To find out if the rim is central, thread a piece of strong cotton thread over the tire, between the spokes and as close to the barrel of hub as possible without touching either spokes or hub (when thread is tight) to a point on rim nearly diametrically opposite the place from whence you started; take cotton over the tire and thread beween spokes on opposite side back to the starting point, then tie the two ends of thread together ove the tire; place a pair of trouser guards, or pieces of metal bent to a similar shape, over the tires so that the ends of them press the cotton close to edge of rim at the sides.
See that the thread touches neither the hub nor any of the spokes, and with a pair of dividers measure the distance from the cotton to the outside flange of hub on one side; with the dividers set to this dis tance, measure the opposite side; if both measurements are the same, then the wheel is true. If one side meas ures less than the other, loosen all the spokes equally on the side that measures less, and then tighten all the spokes equally on the side that measures more. An eighth or quarter of a turn is usually sufficient, unles the rim is very badly out. A very slight adjustment of the nipples makes a surprising difference to the rim in this last operation; in turning the nipples be careful to do so equally, i. e., if you loosen the first one oneeighth of a turn, loosen all the others on that side one eighth of a turn and then tighten all those on the oppo ite side the same amount. It is best to start at the valve, and you then know where to stop
If the wheel is true at first and the spokes simply want tightening, all you have to do is to tighten all the spokes equally.-L. A. W. Bulletin.

