A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART. SCIENCE, MECHANICS CHEMISTRY. AND MANUFACTURES.

|  | NEW YORK. MAY 21, 1898. |  |
| :---: | :---: | :---: |


san juan from the bay.

native hut.

a portable candy shop.
the old city wall.

san juan from the inglaterra hotel.

ancient gateway, san juan.

a dusky belle.

VIEWS ON THE ISLAND OF PORTO RICO.-[See page 326.]

## Srientifir Smmerican.

ESTABLISHED 1845
MUNN \& CO.,
Editors and Proprietors.
published weekly at
No. 36I BROADWAY, = = NEW YORK.

## TERMS FOR THE SCIENTIFIC AMERICAN

 (Established 184.5.)One copy, one year, for the U. S., Canada or Mexico.....
One copy, six months, for the U. S., Canada or Mexico.
Remit by postal or express money order, or by bank draft or co. 4.00
MUNN \& CO., 361 Broadway, corner Franklin Street, New York
The scientific American supplement (Established 1876)


 Building Edition of scientific


MUNN \& CO., Publishers, 361 Broadway, New York.
The safest tay to remit is by postal, order, express, money order,
to or bank check. Make all remittances payable to order of MUNN aUY Readers are.specially requested to notify the publishers in case of
any failure, delay, or irregularity in receipt of papers.

NEW YORK, SATURDAY, MAY 21, 1898.


TABLE OF CONTENTS OF
Scientific American Supplement No. 1168.
For the Week Ending May 21, 1898.

ELECTRICITY.-American Bell Telephone

 Technical Testing Stations
III. GEOGRAPGY.-Chinese Geography
V. MARINE ENGINEERING.-Marine Engines for Colonial Line
V. MECHANICAL ENGINEERING.-Japanese Made Macininery.


Miscelaneous Note
Selected Formule

viin. PHYSIICS.-An Effect of Frost.


XI. SCIENCE.-Report of the Bualding Coment....
 XII. TEXTLLESS.-Cotton Mills in the South-By GEorge ETHEL:


## CONTENTS

SCIENTIFIC AMERICAN, BUILDING EDITION.
(Illustrated articles are marked with an asterisk.)


## the lessons of manila bay.

The brilliant operations of the American fleet in Manila Bay have served to emphasize several well established principles of naval warfare, the truth of which has been recognized through many centuries of struggle for the mastery of the seas. We believe it struggle for the mastery of the seas. We believe it
was Napoleon who said that Providence was on the was Napoleon who said that Providence was on the
side of big battalions. That may be true on land, but side of big battalions. That may be true on land, but
the history of sea fights without number has taught us that Providence is on the side of forethought, good judgment, discipline, dash, well-timed audacity and above all straight shooting. All of these qualities were conspicuously present in the compact of dawn of that eventful morning circled around the bay before the astonished gaze of the enemy and at a predetermined hour and on a predetermined plan began to blot the Asiatic fleet of Spain out of existence.
The two most important facts brought out by the Manila fight are the ability of modern ships, even of the unarmored types, to engage land fortifications, and the incomparable value of accurate gunnery as a means of defense against the shell-fire of the enemy The astonishingly small casualties to our ships and their crews during several hours of fighting is not al to be credited to poor marksmanship on the part of the Spanish gunners. It was largely the result of the rapidity and deadly accuracy of the storm of shells thrown by our vessels, which rendered the gun positions untenable and probably disabled the crews faster than they could be placed at the guns. A crack marksman behind a modern high-powered rifle is worth whole inches of armor protection to the ship on which he serves, and it begins to look as though the theorists might prove to be correct who contend that modern fights will be decided by killing off the gun crews rather than by penetrating belts and demolishing unarmored ends and upper works.
Not less remarkable is the fact that half a dozen unarmored cruisers should have run past shore batteries of considerable strength and blown out of existence a fleet that held a strong position under the guns of a powerful battery. The supreme confidence with which this supposedly impossible feat was undertaken is only equaled by the splendid audacity and cool deliberation with which it was carried out. If the Spanish fleet was taken unawares, it was because its admiral judged -as by all the canons of naval warfare he was justified in doing-that the American fleet of cruisers would never dare to undertake an attack for which only heavily armored battleships are supposed to be avail able. The success with which the fortifications in Manila Bay were attacked is certain to enhance the value of the swift cruiser as against the more cumber-
some battleship. The danger will be that critics will lose sight of the fact that the forts and probably the guns were not of the latest description, and will push too far the lessons that have been taught by the reduction of Cavite arsenal.
The battle has shown again the absolute necessity of emoving from a warship every piece of woodwork that can possibly be spared. Our shells loaded with common brown powder served to set fire to the Spanish ships early in the fight, and had the shells been loade with high explosives, the conflagration would have
started sooner and burnt even more fiercely. Fires started sooner and burnt even more fiercely. Fhells,
were started in two of our ships by exploding shell and, though they were speedily extinguished, they emphasize the necessity for rigidly excluding ali unneces sary combustible material from a warship.
The fight again demonstrated the futility of torpedo boat attack when carried out by daylight and in the open. Three separate attempts were made by these little craft to run out from the harbor and dash within firing range of the American ships, but in each case they were speedily crippled by the 6 -pounder and 1-pounder rapid-fire batteries of our cruisers. The only possible danger from torpedo boats by day would be when the attack was made by a larger fleet of boats
than a ship's rapid-fire guns could cover. In such a than a ship's rapid-ire guns could cover. In such case the survivors would probably sink one or ships of a fleet before they were themselves destroyed Attacks by isolated boats, such as were made by the Spanish, were necessarily as futile as they were splendidly heroic.
And this suggests the reflection that mere courag and heroism can never atone for the lack of skill and efficiency. Had the Spanish crews been as skilled as they were courageous, our ships and men would neve have come so scathless out of the fight. It is to the
combination of both qualities in our navy that we combination of both qualities in our navy that we
must look for an explanation of the amazing disparity in the losses sustained on this memorable day.
We close with mention of a pleasing episode, on that is highly characteristic of the man and in accord ance with the best traditions of the navy. We refer to the message which, according to an Associated Pres dispatch, was sent by Commodore Dewey to the admi ral of the beaten fleet: "I have pleasure in clasping your hand and offering my congratulations on the gal
lant manner in which you fought." True courage is ever magnanimous; and every acknowledgment of the
undoubted bravery of the vanquished is an indirect tribute to the courage and skill of the victor.

## FOREIGN EXPERT OPINION ON THE "MAINE" DISASTER.

It is gratifying, though not surprising, to note that the English technical press has given a practically unanimous indorsement of the finding of the Naval Court of Inquiry on the "Maine" disaster. At a time when sentiment or prejudice is dominating men's minds and rendering them incapable of cool judgment, it is to the professional expert that we must look for opinions that count for much. To him the political aspects of such a disaster as happened to the "Maine" are altogether subordinate to its scientific and technical side, and it is safe to say that the findings of our board, as against those of the Spanish commission, would not be indorsed except after an exhaustive and impartial review of the evidence
The Engineer, of London, says: "The evidence appears to have been taken with great care and with the utmost impartiality. Whether the officers constituting the court had or had not any preconceived notions, we cannot say; if they had, they carefully concealed the fact. Indeed, throughout the whole of the evidence we fail to find expressions of opinion on the part of the witnesses, and the court carefully abstained from put ting leading questions.

The principal value of this most elaborate and temperate inquiry lies in the lessons that can be drawn from it. It is not possible to read what the divers have to say, or to examine the sketches which they have made, without arriving a the same conclusion as the board."
The other leading technical journal, Engineering, says: "The court was of opinion that this forcing up of the bottom of the ship could only be caused by the explosion of a mine situated beneath the vessel ; and at first sight it may appear difficult not to accept this view." It suggests, however, another possible way in which the bottom plating could have been bent into an inverted $V$, by referring to the fact that after the decks had been blown out the bow sank, while the after half of the ship was still water-borne. This, En ineering suggests, would bend the bottom plating somewhat into the shape in which it was found; but it rankly admits that "it may be objected that this is a somewhat bold flight to account for an upheaval of the keel 34 feet in such a way, and we only advance the hypothesis as possible rather than probable." It concludes by stating that " whatever may have been the rimary cause of the terrible catastrophe of February 5, there is one fact that stands out with remarkable prominence. The conduct of the whole ship's company was worthy of the best traditions of the American navy ; which is as high praise as could well be given The suddenness of the catastrophe, far more trying to discipline than the time of battle, the rapidity with which the vessel sank, the continuance of smaller ex plosions after the great outburst, the darkness of the night, and the fact that many of the crew were asleep, all tended to put the morale of the ship's company to as severe a test as could well be imagined; but throughout not a man failed in his duty."
Industries and Iron, London, has devoted two editorials to the subject, the second of which is called forth by the publication in its columns of a letter from a distinguished English engineer indorsing the find ngs of the "Maine" Court of Inquiry. Speaking of his letter, which we republish on another page, the journal in question says: "Our correspondent in opening his letter remarks that he is 'an old and expe rienced engineer,' and that he is also 'an expert on ex plosives.' Thus modestly one of the greatest living authorities, whose name and fame are known the world over, chooses to describe his experience and abilities. We regret that the world at large is pre cluded from appreciating the high value and true weight of his opinions, owing to the unfortunate circum stance that etiquette and policy require the suppres sion of his great name.
After discussing the points brought out in the letter, our contemporary concludes as follows: "We believe, after extremely careful consideration of the evidence hat the destruction of the 'Maine' was premeditated that it was caused from the outside, and that if the Spanish government itself must be acquitted from ac tual participation in the dastardly deed, then the blame of the crime must be borne by some person or persons not remotely connected with the government. That such a disaster should have occurred at all is dreadful enough, but that it should occur through reachery when the vessel was resting in every confidence under a friendly nation's protection, is mor terrible. America would have had our sympathies had the destruction of the 'Maine' proved to be accidental, and now that it has, by evidence and calm judgment, been proved to be due to a willful and premeditated act, our detestation and horror of the foul deed is absolute"
These are fairly representative quotations from the English technical journals, all of which have commented at considerable length upon the disaster, and they indicate the practically unanimous approval of
our position by that section of the press which is en titled to speak with authority on a question of thi special nature.

## THE FOUR NEW MONITORS.

The designs for the four new monitors called for by the Naval Appropiriation Bill have been determined upon by the Naval Board of Construction. Their displacement will be about 2,500 tons on a draught not to exceed 11 feet. They will be furnished with watertube boilers and twin-screw engines of 3,500 horse power which will be expected to drive the monitors at 12 knots under natural and 13 knots under forced draught. They are to be furnished with a single turret and a fighting mast. The turret will be carried well forward clear of obstructions. It will be protected by 12 inches of Harveyized steel, and within it will be two of our latest pattern of 10 -inch rifles. On a superstructure deck amidships will be placed several 4 -inch rapid-fire guns and a numerous battery of 6 and 1-pounders and machine guns. The new monitors will sit low in the water, having a freeboard of only 20 inches, and as the belt armor will consist of 11 inches of Harveyized steel, the new vessels will be very difficult objects for the enemy to hit and disable. The small draught of 11 feet will enable them to navigate shallow channels and shoals in our harbors which would be impassable to the deep draught sea-going craft of the enemy.
It will be seen that the new monitors will be 1,500 tons smaller than the "Terror," "Amphitrite" and "Miantonomoh" and 3,500 tons smaller than the "Puritan." Their speed will be about 2 knots greater than the first named boats and about the same as that of the "Puritan." They will carry only half the number of heavy guns, but their handiness, light draught and powerful secondary batteries and general up-to-date efficiency will render them scarcely less powerful than the ships of the "Terror" class.

## ELECTRICAL EXHIBITION

When we realize the multiplicity of uses to which electricity lends itself, it is little wonder that an exhibition could be inaugurated which would occupy every inch of space in the largest building available for the purpose in New York City.
Among the newer objects shown are the Edison magnetic ore separator, fully described some months since in the Scientific American. A large working model of this invention shows how the magnetic ore is separated from sand by the action of a magnet. Wireless telegraphy, also described in our columns not long since, is shown in actual operation. There is a large exhibit of Weston's fine testing and measuring instruments, designed for all purposes, including their use in generating stations, institutions of learning, as well as in the laboratories of private individuals. The Walker underground conduit system, lately installed on the Fourth Avenue street railway in this city, is represented by a section of full sized track and a motor car arranged to permit of examination by visitors who are interested to know how this system is operated. The Crocker-Wheeler exhibit includes a 225 horse power dynamo and several other large dynamos and motors; also motor dynamos. A motor especially adapted for use in mills is found here. The exhibit is very creditable, showing improvements in design and finish.
An exhibit showing the extended use of electricity is an emergency wagon, containing tools and materials for electrical repairs of all kinds. The American Electrical and Maintenance Company are represented by this exhibit.
The Electric Storage Battery Company's exhibit is especially noticeable on account of the giant accumulators shown. They are of a type used in Chicago and in the Brooklyn Edison Illuminating Station. One of these cells can give 2,000 amperes for one hour and the other 6,000 amperes for one hour.
The Montauk Multiphase Cable Company have on exhibition their automatic thermostatic protective electric cables. This system gives to wires the power to discover dangerous heat or flame, and automatically to notify at any point or points desired that such heat or flame is in existence, and this upon its inception. The exhibit is attracting much attention on account of its possible application to government use in the present crisis.

The domestic uses of electricity are shown by utensils for cooking according to every conceivable method by heat generated by electricity. The advantages gained by this method are cleanliness, avoidance of unnecessary heat, obviating the necessity of handling coal and ashes, and the saving of room. Another domestic ap plication of electricity is an electrical cradle rocker.
In the generating section are shown two Babcock \& Wilcox steel boilers of 265 horse power each, which pro vide steam for the exhibition. These boilers are furnished with low grade fuel and the fire is urged by a forced draught created by a large fan blower driven by a small engine supplied with steam from the boilers The steam pressure controls the motion of the engine the blast being thus varied to suit the requirements. As a consequence, a uniform pressure of steam is maintained and fuel is saved. This system of controlling
the pressure by action on the fire by means of a variable orced draught is known as the Beckman system o automatic control. It is exhibited by the Kensington Engine Works, Limited, of Philadelphia.
Several high-speed steam engines driving direct-con nected dynamos are shown.
The Woodbury high-speed engine with an Eddy dynamo directly attached is running. It does its work quietly and without apparent effort.
The Onondaga Dynamo Company also have a highspeed engine with one of their own dynamos direc connected. The engine runs smoothly, without a click or a jar.
There is also shown a Fischer engine with a directnnected dynamo.
The American Engine Company exhibit an American Ball engine direct-connected to a $25 \mathrm{~K} . \mathrm{W}$. generato built by the same company.
The Armington \& Sims Company exhibit a 13 -inch by 12 -inch engine direct-connected to a Walker gen erator, and the New York safety steam engine is shown connected directly with a dynamo constructed according to the Wood system by the Fort Wayne Electric Company. These engines and dynamos show to what perfection the apparatus for the generation of electricity has arrived.
The Hornsby-Akroyd safety oil engines are exhibited. These engines are operated by the vapor of kerosene oil, the oil vapor being ignited without the use of hot ubes, flames or electric sparks, as usual in gas engines. The National Meter Company have on exhibition a 70 horse power gas engine connected direct to a generator. It does its work without trouble and is a compact and desirable form of motor.
The Diesel motor is the more recent of gas engines. It operates on a new principle. It follows the lines of a vertical marine engine and is connected directly with a dynamo. The motor cylinder is placed on a stout A-frame, in the rear leg of which a small air pump is secured. The action is on the 4 -stroke or Otto cycle. It differs from all previous internal combustion engines in compressing a full charge of air to a point above the igniting point of the fuel, whether liquid or gaseous, then injecting the fuel for a certain period (variable according to load) into the red hot air, where it burns with pressure and temperature under control. There are no explosions, as in other gas or oil engines, but steady combustion at much lower temperature and without essential increase in pressure, the combustion line being practically isothermal. It is claimed that fully 28 per cent of the value of the fuel is utilized. This mo

## CALCIUM CARBIDE AS AN AID TO FIRE

In the Scientific American for May 7 we referred to a fire caused by water coming in contact with calcium carbide. We are informed by the Creig-Reynolds Foundry Company, of Dayton, Ohio, we were in error in reporting the fire at their works as a carbide fire. The fire started in the extreme end of their warehouse building, some hundred or more feet from the carbide, and when the flames reached the carbide cans the solder was rapidly melted and the carbide, being surrounded by water, generated gas immediately, which was communicated to the flames and, consequently, made a great blaze ; but, out of some 8 or 10 tons of carbide on hand, they lost less than 1,500 pounds. In no way can the fire be a tributed to the storage of the carbide, and it was not to blame in any way for the origin of the fire; but the very fact that the carbide assisted the conflagration shows that the regulations regarding the storing of carbide in quantities in some cities have not been made in vain.

## UNITED STATES ARMY RECRUITING CIRCULAR.

War Department, Adjutant-General's Office Washington, April 27, 1898.
The following instructions will govern recruiting for he regular army in time of war:
Applicants for enlistment must be between the ages of 18 and 35 years, of good character and habits, ablebodied, free from disease, and must be able to speak the English language. Married men will be enlisted only upon the approval of a regimental commander Minors must not be enlisted without the written consent of father, only surviving parent, or legally ap pointed guardian. Boys between the ages of 16 and 18, who may be needed as musicians, inay be enlisted as such, with the approval of the proper commanding officer. Original enlistments will be confined to per sons who are citizens of the United States, or who have made legal declaration of their intention to become citizens thereof. Applicants will be required to satisfy the recruiting officer regarding age and character and should be prepared to furnish the necessary evi dence.
For infantry and artillery the height must be not less than five feet four inches, and weight not less than one hundred and twenty pounds and not more than ne hundred and ninety pounds.
For cavalry the height must be not less than five

| Hejert. |  | Weight. <br> Pounds. | Chest Measurement. |  |
| :---: | :---: | :---: | :---: | :---: |
| Feet. | Inches. |  | At expiration: Inches. | Mobility: Inches. |
|  | $\begin{aligned} & 64 \\ & 65 \\ & 66 \\ & 68 \\ & 68 \\ & 68 \\ & 69 \\ & 70 \\ & 71 \\ & 72 \\ & 73 \end{aligned}$ | 128 138 138 1134 1148 115. 115 169 176 |  |  |

feet four inches and not more than five feet ten inches, and weight not to exceed one hundred and sixty-five pounds. No minimum weight is prescribed for cavalry, but the chest measures must be satisfactory.
It is not necessary that an applicant should conform exactly to the figures indicated in the table of proportions, the variation of a few pounds in weight either way, and of a fraction of an inch in chest measures, bèing permissible.
Applicants must defray their own expenses to the place of enlistment. Their fitness for the military service can be determined only upon examination at a military post or other recruiting station.
The term of service is three years.
All soldiers receive from the government (in addition to their pay) rations, clothing, bedding, medicines, and medical attendance.
The following are the rates of pay as fixed by law :


To the rates of pay enumerated above 20 percentum will be added in time of war
In addition one dollar per month for the third year of enlistment will be paid to the soldier. Soldiers re enlisting within three months from date of discharge receive a further increase of pay for the fourth and fifth years of service, and a still further increase for each five years of continuous service.
The soldier can deposit his savings in sums not less than $\$ 5$ with any army paymaster, and for sums so deposited for the period of six months or longer, the soldier, on his final discharge, will be paid interest at the rate of four per cent per annum. These deposits are nonforfertable except for desertion.
Whenever a soldier is honorably discharged at the expiration of his enlistment, or on account of dis ability not caused by his own misconduct, his trave pay is ample to carry him to the place of enlistment.
By care and economy, a soldier can save from his clothing allowance a considerable sum, payable to him on his discharge.
For soldiers who have served honestly and faithfully twenty years, or who have been discharged for wounds received or disease incurred in service, a comfortable home is maintained in the city of Washington. The sum of $121 / 2$ cents per month is deducted from each soidier's pay, to be applied toward the support of the home. After thirty years' service enlisted men are entitled to be retired, and upon retirement receive three-fourths of the monthly pay allowed by law to them in the grade they held when retired, and $\$ 9.50$ per month as commutation for clothing and subsist ence.

By order of the Secretary of War.
H. C. Corbin, Adjutant-General.

Prof. Ray Lankester, in a recent lecture in England, gave a clear and easily understood explanation of how inoculations of mild disease will cure or prevent the severer kinds. Protoplasm, he said, had the capacity or being taught to tolerate a chemical action from which it naturally shrank. A mass of protoplasm at racted in the direction of a solution of sulphate of ron would at first grow down to the edge of it and then draw back, but in a little time would plunge boldly through and across it, and this protoplasm thenceforth would have no fear of sulphate of iron. The amœboid corpuscles of the blood are attracted by what is called "chemotaxis" to the germs of disease entering the body, and swallow them up; but these bacteria in their turn produce a poison which repel he corpuscles. The latter, however, can be taught by gradually increasing doses to tolerate the poison and in this way the body can acquire an immunity against even the full strength of the disease.

## THE NEW HUNT BICYCLE SADDLES.

The subject of bicycle saddles is an important one, as upon it depends not only the safety but, to a large degree, the comfort of the rider. Nothing tends to make gree, the cyclist more tired than a saddle which is ill adjusted and ill fitted. A few years ago the bicycle saddle was the last thing thought of, but at length the ingenuity of the manufacturers resulted in the production of saddles based on anatomical principles, and their attention was then devoted to the elaboration of the details which make the saddles of to-day so convenient and comfortable. Ainong saddles, the "Hunt" saddle, made by the Hunt Manufacturing Company, of West boro, Mass., has an enviable reputa tion. Our engravings represent two of the many types of saddles which this company have now ready for the bicycle trade. Our first illustration shows a saddle known as style $\mathrm{X}-50$ which is especially intended for a large class of riders who are looking for a saddle that is entirely without a pom mel This is a padded pattern with mel. This is papports The with eather strand suppors. The weigh of the saddle is 26 ounces; the length is $71 / 2$ inches; the width is 9 inches.
The padded saddles of this company differ from those of other saddle mak ers in that, instead of being supported
by a rigid base, there is the same laced framework found in their hygienic saddles, which enjoy a well deserved reputation, so that in their padded saddles the framework yields as well as the pad under the rider's weight, and there is no liability of the pads becoming hardened by constant pressure of the rider's body, as is inevitable with a rigid support.
Our second illustration shows what is known as the "Sovereign" saddle. It is specially intended for the class of riders who desire a saddle having no pommel and yet require some assistance from the saddle in balancing the wheel. To meet this requirement, the "Sovereign," which is otherwise known as the "Semipommelless "saddle, has been devised. It is provided with two pads of generous thickness and well separated for anatomical reasons. The spring underneath aids the curled hair of the pads in giving a cushioned effect, and its riding qualities are excellent. It also presents a fine appearance, as the metal parts are all finely nickel plated form of the elongated pad at the front causes great discomfort, because the points of the pad are hard and unyielding, partly because of the shape and partly because there is no spring in front. In the "Sovereign" the makers have hit upon a happy combina tion of spring and pad, which will unquestionably solv many of the difficulties exp rienced in riding padded sad dles. The outline of the pad is slightly triangular, with well rounded corners, so that the front of the pad, instead of projecting forward and forming a ridge, slopes gently toward the center, causing no obstruction to the movement of the rider's limbs. This feature removes the physician's final objection to padded saddles, so there is little wonder that this type of saddle has consequently received the unqualified indorsement of the medical fraternity. Our engraving shows the sensitive coiled spring in front, which accomplishes two objects : It affords in stant relief to the rider from sudden jolts and at the same time is adequate for balancing the wheel. Thus a saddle is obtained with ample spring at the rear, doing away with the objection to a pommel or elongated pads, and yet furnishing an opportunity to easily balance the wheel. The improvement in their $S$ spring for 1898 is shown in the torward coil, where the bolt and nut formerly used have been superseded by a change in the form of both springs, so that the coil is self-secured. This spring is furnished on noless than twenty-two differ ent patterns made by this


A MEXICAN TERRA COTTA STATUE.
back. Around the loins are distinguished the remains of a cotton girdle ("maxlatl"). The legs are covered with long leggings extending below the knee. The footgear consists of sandals held in place by two straps, one of which passes between the first and second toes and the other between the third and fourth
The head exhibits the curious artificial flattening of the frontal and occipital bones so frequent in Central America, and which some Indian tribes still practice in our day
The ears are pierced, but the rings, which were probably of copper have disappeared The same is the case with the pendant that was attached to the nose, and which was an ornament worn exclusively by chiefs and warriors. The hypo thesis that the statue was that of a chief or warrior is strengthened by the cotton armor, which Torquemada describes under the name of "ichcauhuitl." This offered so efficacious a protection, says this writer, that the Spaniards hastened to adopt it in order to protect themselves against the arrows and the formidable saber " maquahuitl") of the Mexicans. This weapon consisted of a strip of wood in which were inserted numerous frag ments of obsidian, and which the Mexicans used with great dexterity
The arrangement of the hair is such as to give the dea of a wig. There are apertures in the arms, shoulders and breast for closing the cracks
Although the origin of this terra cotta statue is unnown, it is certain that it antedates the Spanish con quest. For the illustrations and the above details we are indebted to La Nature.

## For Facilitating Examination of Inventions.

The Cycle Age voices the sentiments the Scientific american has presented, as being of the greatest im portance to inventors. Factory superintendents and inventors, says the editor, will be interested to learn that the Platt bill for revising and perfecting the classi fication of letters patent and printed publications in the Patent Office has been reported favorably from the Senate committee on patents, and there is every pros pect that it will speedily become a law. Our patent pect that it will speedily become a law. Our patent
system proceeds upon the idea that when an applicasystem proceeds upon the idea that when an applica-
tion for a patent is made, it is to be determined in the Patent Office, before letters patent are issued, that the invention is new and usefu and made by the applicant This involves an examination of every application for a patent and seach in the whole field of domestic and foreign patents already granted, and in all published technical works to discover whether the invention has been anticipat ed. In other words, whether in the language of the con stitution, it is "new and use ful." The wonderful increase of inventions, of patents at home and abroad, has greatly enlarged the field of search, and yet, if a patent is to be what under our law it pur ports to be, of real value to the inventor and prima facie evidence of title to his in vention, the search and ex amination must be thorough and complete. The increase in the field of search is enor mous. Each year since 1883 more than 20,000 patents have been issued by the United States. Last year the num ber was 23,794. The number of foreign patents issued each year is something over 60,000 The pressing need now is for a more perfect arrangemen of the patents and applica tions and references of all kinds in the Patent Office. When it is remembered that the expenses of the Patent Office are not only paid by in ventors, but that a surplus is each year turned into the treasury of the United States, forming a special, idle fund of over five million dollars, it would seem that there could be no question of the duty of Congress to provide sufficient force for the prompt trans action of the business.

A NOVEL FLUID PRESSURE REGULATOR. The improved fluid pressure regulator represented by our engraving and recently patented by Jenkin Williams and Joseph R. Rees, of Pueblo, Col., is provided with a chest connected at its top by a pipe with a main for leading gas, steam or other fluid into the chest. In the chest is formed a valve seat from which two ports lead to a service pipe and an escape pipe respectively. On the valve seat a slidable valve is mounted,


WILLIAMS' aNd REES' FLUID PRESSURE REGULATOR.
pressed tightly against the seat by a spring, the tension of which may be regulated by a screw. The valve is provided with two ports so arranged that when the lower port is in register with the service pipe, the upper port is disconnected with the escape pipe, and vice versa. The service pipe has an upwardly extending branch, opening into a bellows, which in turn press against a rod surrounded by an expansive spring and extending through a stuffing box into the chest, there to connect with the sliding valve. When the fluid enters the chest, it passes through the service pipe, thence to be distributed to the devices on which it is to be used. The fluid also passes through the branch pipe into the bellows, expanding them so as to hold the valve in the open position shown in our cut. When the pressure in the main increases abnormally, then the pressure in the service pipe causes the bellows to expand still further, thus moving the valve upward, cutting off the fluid from the service pipe and bringing the port of the escape pipe into register with its valve port. A sufficient quantity of gas having by this means escaped, the bellows collapse correspondingly, the valve slides down, thereby closing the escape pipe port and opening the service pipe again. Should the service pipe break, the bellows collapse completely, the valve descends and the fluid is cut off from the service pipe, thus preventing its waste. An effective arrangement is therefore provided for automatically shutting off the supply of gas or water to a building in case of fire.

AN AUTOMATIC ACETYLENE GAS GENERATOR.
Artificial illumination produced by means of acety lene gas is found to possess more of the qualities of daylight than other artificial lights, not excepting even

arc light. The recent invention of the electric method of making calcium carbide permits of the production of acetylene gas by a very simple process at a cost which allows of its general application.
The important feature in the use of acetylene is to secure a simple generator for making the gas continuously with safety and economy.
Our engravings represent an acetylene gas generator of this description. It is known as the "Ordway," and is manufactured by the National Acetylene Gas Generator Company, of Corning, N. Y., and Si. Paul, Minnesota.
The apparatus consists primarily of an automatic feed generator and a gasometer. The automatic feed device, which is placed above the water tank, has a casing containing a magazine. which is cylindrical in form and divided into ten or more radiating compartments. The compartments are filled with calcium carbide from the top of the inclosing case, each compartment being then closed by a hinged and latched cover. A trip then closed by a hinged and latched cover. A trip placed on the side of the inclosing case engages each
latch as it passes by, and causes the cover of the comlatch as it passes by, and causes the cover.of the com-
partment to open. The calcium carbide drops into the water below, where it is decomposed without heating the apparatus, the heat being ahsorbed by the water. This gas bubbles through the water, rises to the top of the generator and passes through pipes to the adjacent receiver, where it is again discharged into water, removing the impurities. The gas fills the gasometer, causing it to rise, and is then conducted from the gasometer by a distributing pipe. By this method a fixed quantity of gas is generated each time, and the gasometer is designed with ample capacity to hold this ; there is consequently no over-production or waste. The escape or safety pipe is arranged within the gasometer by means of telescoping tubes, forming a water seal.
As the gasometer discharges its gas it slowly descends, and when near the end of its downward course, a pawl carried by an outwardly extending arm engages a ratchet wheel on the shaft of the magazine. The weight of the gasometer acting upon this wheel causes the magazine to rotate, thus closing the empty compartment and bringing the latch of the next compart ment cover into contact with the trip, thereby opening the cover and causing the contents of the compartment to fall into the water below. A locking device prevents the feed cylinder from rotating through more than one space at a time, and a detent prevents the back ward rotation of the cylinder. The action of this feed mechanism is consequently automatic.
In the lower portion of the generator an agitator mounted upon a shaft is turned by a crank outside the tank. By it the residuum may be loosened from the bottom of the tank and drawn off by a cock connected by rods with the valve of the distributing pipe of the gasometer. By turning a lever the cock and the valve of the distributing pipe are opened simultaneously, thereby equalizing the gas pressure and preventing siphoning. The large gate valve shown at the base of the cylinder is closed when the machine is recharged, thereby cutting off the gas and preventing any escape into the room. A dial register is provided, by which it may be seen at a glance how much carbide there is in the generator at any time.

## Sleep of Plants.

In a large number of plants examined, Herr E. Stahl finds that the nocturnal position of the leaf or leaflets acts as a protection against the deposition of dew, and thus promotes transpiration and increases the amount of nutriment conveyed to the assimilating organs by the ascent of water in the stem. He regards this as its main function rather than, as has been alleged, the prevention of excessive radiation. The nocturnal position of the leaf or leaflets may be classed under two heads: (1) They are directed downward, so that the under side is better protected than the upper side under side is better protected than the upper side
against the deposition of dew (Biophytum sensitivum, Oxalis acetosella, Robinia pseudacacia, Hedysarum gyrans, Impatiens noli-me-tangere, etc.) (2) They are so placed that the upper side is better protected than the under side against the deposition of dew (Colutea
 arborescens, Trifolium repens, Impatiens glandulifera, etc.) This difference is usually correlated with a difference in the disposition of the stomates on the two surfaces, as is well seen in the two species of Impatiens named; but there are exceptions to this rule. Geotropism probably also plays some part in producing the verti cal nocturnal (nyctitropic) position of leaves and leaflets.-Bot. Zeitung, 1897, 1te. Abtheil., p. 71.

## A REVERSIBLE RATCHET WRENCH.

In the improved reversible ratchet wrench shown in our cut, the wrench-socket on which the ratchet wheel is formed or secured is mounted to turn in a casing provided with two plates formed at their rearends with semi-cylindrical extensions on which a handle screws for holding the parts of the casing securely in position. Referring to the sectional view, it will be seen that fulcrumed, spring-pressed pawls pivoted in the casing:


## TYLER'S REVERSIBLE RATCHET WRENCH.

engage the ratchet wheel at opposite sides, the pawls being provided with inclines which may be engaged by the cam faces of a longitudinally moving cam block. By this arrangement either pawl may be thrown in mesh or out of mesh with the ratchet wheel. The camblock is provided with a stem extending rearwardly through a clamp provided with lugs projecting over part of the semi cylindrical extensions, the stem being formed with a head fitted to slide into the same extensions. This head is engaged by a cross-pin passing through slots in the handle casing, to connect with a ring or collar fitted to slide on the semi-cylindrical extensions.
In using the wrench, the ring is pushed forward or rearward, bringing either pawl into operative position as desired and according to the direction in which the workman wishes to use the wrench. An auxiliary socket carrying a spring for engagement with a recess on the wrench-socket enables the wrench to be used for large objects. The invention has been patented by Elias M. Tyler, of Emigrant Gap, Cal.

## AN IMPROVED TIME RECORDER

The time recorder illustrated in our engraving, and recently patented by Frederick W. Cook, of San Antonio, Texas, embodies features which are a de-


COOK'S TIME RECORDER.
parture from previous devices of this character. The operative mechanism in Mr. Cook's contrivance con sists of clock-driven rollers which act directly upon a roll of paper mounted in the casing. The paper is lined longitudinally and is graduated along its edges to represent hours and minutes. The clock-rollers draw the paper over a table at a wide opening in the casing, so as to enable employes to write their names upon the longitudinal lines. A slot in the lid on the left hand side of the opening partially exposes the graduated edge of the paper and enables the employe graduated edge of the paper and enables the employe
to see at what time he writes his name. A transfer to see at what time he writes his name. A transfer
strip is secured to the under side of the lid and extends strip is secured to the under side of the lid and extends
transversely into the opening and in a line with the slot. When an employe writes his name, he makes a mark upon the strip which transfers the impression in different colored indelible substance to the paper beneath and indicates the exact time when the name was written. Instead of exposing a single space to accommodate one name written transversely, as in the ordinary time recorders, the apparatus, it will be seen, provides for a number of lines upon which several names may be written longitudinally at approximately the same time. The clock mechanism, by acting di-
rectly on the rollers, dispenses with all auxiliary de vices. The apparatus is designed for use in large stores, offices, factories and the like, and is also adapted to record the rounds of a night watchman.

PORTO RICO AND THE REDUCTION OF SAN JUAN. Last week it was our pleasing duty to chronicle the decisive victory of Manila Bay, we are now able to announce that the reduction of San Juan, the fortified capital of Poitto Rico, by Admiral Sampson was attended by few casualties and no injury to the fleet. The squadron, consisting of the flagship "Iowa," the "Indiana," "New York," "Terror," "Amphitrite," "Detroit," "Montgomery" and the "Porter," in search of the Spanish fleet, arrived at San Juan, Porto Rico, at five o'clock in the morning, May 12. The "Detroit" led the squadron to the harbor, and the "Iowa" fired on Morro fort and the "Detroit" followed at short range, and the others in the order named, with the exception of the "Montgomery," steamed in an ellipse before the forts. The first round of the firing was aimed too low, but in the second round the ships got the elevation and silenced the guns of Morro. They also fired upon the town and repeatedly drove the Spaniards from their guns. The forts mounted seven good guns, but their markmanship was wretched. They fired hundreds of shots, but they only hit the "New York" and the "Iowa" once each, doing no damage except to kill one seaman and wound six others. The bombardment lasted three hours and the fortifications were completely reduced, and havoc was wrought in the city by the shells of the fleet. Admiral Sampson retired to Mayaguez after the bombardment, as he had no intention of capturing the town, his intention now being to engage the Spanish fleet
We will now consider the island of Porto Rico and will glance briefly at its history. Our engravings are made from photographs recently taken in the island and show some of the scenes in this tropical land.
Porto Rico, the fourth in size of the Porto Rico, the fourth in size of the
Greater Antilles, lies 70 miles west of Greater Antilles, lies Hayti and it is about a thousand miles, as the crow flies, from Havana to the harbor of San Juan du Puerto Rico. It forms an irregular parallelogram, 108 miles long and 37 miles broad; its area is 3,550 miles, which is less than that of the island of Jamaica, or about seven-tenths that of the State of Connecticut. The northern coast is rugged, and at the eastern end of the island it is very high and the cliffs ex tend in almost an unbroken line from Cape San Juan to the port of the same name. Porto Rico is traversed from east to west by a range of hills which are so situated that the streams flowing north are much longer than those flowing to the south. The highest part is near the northeast corner, and the highest peak, Yunque ("Anvil"), is 3,600 feet high and can be seen for a great distance out at sea The mountain ranges serve to divide the island into two parts as regards climate. As the hills and mountains intercept th northeast trade winds with their rain clouds, there is sometimes almost a superabundance of moisture in the
lowlands of the north, while in the south severe drouths occur and the land demands artificial irrigation, which is, as yet, carried out with very little system. The island is, on the whole, well watered. Over 1,300 streams have been counted, of which 47 are considerable rivers. The island is rather beautiful in appearance, forests still covering all the highest part of the hills, but the interior seems to be one vast system of mountains, and from the deck of the steamer there seems to be a limitless sea of hill's with rounded summits and with such gentle slopes as to be susceptible of cultivation to their very summits. In reality, however, it is level compar ed with the other West Indian islands. It is strange that few of the rivers are navigable even at their mouths, and vessels of small burden can ascend them only for a few miles.
The climate is such that foreigners are easily acclimated, and fevers there have the reputation of not being as contagious or as dangerous as in Cuba an San Domingo

The residents are acclimated to fever and do not suffer much, but the casual visitor in the summer is in danger. The climate is divided generally into two seasons, the wet and the dry, or there may be two brief rainy seasons, when the sun passes over the earth in the vernal and autumnal equinoxes; and in the latter the hurricanes occur. The dry months are usually from November to April inclusive, and the wet are from May to November. The longest day scarcely exceeds thirteen hours, and the difference between the maximum and minimum of heat is much less than with us; in summer the annual mean being about $75^{\circ}$ to $80^{\circ}$, with the daily range of not much more than $10^{\circ}$ and an average winter temperature of $70^{\circ}$. Then there is the daily alternation of sea and land breezes, the former setting in about nine in the morn-
ing and continuing through the day, the latter beginning soon after sunset and holding until an hour after sunrise, the hottest times being in the intervals be-
tween the two. The worst natural characteristic of the island is the tremendous hurricanes that sweep across it between the months of July and October.
Porto Rico was discovered by Columbus, in November, 1493, and in 1510 Ponce de Leon founded the town of Caparra, which was soon after abandoned, and with more success in 1511 the city of San Juan Bautista. The native inhabitants were subdued according to the usual methods of colonization which were adopted by the Spaniards, by sweeping them entirely away, and from that time on, the island was left to fill up with Spanish and slaves. It has therefore been very nearly a detached section of Spain itself, and has kept in closer sympathy with the Spanish government than has any of her other colonies in the western hemisphere. In 1595 the capital was sacked by Drake, and in 1598 by the Duke of Cumberland, and it had other sieges, for in 1615 Baldwin Heinrich, a Dutchman, lost his life in an attack on Castillo del Morro. The attempt of the English in 1678 was equally unsuccessful, and Abercromby in 1797 had to retire after a three days' siege, though in the same campaign he captured Grenada, Demerara and Trinidad. In 1820 a movement was made toward a declaration of independence on the part of Porto Rico, but Spanish supremacy was completely re-established in 1823, and the last traces of slavery were abolished in 1873 by the abrogation of the system of forced labor. In 1870 Porto Rico was made a province of Spain instead of a colony. Re cently, when the so-called system of autonomy was offered to Cuba, Porto Rico received the same. It now has a premier and a house of representatives and all the other forms and shapes of a representative gov ernment, but they are all in the hands of the Spanish
tence with the minimum of labor, Porto Rico may well be termed an earthly paradise ; but while nature has done everything for this island, the race whom the accident of discovery placed in power have done worse than nothing toward its development. Poverty exists everywhere, since the taxes are so oppressive, administered as the government is by alien office holders assisted by foreign soldiers. The island has 470 miles of telegraph and 137 miles of railway, besides 170 miles which is under construction.
San Juan is the capital of Porto Rico and has about 28,000 inhabitants. It is on the northeast shore of the island. The harbor, as will be seen by our map, is one of the finest in the West Indies, being large, sheltered and capable of accommodating any number of the largest ships, having anchorage in it from three to seven fathoms. It bears a striking resemblance to Havana Harbor, to which it is but little inferior. Its entrance toward the north is invitingly open to the vessels of our great republic. Its entrance is over 2,000 feet wide and is defended on the west side by forts erected on two small islands. On the east side of the harbor is an extensive sand bank, but the entrance to the harbor has no sand bank. The harbor is big and deep, but the coral formation makes it impossible for ships of any great draught to get close up to the wharves. The city occupies all of what is generally supposed to be an island, but it is not really built on an island at all, but on a coral reef at some distance from the shore for a great part of its length and joined to the main island at the eastern end by a short bridge. The town is completely inclosed within massive walls of stone and mor tar, which rise to a height in some places of from fifty to one hundred feet. Like Havana, which has its
"Morro " or citadel (literally a round Moorish tower), it has, or rather had, fortifications on an extensive ale, with bastions and drawbridges, with sentry boxes hanging over the sea and grim, gray walls towering threateningly. One may find a very counterpart on a small scale in the old fort at St. Augustine and every way similar to those at Havana before her walls were torn down.
The peninsula upon which Morro and the lighthouse stands is thrust out into the sea, one side breasting the thunder ing surges of the Caribbean Sea and the other guarding the placid waters of a beautiful and almost landlocked harbor. The old forts suffered terribly from the shells of Admiral Sampson's fleet and offered but little effective resistance to the fire of the modern rifles. They had an advantage over a fleet in being at a considerable elevation, thus enabling them to deliver a plunging fire. Until early in last year the only battery of any consequence was placed toward the east coast, designed specially to protect the city from an anticipated attack on the land side. The battery has several Krupp guns of medium caliber. It is believed several more of these were mounted in Morro Castle at the other end of the town The remainder of the ordnance in San oigarchy that controlled the island while it was still Juan along the walls was, until very recently, of an a colony. Like Cuba and the Philippines revolutionary parties existed in Porto Rico; its leaders are exiles living in Europe and the United States. The discon tented elements of the population, which are by no means small, have not dared to fight, lest Spain import a greater army and sweep them off the face of the sland, the military roads making concentration of roops easy. The insurgents are in no shape to battle with the 40,000 troops Spain keeps on the island, but hey are hoping for some good to come to them as a result of the war over Cuba. The inhabitants of
Porto Rico numbered, in 1877, 813,937 , the negroes Porto Rico numb
In Porto Rico the entire land has the appearance of picturesque and continual chain of habitations, the land being under good cultivation, with fields of sugar, ixty to, cofee, patches of rice, etc. There are shy and fand villages on the island, but it is really and mountains and rich valleys. The soil everywhere is very fertile and cultivable, even to the mountain crests, the pastures of Porto Rico being famous for the succulent qualities of their grasses, upon which feed cattle and horses. These are shipped in great numbers, and constitute the chief wealth of a great many people engaged in the business. Among the hills also are thousands of coffee plantations, for here the soil is good and the climate is adapted for its perfect develop ment. In the valleys also grow the sugar cane, cocoa bananas, plantains, in fact, all sorts of tropical fruits The banana industry has been vastly increased in the rescued many a planter from ruin. This will also be the case in Porto Rico, which has everything for its profitable cultivation, provided proper attention is
given to growing them. With its wonderful range of given to growing them. With its wonderful range of
vegetable products and consequent facilities for subsis-
obsolete pattern and unserviceable against the armo of modern ships. A large number of rifled guns wer sent to San Juan from Spain about three months ago and recent reports indicate that they have been mounted. There are forts and batteries all along the outer edge of the reef.
Though the main portion of San Juan is inclosed within the walls, through which entrance is obtained only by well guarded gateways, yet there is a small own by itself in the Marina between the fortification and the wharves. Here is a fine public garden and pleasure space for booths and restaurants as well as th public cockpit where battles royal are frequently waged The buildings of the inner city are of stone, massive and substantial like those of Havana and the city of Mexico, and are of the old world type, which wat a urnish much food for a conflagration ind chief official bardment. Here the captain-general and chief a reside. Many of the wealthy inhabitants have summe residences at Bayamon, and the very poor live in the huts shown in one of our engravings. The "Morro" is an interesting place with its deep dungeons and coverd ways.
San Juan is not a very attractive city under its present conditions, owing to its filthy streets and lack of attention to sanitation. The only thing that saves the city is its being built on a declivity and it is thereore fairly well drained. Yellow fever is quite prevaent. That the city is not a healthy one is shown by he frequent funeral processions that pass through the streets to the cemetery, whichlies between the sea wall of the fort and the shore, the interments being in columbarie. San Juan is only one port of the islands, and there are some harbors that are as fine, if not as arge and land-locked. The other most notable city is once, having a population of about 35,000 .
The total revenue for $1894-95$ was $\$ 5,454,958$, while
the expenditure was $\$ 3,905,667$, very little going for public improvements. The principal exports in 1896 were coffee, valued at $\$ 2,500,000$; sugar, $\$ 3,500,000$; tobacco, $\$ 425,000$, etc. The total exports in 1895 amounted to $\$ 15,799,000$, and the imports to $\$ 17,446,000$. In 1895 1,077 vessels of $1,079,036$ tons entered Porto Rico. From a commercial point of view the acquisition of Porto Rico would be important to the United States.

## Recent Archæological News.

The finds of old gold and silver coins at Santiponce, near Seville, have brought many antiquarians to the spot. The excavations have been continued, with great zeal, and among the latest finds are a Roman marble statue in complete preservation, an amphora and some fine mosaics. But more interesting still is the location of the walls of ancient Italica, a portion of which has been laid bare. They were made of roughly formed stone and mortar without battlements, but a truncated square tower in a perfect state of preservation is the latest discovery. Santiponce is among the hills that bound the valley of the Guadalquiver on the west and is about three miles from Seville, which is across the river on the other side of the valley. The town of Italica was founded by Scipio Africanus in the Second Punic War. It was the birthplace of the Roman Emperor Trajan.
The Forum of Augustus is the cats' home of Rome. There the superfluous felines are dropped over the wall to join their numerous fellows in the Forum below. Every day charitable people throw scraps of food into this open prison, and, as seen from above, its inhabitants seem to be plump and happy-so happy, indeed, that they make no attempt to escape. A few years ago the Forum of Trajan was also used as a depositing place for cats that were not wanted, but as it does not present the same facilities of retreat and hiding as the Forum of Augustus, street boys and others took every opportunity of stoning the unfortunate animals. Finally, the authorities, after many complaints, refused to allow any more cats to be thrown there, and, in order to get rid of those already living in the Forum, presented one to each sentry box on the walls of the city. They all, however, speedily disappeared from their new homes, some returning to the foot of Trajan's Column, where they were either killed by the street boys or transferred to the Forum of Augustus.
The Institute of France has formally entered into possession of the Château of Chantilly, says The Builder, and the collections included in what is now to be called the Conde Museum, the contents of which of the arrangement of the various classes of objects according to the intention of the Duc d'Aumale. The museum contains 557 pictures, without counting the pictures, engravings and drawings which adorn the Château d'Enghien; 30 enamels; 282 miniatures; more than 200 gems and precious stones displayed in glass cases; and in addition to the equestrian statue o Conde, by Paul Dubois, about 50 statues and busts in marble, among which are three by Chapu ("Jeanne d'Arc," "Pluto" and "Proserpine"), a "Hebe" by Dezeine, the statue of Bossuet by Guillaume, two bass reliefs by Jean Goujon, and animal sculptures by Gar det and Auguste Caïn. Among the 12,600 drawings are 111 original drawings by Nicholas Poussin and more than 500 by Raffet. Besides these are 5,000 engravings, a collection of 3,685 medals and a library containing 24,000 printed volumes, 1,493 MSS. and 279 parchments. The château includes besides more than 500 pieces of furniture and other objects of great value -armor, tapestries, etc. There is also a collection of autographs and historical documents of great interest.

Herr Ernst Berger, in his "Contributions to the History of the Development of Painting," describes the way the colors of the ancients are examined by chemway the colors of the ancients are examined by chem
ists as follows: The color layer is first carefully ists as follows: The color layer is first carefully
scratched off with the knife in order to separate the colors from the lower ground. A portion of the color powder thus obtained is dissolved in water and heated in a retort; then the binding materials, dissolved in water, are separated from the color pigments by filtra tion. The filtrate is evaporated, and from the residu um the binding agent present is determined, according to whether it contains organic substance or not; ashe which turn brown with a burning smell point to or ganic binders, likewise the presence of ammonia (am monia is recognized by the odor or by means of tur meric paper, which is dyed brown by ammonia vapors) A second portion of the scraped-off powder is treated with boiling alcohol, which dissolves the fatty resinous substances; the mass is filtered as above, and the fil trate is evaporated in like manner; from the residuum which takes on a dark color, an oily or resinous binder results, which can be determined more closely by the odor. In order to recognize the presence of lime, drop of hydrochloric acid suffices, which causes effer vescence. The color substances remaining in the filter are then tested by means of different reagents for the presence of metals, earths, etc., and conclusions are drawn accordingly. In exactly the same manner the foumdations on which the painting was are tested.

## Sorrespondence.

## The Naval Supplement.

## To the Editor of the Scientific American :

I desire to express to you my appreciation of the ex cellence of the Naval Supplement your paper has re cently issued, and especially so because, instead of rep resenting, as is so often done, our vessels as superior to anything else afloat, it frankly calls attention to cer tain of their limitations, e. g., the low freeboard of the "Indiana " and "Kearsarge" classes, and also to the doubts regarding the desirability of the superposed turrets of the "Kearsarge" class.
It is only by teaching our people regarding the short comings of their present vessels that a demand for bet ter ones can be created, and nothing short of the best at the time of construction should satisfy us.
Furthermore, exaggerated ideas as to the excellenc of our vessels, as compared with those of other nations, may lead to unpleasant consequences.
Permit me also to express the hope that you will follow the publication of this Naval Supplement with one on United States ordnance, both that of the navy and of the army, including in the latter the armament or coast defense
May I suggest that in such a supplement especial at tention should be given to the subjects of rapid-fire guns, projectiles and smokeless powder, and that should ou, on investigation, conclude that we are behind any ther nation in adopting useful inventions, or have failed to keep our ordnance up to the highest standard, either in the matter of guns or that of ammunition, ou should frankly say so ?
Comparisons such as have appeared in various pubcations, e. g., between the efficiency of the armamen of our "New York" and that of the Chilean "Esmeralda," or that of our "Kearsarge" and the Japanese "Fuji," of the muzzle energy of our guns as compared with those of the same class in the English, French and German services, etc., would, I think, be of interest if published in such a supplement.
Boston, May 11, 1898.

## An Electric Railroad for Freiburg. <br> To the Editor of the Scientific American

The city of Freiburg, a town of 55,000 inhabitants, with most beautiful surroundings, many large villages near by and romantic valleys into the heart of the Black Forest, is contemplating the building of an electric railroad system and a central power station for electric light and locomotive power.
Competition for these new enterprises is open to the world, and as United States consul I consider it my duty to call the attention of American manufacturers to the same, and feel that your valuable publications are the best medium for that purpose; hence send this note to you.
Freiburg is a busy little city, very conservative and slow but sure in whatever it undertakes, and whatever
is constructed here is built, not for a day or lifetime, but for an age.

Rapid" transit they have here, but it is the old fashioned omnibus. Electric light is seen nowhere but in several factories with private motors and dynamos Hence the need of these new enterprises and the call for bids for the same, such bids to be in the hands of the Cormmittee on Underground Structures (Tief-bauamt) before July $1,1898$.
I mail you under separate cover the circular letter plan of the city, plans and profiles of the projected enterprises, etc., such as the above - mentioned com inittee sends to parties interested, and shall be glad to procure any further information for you or othe Americans who may take an interest in this matter.
E. Theophilus Liefeld,

United States Consul.
Freiburg, Baden, Germany, April 29, 1898.

## The Current Supplement.

The current Supplement, No. 1168, contains articles of general interest to our readers. "The Use of Aluminum in Bicycles and Light Machinery" describes some of the latest advances in the use of tinis metal as a sub
stitute for brass, steel and iron. "The Report of the Building Committee of the Scientific Alliance of New York " outlines an interesting plan for the co-operation of scientific societies. "The Great Shore Battery of Krupp Guns at Cuxhaven " is a subject of a splendid full page engraving. "Recent Work in the Princeton Psychological Laboratory" is the subject of an interesting article by Prof. J. Mark Baldwin. Papers of
this nature in which psychology is treated in a popular yet clearly scientific manner are rare. "Malay Life in the Philippines," by W. G. Palgrave, is continued from the last number. It is one of the most important contributions ever made to the literature of travel in the Philippines.

The French mint, besides coining money for the home country and her colonies, has also last year received and filled orders for Abyssinia, Bolivia, Chile, Morocco,
and Russia.-La Science en famille.
M. Phisalix announced to the Academie des Sciences, Paris, some time ago, that cholesterine injected into the blood of animals made them resist the venom of vipers. Doubts were thrown on his results, because he had used cholesterine of animal origin. Since then he has repeated his experiments with crystallized cholesterine extracted from carrots, and found it as effective as that from animals. Moreover, he has obtained similar results with crystallized tyrosine ex tracted from the dahlia and even with the sap of the dahlia.
Mr. W. H. Wheeler draws attention in Nature to the effect of gales on tideless lakes and seas, which he says is at times so marked as to cause considerable inconvenience and anxiety to mariners. Thus in the Caspian Sea a gale will raise the water on one side six feet and depress it on the other as much, making a total difference of level of twelve feet. In the Baltic easterly gales will alter the level upward of eight feet In Lake Erie depressions and elevations of from two to four feet are common, while occasionally heavy gales have produced a difference of level of upward of fifteen feet.
When drawing attention, about a year ago, to the bipedal movements of certain Australian lizards, notably the comical little chlamydosaurus, or "frilled lizard," whose photograph is now familiar, Mr. Saville Kent referred to an unconfirmed rumor that the Mexican iguanoid lizard also possesses the power of running on its hind legs, being led to this by the correspondence in general structure of the creatures, especially the abnormal length of the hind limbs. In Nature he publishes a letter from a gentleman living in the West Indies, which shows that there also all the lizards, from the large tree iguana, five feet long, down to the tiniest mites which scamper about among the stones, are accustomed to run erect on their hind legs when hurried. The correspondent adds the interesting information that on the rocks about the watershed of the Guiana are old drawings of lizards running erect. Mr. Saville-Kent points out that this peculiarity, which a year ago was doubted by many nat uralists, but which has now been shown to be common to so many different species of lizards, deserves attention as pointing to bipedal locomotion in some remote ncestor.
Mr. F. G. Jackson's account of his three years' exploration in Franz-Josef Land is the prominent feature of The Geographical Journal for February. The main result of his adventurous journeys seems to have been the mapping of the southern part of the archipelago, and, it may be added, the conviction that it is "one of the worst" routes to the pole. A study of the geological collections brought back by the expedition appears to show that the islands are fragments of a vast basalt plateau, probably the "grandest example of volcanism in the world." On account of the ab sence of warm southwesterly winds, the flora is "more scanty and stunted on the whole than that of almost all the other Arctic regions." There are certain plants, however, as poppies and four species of mosses--brilliant green, red and golden yellow-which give color to the landscape. The only land mammalia are the bear and the fox, but three new species of birds were discovered. The northern lights were disappointing, though occasionally they were brilliant enough "to cast a shadow and to eclipse stars below the third magnitude." The highest registered temperature wa $43^{\circ}$ Fah.; the lowest, $-54^{\circ}$. The Journal also con tains Dr. Mills' elaborate classification of geography with arbitrary symbols, presented at the Toronto meeting of the British Association.
The chemical and toxic properties of the poison of the honey bee have been a subject for long study by a German scientist, Dr. Joseph Zanger. During his investigations Dr. Zanger employed 25,000 bees. He found that the fresh poison is clear, like water, of an acid reaction, bitter taste and of a fine aromatic odor On evaporating and drying at a temperature of $100^{\circ}$ Centigrade ( $212^{\circ}$ Fahrenheit) a gummy residue is left It is soluble in water ; with alcohol it forms an emulsionlike mixture. The aromatic odor is due to a volatile substance, which disappears on evaporation, and is not poisonous. The poisonous constituent is not destroyed by short boiling, nor by drying and heating the residue to 212' Fahrenheit, nor by the diluted acids r alkalies. Dr. Zanger has proved the existence of ormic acid, but he has also proved that that is not the poisonous principle. The latter is an organic base soluble with difficulty in water, but kept in solution by an acid. On the healthy skin neither the bee poi on nor a two per cent solution of the poisonous principle has any effect, but they act as powerful irritants on the mucous membranes. His tests made on rabbits and other animals show that when the poison is brought in contact with the eye there follow lachrymation, hyperemia, chemosis and croupous membrane on conjunctiva. The general condition is also af fected; the animals become melancholy, take no food, but are very thirsty, and the urine shows smal amounts of albumen.

THE RAPID-FIRE GUNS OF THE "NEW ORLEANS."|baseball. If the player wishes to send the ball slowly In our issues of March 26 and April 9, we have for a short distance, the hand is only drawn back slightdescribed and illustrated the "New Orleans," one of ly behind the body; but if he wishes to throw it as the twin boats recently purchased from the Brazilian $\quad \begin{aligned} & \text { swiftly as possible, the arm is drawn back to its full }\end{aligned}$ government. We are now enabled, through the $\quad$ swiftly as possible, the arm is drawn back that the propelling power of the hand and courtesy of Capt. Folger, who is in command of the arm may act upon it for the greatest possible length of vessel, to present some excellent views of the main time. So in the gun, great length means a greater battery of rapid-fire guns. The armament is entirely time for the powder pressure to act, producing greater of the rapid-fire type, and as we have shown in the articles referred to, the energy of the metal thrown in a given time is exceptionally exceptionally great for a vesse of 3,000 tons placement
The main armament is made up as follows: Ther are three 6 -inch ra-pid-fire, 50 -caliber guns forward (see Fig. 3), one on the forecastle deck and one sponsoned out on either beam on the gun deck; three 6 -inch rapid-fire guns aft, one on the poop (see Fig. 2), and two in sponsons on the gun deck. Of these guns three can be trained dead ahead, three dead ahead, three dead astern, and tw on either broad side. On the gun deck, in broadside between the 6 inch guns, there are also four $4 \%$ inch rapid-fire guns. The secondary battery con


Fig. 1.-6-INCH RAPID FIRE GUN ON UNITED STATES SHIP "NEW ORLEANS"-BREECH OPEN.
city of 3,215 feet per second and a muzzle penetration of 18.7 inches. Again, the 6 -inch 30 -caliber gun, with a velocity of 2,000 feet per second, penetrates 14 inches of iron at the muzzle, as against 2,642 foot-seconds velocity and $21 \cdot 2$ inches penetration for the 50 -caliber 6 -inch gun mounted on the "New Orleans."
It was largely the 5 -inch, many-calibered, rapid-fire batteries of Commodore Dewey's squadron that swept the Spanish fleet out of existence by the awful hail of shells which they poured upon it.

The 6 -inch gun of the "New Orleans" is carried in a trunnion sleeve or seating, in which it slides. It is held in the forward or loading position by coil springs, inclosed in two cylinders which form part of the seating. Attached to the gun are two pistons which travel in the cylinders, the latter being filled with glycerine. When the gun is fired, the gun slides back in the sleeve, carrying the pistons with it, and the recoil is checked by the resistance set up by the oly set up by the glycerine in traveling through the pis tons, the passage of the fluid being throttled by a gradually closing valve. After the gun has made its sists of ten 6 -pounders, of which six are on the gun account of the unwieldiness, though Canet, the French full recoil it is returned to the loading position by deck, and four on the poop and forecastle deck. The manufacturer, has built guns of 60 and 80 calibers. starboard 6-pounder on the poop is shown in Fig. 2, just beyond the chase of the 6 -inch gun. In the foreground of the same picture is seen one of the two field guns, which would be taken in boats by a landing party for offensive operations on shore
Those of our readers who are familiar with the appearance of the larger rifles will notice that these guns are unusually long, the length being 50 calibers or 25 feet. It is only a few years since 35 calibers was the limit for rifled guns. The increased length is adopted to secure greater velocity. With a given charge of powder the velocity of a shell will be proportional to the time during which the gases of explosion act upon it in the bore of the gun. The longer they can exert their pressure upon the shell, the greater will be the velocity with which it will issue from the muzzle.
The action may be likened to that in throwing a

The increase of energy due to increased velocity is extremely valuable in the navy, where it is desirable to save all possible weight. If by increasing its velocity we can make a 5 -inch shell penetrate as far as a 6 inch shell, we can save about one-half the weight of a 6 -inch battery. It is considered that, so long as the shell can be put through a ship's armor, its size is of secondary importance. If an 8 -inch shell could be made to penetrate the side armor of a ship and burst in the engine or boiler room, it would be certain to disable the ship almost as surely as a 10 -inch or 12 -inch hell.
To show what velocity will accomplish it may be notd that a 4 -inch 40 -caliber gun has a muzzle energy of about 1,000 foot-tons and will penetrate 10 inches of iron at the muzzle; whereas an 80 -caliber gun of the same bore has 2,055 foot-tons of energy, a muzzle velo
coil springs, which are compressed during the recoil. The gun and the gun crew are completely protected on the front, sides and are and overthickness in front of the gun. The shield comes down close to the deck, and, as it is bolted to the carriage and rotates with it, the crew are safe from machine gun bullets and the lighter rapid-fire shells. The sights, of which there are two separate sets, one on each side of the gun, as shown, are attached to the trunnion sleeve and are not affected by the recoil. The gun is carefully balanced upon a conical mount, which is firmly bolted down to the framing of the deck. It rotates on a race of steel balls, and the balance, when it is in the loading position, is so perfect that the whole piece, weighing over $71 / 2$ tons, can be moved with a very slight pressure. Attached to the left hand side of the carriage and swinging with the gun is a


Fig. 2.-A 6-Inch rapid-fire gon on the new orleans at its maximum elevation FOR RANGE OF SIX MILES.


Fig. 3.-MILITART MAST AND FIGHTING TOPS OF THE
platform, upon which the gunner stands. A similar platform is hung from the right hand side of the carriage and in line with the right hand sights. Just in front of the gunner are two hand wheels, one vertical, one horizontal, for training and elevating the piece. In front of the platform is stowed away a small electric battery from which wires lead to the breech block for igniting the charge. This is done by the gunner pressing a small rubber air bulb.
It is possible that the murderous hail of bullets from an enemy's machine guns may find its way through the open slots in the shield and carry away the sights. If this should happen, the gun could be given the proper elevation by means of the graduated elevating arc, which can be seen to the right of the gunner. On the inside of the shield to his left is a table giving elevation for various distances, and from this he can read off the proper number corresponding on the arc to the distance of the enemy's ship.
We explained in our last issue that the speed of the rapid-fire gun was due to the fact that the shell and charge were put in a metallic cartridge case, and that the sights were fixed to the gun carriage and not to the gun, thus obviating the necessity for resighting after each discharge. A 6 -inch gun of the kind carried by the "New Orleans" has fired 7 rounds in 61 seconds, and the $4 \cdot 7$-inch gun has a record of 5 rounds fired at a target in 22 seconds.
The breech block, it will be seen, is different from that shown in the Dashiell mechanism (Scientific American, April 3j). The block, instead of being made cylindrical. is conical or tapered, to enabl it to be swung open without first drawing it back clear of the breec! in line with the axis of the gun The breech is un The breech is un ocked and open ed with one con tinuous swing o the lever from lef to right. The first part of the swing gives a partial turn to the threaded block. bringing the threaded portion opposite th longitudinal channel ways which are across the threa in both the breech and the block The continued motion of the lever swings the block out of the breech into the position shown in one of the figures There are thus only two motion
of the breech
block instead of three. At the end of its travel, the lever moves an extractor which loosens the empty cartridge sufficiently for it to be drawn from the gun by hand.
The small tray seen just in front of the open breech is a brass guide piece, which automatically rises to protect the thread from being bruised by the shell when the cartridge is thrust into the breech.
One of our views shows the gun at its maximum elevation, corresponding to a range of six miles. This is not the maximum range of the gun, for, with $45^{\circ}$ elevation, it could throw a shell some nine or ten miles; but the stresses set up in the framing of the ship by such an elevation would be prohibitive. It is for the reason that guns cannot be given their maximum elevation on shipboard that the possibility of long range bombardment is very remote in the case of most of our fortified cities. The 11,12 and $131 / 2$-inch guns of foreign navies are not capable of nearly as great an elevation as the gun herewith illustrated, and their bombarding range would be proportionately limited.
One of our illustrations of the "New Orleans" shows the forward military mast with its double tops. In the lower top are two 1-pourider guns, together capable of firing 50 to 60 shots a minute. Above them, in the upper top, are two Maxim machine guns, each of which could pour leaden bullets out upon the enemy like water from a hose. The combined capacity of the two is over 1,000 shots per minute. Two tops, with a similar armament, are carried on the mainmast.

Dr. Alber't C. Peale reports to the government that there are 8,822 known mineral springs in the United States. Many more may be discovered.


## Fig. 4.-SIGHting a 6 -inch rapid-fire gun breech closed

completely to pieces by the explosion, the keel and bottom plating being actually blown up through all the decks, so that some parts of the bottom plating are now above water. This would show that an extremely large charge of high explosives was employed-certainly five hundred pounds. Would it have been an easy matter for any private individuals, no matter how evilminded they may have been, to obtain in Havana five hundred pounds of high explosives, to have packed them in a torpedo and to have placed them under the "Maine" and exploded the charge? I think not.
Some of the French and Spanish engineers combat the torpedo theory by asking why no dead fish were found. In reply to this I would say that, if the torpedo was placed in close proximity or in actual contact with the ship, the explosion would have relieved itself by discharging the gases through the ship, instead of pro ducing the violent concussion of the water which is necessary to kill fish. It has also been said that little or no water was blown into the air. Very true. There was no water above the torpedo, the torpedo was probably in direct contact with the bottom of the ship, and when exploded it found vent through the ship, as being the direction of least resistance, it being remembered that, when these high explosives are em ployed, the inertia of the mass counts for much more than the strength of the materials.
I have read with the greatest care the reports from all parties relating to this disaster, and as an engineer I defy anyone to show how the ship could have been distorted in the manner shown except from an explosion outside of the ship. At any rate, I feel sure
that every American believes most implicitly that the bow is made of solid oak, 13 feet thick, protecte by steel. We have already given accounts of thi magnificent gift of Mr. Harmsworth and also of the expedition to Franz-Josef Land. The "Windward" is notable as being the vessel which took Nansen and Johansen from Franz-Josef Land to Norway Lieut. Peary's plan has also been outlined. He wil eave in July for the North, and as the expedition may be gone several years, the "Windward" will carry stores from New York at intervals of a year or two

New Mines in the South African Republic
Rich deposits of coal have been discovered at abou fifteen miles from Johannesburg and eleven miles from rugersdorp. The coal-bearing layer is sixty-five yard deep. The new mine supplies much better coal, and is much nearer the gold fields, than the mines which have upplied the coal hitherto. Diamonds have been found at Rietfontein, near Pretoria, and it is estimated tha the new mine will be twice as rich as the celebrated Kimberley fields. Mr. Kehler and others have found Kimberley fields. Mr. Kehler and others have found
very valuable gold reefs between Johannesburg an Krugersdorp, at a depth of 2,400 feet.-Cosmos.

A mountain experimental observatory has been established on the summit of Mount Kosciusko, 7,328 eet above sea level, and the highest point in all Aus ralia; also a sea level station on the southeast coas adjacent at Merimbula, where simultaneous observa tions are taken. Simultaneous readings are also take a new station in Sydney, at Sale, in Victoria, and a Hobart, and on Mount Wellington, Tasmania

## Miscellaneous Notes and Receipts

A New Gold Field.-From Gudemesterháza, a town situated at the foot of the Görgeny snow mountains, the former favorite hunting grounds of the departed Austrian Crown Prince Rudolf, sensational news reaches us. In the wilderness of the virgin forests, an immense grold field has been discovered. In different places diggrings have already been instituted, with the result that in nine cases rich veins of gold were found at a depth of 10 to 12 meters.-Edelmetall-Industrie.
Adulteration of Linseed Oil with Cod Liver Oil.-According to the Pharm. Ztg., this adulteration occurs very frequently, of late. For the detection of this sophistication mix 10 parts (weight) of the oil with 3 parts (weight) of commercial nitric acid in a glass cylinder by stirring with a glass rod; place aside until the oil layer and the acid layer have separated. If the linseed oil contains cod liver oil, the oil layer takes on a dark brown to blackish color and the acid becomes orange-yellow to yellow-brown, while pure oil, after being treated as aforesaid, first shows a water green, later a dirty yellow-green color, the acid taking on a light yellow.
To Mount Photographs on Glass.--According to the Werkstatt, clean the inner hollow side of the pane thoroughly, pour on gelatine dissolved in boiling water, lay the picture on and pour on gelatine again, so that everything swims. Then neatly remove what is superfluous, so that no blisters result. and allow to dry. The following recipe is said to be still better: Gelatine, 16 parts (weight) ; glycerine, 1 part (weight); water, 32 parts (weight); methylic alcohol, 12 parts (weight). The mixture is prepared by causing the gelatine to swell up in water, then dissolving it with the use of moderate heat, adding the glycerine, stirring thoroughly and pouring the whole in a thin stream into the alcohol.
Chinese Varnish for Wooden Articles. -The wood is coated with a puttylike mass, which is prepared from gypsum, potter's clay, common earthy feldspar and glue. When this putty is dry, it is carefully rubbed off with sandstone; then it is coated with black paint dissolved in lac varnish, and when this is dry a lac varnish is applied, derived from a tree called tsie chou in China, a variety of sumac, whose sap exudes in the form of a gum. In the liquid state this lacquer is so poisonous that it causes painful swellings on the faces and on the hands of those working with it. The
varnish must dry in the air, whereupon the decoravarnish must dry in the air, whereupon the decora-
tions are engraved with a gra ving tool and the pieces of mother-of-pearl are pressed in. The color or gold which one desires to apply is mixed with oil varnish and the whole is lacquered. According to Macaire Princep, the varnish consists of benzoic acid, yellow resin and colorless volatile oil. It has a brown color and a peculiar aromatic odor and a taste similar to that of copaiva balsam. On wood the varnish gives a glossy coating which dries readily. According to the Zeitschrift für Drechsler, it can be dissolved in cold alcohol and still quicker in boiling alcohol, likewise in il of turpentine.
Waterproof Wax Polish on Oak.-Oak furniture is known to be provided externally with a wax polish. The wax coating enters the cavities of the coarsely porous wood and fills them, imparting a handsome dull gloss to the wooden surface. Complaints were heard everywhere that wood surfaces thus treated were found to be extremely sensitive to water. Every drop of water which touches the polish produces an ineradicable ugly white spat. Wax is a firm substance which cannot be so readily distributed over the wood surface. It must, therefore, be previously transformed into a dissolved state, which is frequently done by dissolving the wax in turpentine. After the application the solvent evaporates and the wax remains finely and uniformly distributed. Another process consists in boiling the wax in water containing soda. A soaplike mass results, consisting of fine wax drops, which are suspended in the liquid similar to the fat globules in milk. This mode of preparation is more recommendable, because it is cheaper than the turpentine solution and also because it can be diluted to any proportion with water. More suitable than soda, however, is potash for preparing the stain. If potash is employed, the liquid attains greater softness and suppleness, enters the wood better and is easier distributed. In case one desires to alter the tone of the wood somewhat, the stain is tinted by the admixture of a pulverized dyestuff or by dissolving a soluble color. In the latter case care is recommended, as the organic coloring matters bleach very much, when exposed to the light. With mineral dyestuff powders this need not be apprehended. Frequently Vandyke brown is added to the stain, as the oak wood receives a dark, pleasant shade from it. A wax polish obtained by applying the aforementioned stain is just as sensitive to water as any other wax coating, but it can be protected from the access of water and the action of same by providing it with a thin coat of rubbing varnish. Such a varnish is obtained by dissolving 6 parts (weight) Zan zibar copal in 5 parts (weight) boiled linseed oil and diluting the mixture with 10 parts (weight) turpentine. This coating dries in one day at most and leaves
a dense, firm covering of resinized oil and copal. It is perfectly impervious to water, so that the wax layer under it cannot suffer from any drops of water falling
on it. The drop of water may even slowly evaporate on the spot where it has fallen and dry up, without leaving anything else behind than perhaps the lime contained in the water. The latter can be easily wiped off. The proportions of copal, linseed oil and turpentine as enumerated give a good varnish.-D Allg. Gewerbezeitung.

## OUR TROOPS AT CHICKAMAUGA PARK.

## ps is chief

 y limited to gala day parades, owing to the fact that the United States has such a small standing army, so that the mobilization of a large body of men, which is so frequent in Europe, has not been seen in this counry in this generation. Not only have the troops of the regular army been called to active duty from the humdrum existence of army stations or from the Western plains, but the National Guard of every State is mustering into service up to the limit allowed by the War Department; and over 600,000 men have volunteered their services in the present war, although this is more than four times as many men as are required. The subject of the mobilization of a vast army is so interesting that we take pleasure in presenting views of some of the stirring scenes which have been recently enacted at Chickamauga Park, which is, or rather was, up to a few days ago, the great center of activity.Chickamauga Park, near Chattanooga, Tenn., is really over the border line and is in Georgia. It has been the point of concentration for the regular troops which are being gathered for the war with Spain, and it is the initial camp where mobilization has taken place and from which the soldiers and supplies are dispatched to the sea coast towns, as Tampa, within striking distance of Cuba. Of the 25,000 troops which make up the standing army of the United States, nearly 20,000 have been in camp at Chickamauga Park and at Port Tampa, Fla., but they have now left for the South, and it is probable by the time this paper reaches our readers 30,000 volunteers will have taken their place. The gathering at Chickamauga Park was the largest concentration of the regular troops which has taken place in this country since 1865 , and special
interest attaches to it from the fact that the mobilization took place in the South, and the united forces from the North, South, East and West occupied the historic field of Chickamauga, where one of the bloodiest and most desperate battles of the civil war was fought. Almost twice as many laid down their lives in that engagement as were represented in the entire army recently encamped there. The thick woods open meadows, brooks, hills, everything, in fact, is topo graphically the same to-day as then.
The regular army, which has been for the most part relegated to Indian fighting in the far West, is now brought together, so that thousands of our people have, for the first time, seen an imposing army, and the troops have created much enthusiasm in the smaller towns and cities through which they have passed. Even be army was moving toward Chickamauga, the first troops arriving April 20.
Our large engraving shows the Ninth United States Infantry en route to the South, the photograph being taken from Maryland Avenue, Washington, D. C., and the Capitol of the United States may be seen in the distance. Every incoming train at Chattanooga is met
by a throng of people who cheer the soldiers as the by a throng of people wh
train rolls into the station.
It is a busy scene, as the troops load their baggage into the long line of blue wagons with white covers, bearing the brand of the United States, which recalls vividly to the veteran the days when this section of the country was alive with those who followed Grant, Sherman, Thomas and Rosecrans.
The following are some notes on the scenes at Chick mauga Park during the occupancy of the regulars:
While the infantry comes in for a share of enthusi asm, the cavalry is naturally the favorite. When the stock cars reach the platform, each horse knows his master and greets him with some expression of pleas-
ure familiar to himself. The horses first, and all the ure familiar to himself. The horses first, and all the soon as the horses have been saddled, the order, " Mount!" peals out from the cavalry bugle, and the roops are off and down the dusty road leading toward Chickamauga, and when the last of the lumbering wagons following the troops turn out of sight, the rowd again directs its attention to similar scenes, which occur almost hourly
When the cavalrymen reach the camp ground, a long rope is stretched on the ground and a picket line made, to which the horses are tethered. The affection displayed by the trooper for his horse is reciprocated by the intelligent animals, and it is largely due to this fact that accidents to man and beast are few and far between. The cavalryman always provides for hi mount, and it is amusing to watch the mounted artillerymen taking their horses out to good grazing spots
"Camp George H. Thomas," as the rendezvous has been named in memory of the hero of Chickamauga,
is a bustling scene of military activity. The rattle of the artillery is often heard, and the historic battle ground is now covered to a great extent with the tents of the soldiers, and parties of cavalrymen may constantly be seen driving their horses to water at Chickamauga Creek. The establishment of the community at Camp Thomas is much like the establishment of a colony in an unsettled land, in so far as domestic conveniences are concerned, for everything has to be taken there, and each regiment is a small canvas town in itself, and has to depend entirely upon its own resources. Dotted here and there throughout the entire expanse of fifteen miles of reservation these cities of tents are seen. The description of the quarters of one officer will serve for all. An "A" or wall tent is $10 \times 12$ feet and some of them a size smaller. On one side is a folded camp cot with a thin yet comfortable mattress and an abundance of heavy woolen army blankets. A table about 20 inches square, with iegs that fold up into the smallest possible space, stands near the door or opening at the foot of the cot. A folding chair or two for his visitors, a large valise or very small trunk, a bit of looking glass hanging from a tent pole, and a tubular lantern or candle attached to a stick stuck in the ground finish the equipment of the tent. Commanding officers at regimental headquarters have an extra roof or "tent fly," as the awning in front of their quarters is called, but otherwise they live as other officers do. The enlisted men, quartered in conical wall tents now adopted by the army, bunk with heads to the wall and feet toward the center, from nine to twelve in a tent. Their bedding and blankets are good and they are as comfortable as soldiers can hope o be in the field.
Some of the regiments coming from the Northwest have the Sibley conical tent, which has no wall, but which has a small sheet iron stove. These have been more than appreciated during the cold, rainy weather which has prevailed until recently at Camp Thomas. The mess tents and cook houses are nearly alike in all arms of the service. The "cuddy-bunk" oven, made of sheet iron, bakes well and looks like two iron pans fastened together, one upon the top of the other. The men are detailed as cooks and waiters and attend to the preparation and serving of the meals. The soldier live very well indeed. Field rations are used when in transit from point to point, but when in camp the companies or troop mess purchase fresh meats, vege tables, eggs, fruits, etc. Wells are being driven al through the camp to furnish an abundant supply of pure water. While the soldiers do not have many of the luxuries of life, still they have some of them, as represented in one of our engravings, which shows a camp barber shop, where one of the soldiers is being shaved The camp barber shop is a primitive affair, of which it has been humorously said that it " consists of a cracke box and a towel." Trades are made between the men and the barber, or sometimes a cash consideration is promised; but "You cut my hair and I will clean your horse" is the average exchange.
The regulations of the camp are as follows: Reveille, 6 A. M.: breakfast, $6: 15$; sick call, 7; drill by companies 9 ; recall drill, 10 ; recall fatigue, 12 M .; first sergeants call, 12 ; dinner, 12:15 P. M.; fatigue, 1 ; drill by battal ions, 4:15; guard mount, 5 ; parade, $5: 30$; supper, 6 ; tat too, 9 ; call to quarters, $9: 10$; taps, $9: 15$.
The soldiers manage to amuse themselves in many ways. The colored troops are well supplied with gui tars and mandolins, and the vocalists of the regiment give very acceptable concerts, which would do credit to the best negro minstrels. As the prospect of being sent to the frontier came nearer there was less and less time for amusement, but the historic associations around them, the prospect for the longed-for fighting the new scenes and martial spirit of mobilization made it interesting enough for the troops, who are tired of the humdrum life of their reservations; and when the volunteer troops shall have occupied the camp, it is likely that their attention will be largely devoted to the necessary drills, for there is plenty of hard work a Camp Thomas, and drills are the order of the day, morn ing, noon and night. There are company and regimental drills, and field maneuvers are to be held in which the combined forces will participate. In these the actual conditions of war will obtain, with the exception of ball cartridges, and the soldiers will get a taste of real service on a large scale as far as fighting under the new tactics goes. One of the prettiest sight is the cavalry drill, and some of the many commands are at it nearly all the time, and one of our engraving shows the second division cavalry en route for the dril field. This cavalry drill is one of the features of inter est to visitors, and they stand for hours watching the evolutions of the men and horses as they break into squadrons, wheel, charge, re-form, with perfect align ment and go thundering away with flashing sabers and piercing yells.
There are many indications that Camp Thomas is more than a temporary camp, and the chances are it will be maintained as a military training ground as
concentrate nearly 60,000 of the National Guard at the for actual service. When orders were received to go to disappeared and grass would quickly grow again, were camp, but the plans have changed several times since, the front, the signal to strike tents was given just after it not for the fact that the site will probably soon be but as we go to press it is said that 30,000 volunteer will be sent there immediately, and will be in a condition to strike Cuba after the expected naval battle. eveille, and in the cold, gray light the canvas city fell to occupied by regiments of volunteers. veille, and in the cold, gray light the canvas city fell to occupied by regiments of volunteers he ground. Tents, cooking utensils, rations, baggage Our engravings show the Ninth Infantry at Wash
It has been decided to build a track on the Western $\left.\right|_{\text {army wagons and six mules tugged each over the road, Infantry, the Second Division Cavalry en route for the }}$


CAMP OF TWELFTH INFANTKY.


SECOND DIVISION CAVALRY EN ROUTE FOR DRILL FIELD.


CLEANING UP THIRD CAVALRY QUARTERS.


MAJ.-GEN. BROOKE AT HIS HEADQUAR'ERS.
NINTH UNITED STATES INFAN'RRY EN ROUTE TO THE SOUTH, ON MARYLAND AVENUE, WASHINGTON, ADJ.-GEN. M. V. SHERIDAN. LIEUT. MCKENNA MOBILIZING THE UNITED STATES ARMY AT CHICKAMAUGA PARK.
and Atlantic road, at Ringgold, to Chickamauga, a dis-|now well worn, to Chickamauga Park station, where|drill field, "cleaning up quarters," Third Cavalry, a tance of eight miles, for the quick transportation of the wagons, still holding their cargoes, were rolled camp barber shop, and Major-General Brooke, who troops. Ic is expected that it will take sixty days to upon flat cars. The mules and horses were put into commanded the camp, at his headquarters with Adjubuild the track ; so that it is presumed by some that the box cars and company after company were assigned to tant-General M. V. Sheridan and Lieutenant McKenna. volunteer troops which are sent there are to be drilled comfortable tourist cars. There remained behind only Our Chickamauga views are by M. M. Mudge, of Chatfor some time before they are sent away to the front an empty, barren field, where the last traces of grass had tanooga.

RECENTLY PATENTED INVENTIONS. Agricultural.
W.-Frederick W. Gordon,
Gang Plow.-Frederick W. Gordon, Valley View, Tex. This invention comprises a frame, a
plow disk carried by the frame and a wheel forward on plow disk carried by the frame and a wheel forward on
the frame. Means are provided whereby the posirion of the wheel with reference to the frame may be varied. A guide wheel is placed rearward in the frame. The frame is connected with two rigidy joined
beams, aspindleprojectingrearward from each beam and heams, aspindleprojectingrearward from each beam and
a disk for each spinde. The disks are set at an angle a disk for each spindle. The disks are set
to the frame and have novel adjusting devices.

## Bicycles, Etc.

Bicycle or Tricycle Shoulder Abuturnv.-William F. Williams, Londnn, England.
The object of this invention is to provide a point of resistance for a rider's shoulders, so as to enable the muscles of the body to supplement the action of the legs. promotes chest development. The device comprises a post mounted on a bicycle, a socket pivoted to the post, a rack sliding in the socket, a pinion mounted on the
socket and engaging the rack, a forked frame having a nuckle-joint connection with the rack and a shoulder support attached to each arm of the frame.
Flush Joint for Tubular Frames. -Frederick C. A very, Toledo, O. This flush joint consists seat cut entirely through the cylindrical !side of the tube ttwo opposite points, and having uncut bridge pieces at in connection with the tubule angtering member having its ends beveled upon the inner side and inserted throughout its entire circumference into the circular kerfed seat of the receiving member for the purpose of rigidly
connecting at various angles the tubular frames of bi-

Ball Bearing.- Frank Gustaveson, Wabasha, Minn. This ball-bearing comprises a hub having cups therein, each provided with flange or colar extending inwardly from the raceway and cupped or decreased in diameter at its inner end, whereby an oil-
receiving cup is formed, an axile having cones thereon co-operating with the cups to form ball raceways, balls tube surrounding the axle with its ends entering the oil receiving cup and constituting an oil reservoir

## Electrical.

Electrical Foot Gear- - José Galleos, Guatemala, Guatemala. This novel foot gear is pro tact with the human body, consisting in a closely formed fabric composed of strands covered with glass beads,
the beads lying close to one another and forming the the beads lying close
Electrical Dental Engine Con rroller.-James J. Coaclman, Rio Janeiro, Brazil.
The controller for which this patent was granted comprises a base, a pedal mounted to swing on the base, a ried by the pedal and engaging the strips, a resistance having connection with a contact on the pedal, a springielding contact carried by the pedal and having connection with the pivot of the pedal, the pivot beirg in the electrical circuit, a pole-changing lever, solenoids for and operating the pole-ehanging lever, a circuit closer ope-
rated by the movements of the pole-changing lever, and rated by the movements of the pole-changing lever, and
another circu.t-closing lever having pins extended upanother circui.t-closing lever having pins extended up-
ward through the base. This apparatus is designed to provide a simple means whereby small electric shuntor backward, and stopped instantly when so required.

## Miscellaneous.

Shrapnel Projectile. - Michel Darmancier, St. Chamond (Loire) France. This projectile with longitudinally extending grooves, a tube running centrally through the cavity and having grooves in its outer sur:ace, the lower end of the tube having a disk with a serrated periphery conforming to the grooves in the
walls of the cavity and balls arranged within the cavity nd lying in the grooves. A fuse ho tion with the central tube. The invention is designed to insure the freedom of the projectile from premature
deformation when normally discharged, excluding all agglomerant substances which are ordinarily employed in

Work Holder. - Canly D. Eames, Worcester, Mass. This novel work holder comprises a
bow and clamping devices depending from ends of the bow and clamping devices depending from ends of the bow, and composed of spring loops forming clamps which are arranged at right angles to the bow and are open at and removal of the work held stretched parallel to the bow proper. The device is designed to enable the operator to hold the fabric conveniently while sewing thereon and relieving the fingers of the hand holding the ma-
terial, of the tiresomestrain resulting from holding the terial, of the tiresomestrain
material in position by hand.
Nut Lock.-Charles J. McCue, La Veta, Col. A nut having grooves in opposite side edges at its inner face is provided with a fastening device com-
prising upper, lower and end members, the upper memer being provided at its free end with a head to engage right angles to pass over the top of the nut and enserving as a fasening and also serving to indicate the member to be at the top of the nut. This nut lock is especially applicable to railway rails to be used in con-
junction with the fish plates thereof. The lock is simple, can be quickly attached to any nut, and is designed to prevent the nut from being turned or moved by th
Acetilene Gas Generator.-Wi liam McGraw, Mount Airy, o. This acetylene gas gene-
rator is provided with a casing in which a carbide con-
tainer is located, having a series of cells. Water cells
placed above the carbide cells are designed to charge water therein, and communicate one with anther. Means are provided for automatically governing the flow of water through the bottom opening of the burner pipe extends.
Saw Set.-Henry Neidhart, Brooklyn, N. Y. A saw-setting mechanism, comprising a pressure
ever, is connected with a rock shaft, an arm being mounted on the shaft. A block is adjustable on the arm, a rod is adjustable through the block and a spring ections between the rock shaft and pressure lever are provided whereby the shaft will be rocked by a down-

Life-Boat-James Mitchell, Sr., Arow River, Canada. This boat comprises a hollow
inclosed figure having a rope guideway at each end of inclosed figure having a rope guideway at each end of
the boat, communicating with the interior and adapted the boat, communicating with the interior and adapted
to receive a suspending rope, and means for auton.atito receive a suspending rope, and means for autonati-
cally closing the rope guideways upon the removal of the rope. The suspending rope having been severed rom the interior, the boat drops into the water on an

AIr Gun. - Elmer E. Bailey and Thomas A. Monk, Philadelphia, Pa. The magazine of this air gun is provided with an apertured disk at its front end, and the lock frame has a socket in its front extension. The firing tube is held at its front end in the disk and is provided with an enlarged head which fits in the socket. The head is made of hardened metal and
its longitudinal passage is tapered, there being an anguits longitudinal passage is tapered, there being an angu-
ar shoulder formed at the inner end of the passage, which shoulder abuts on the firing tube and is of less diameter than the latter. This serves to reduce the shot used in the gun to a uniform size, so that they may properly fit the tube. An air-jet tube, a piston atached
thereto, a piston rod, air cylinder and means for rethereto, a piston rod, air cylinder and means for re
ciprocating the piston are also provided and combined in rner
Horseshoe. - Neil L. Olson, Butte, Mont. This horseshoe, having thickened toe and heel
portions and sockets therein the socket or sockets in the toe portion ranging at an incline approcking an angle of 45 degrees to the plane of the shoe and pro vided at the inner ends of the sockets with seats far the calk keys, the calks having stems fitted to the shoe
sockets and grooved and notched heads, and the keys sockets and grooved and notched heads, and the keys the shoes and at their outer enàs heads to enter the

Placket Protector and Skirt Sup orter.-W. H. Carr and J. G. Wolf, New York City Two members pivoted together comprise this placket protector and skirt supporter. The lower ends of the n interlocking of the members a hook is adjustably secured. This device is designed to hold the placket opening of a dress
closed and may also be utilized for supporting the dress kirt from the belt
Pneumatic Stacker. - William H Cook, Winfred, South Dakota. This pneumatic straw
stacker is designed to take the straw from an endless elevator apron and to carry it along by the force of blast of air to the desired point. The device comprise an endless elevator apron, a pneumatic pipe conveye same, the fan having a ratchet clutch connection with its driving mechaxism to permit the fan to continue its revolution
mechanism.
Gage Adjusting Tie Plate.-Alex. B. B. Harris, Bristol, Tenn. In this invention various features of construction and arrangement of plates and
spikes are designed to permit railroad rails to be adjusted laterally to correct any deviation from the proper and standard gaye. The plate itself is of an improved
construction. The rail and tie fastening comprises a tie plate having on its under side integral spike tongues and two expanding plug spikes, one having a straight head that reduces the thickness of the just beneath its spikes being arranged to go on opposite sides of the rail and to be interchangeable to correct the gage of the
rail. Bottis.-William A. Fries, Sr., Brooklyn, N. Y. This non-refiliable bottle has a neck portion
provided with an interior annular shoulder and an interior annular channel, a valve casing consisting of and a valve seat, an upper potion provided with outle ports and having lugs, the lower ends of which are incluned outward and downward to engage against the
bottom walls of inclined notches formed in the top of bottom walls of inclined notches formed in the top of casing adapted to engage in the valve seat, a cork bushing surrounding the tubular portion of the valve casing, portion and resting somewhat longer than the tubula the bottle, and locking means carried by the upper portion of the valve casing and adapted to
annular channel in the neck of the bottle.
Dumping Vehicle.-John M. Goodwin, New York City. This dumping vehicle comprises valves in its bottom portion, a shaft upon which the
valves are mounted to swing, struts on the lower sides of the valves, rotary shafts below the valves, detents on the shafts to engage with the struts aud support the valve the levers to the shafts, a vertically movable 'piston, cylinder in which the piston operates, and a connectio istween the piston and the levers. A novel mecl.
is provided for operating the valves of the vehicle.
Tool for Boring Tapering Holes -Irving W. Mason, Aberdeen, Wash. This drilling ter or spindle adapted to be held in a fixed position and forned with a screw rod, a bit having a body into
which the rod screws, the bit being also provided with which the rod screws, the bit being also provided with
fexible arms, and cutters held on the free ends of the

Game Apparatus.-Henry T. Pycroft, Parnell, New Zealand. A game board having vertical, hedian and liagonal lines intersecting one another, the squares formed by the vertical and horizontal lines, is provided with marks having characters indicating the starting points for the men or counters, being produced each end of the board. Marks also serve to regulate the other points of intersection of the lines.
Curtain Tassel Attachment. Henry T. Pycroft, Auckland, New Zealand. A shade one another to form a globular structure. A hook is attached to one of the rings and a plate is bent over one of
the rings at a point removed from the hook, the plate the rings at a point removed from the hook, the plate
having two portions lying against each other, the porhaving two portions lying against each other, the por-
tions being perforated to receive a cord. The device is designed to prevent the shade cord and tassel from being accidentally wound around the roller by the action of the Evaporating Apparatus. - Walter which this patent was granted consists principalls of a feed pipe discharging brine or like liqnids over the dome alt off as it falls on the dome before it can burn thereon. The invention further consists of a fire box, an evaporating chamber around the fire box, a heating flues in the evaporating chamber connecting the fire box with the heating chamber to increase the heating contraction of the same and dislodging the salts which

Holder for Hats. - Franz Wagenblast, New York City. This holder for hats comprises a bar or plate having on its front face lugs at one end and a hook at the other end. A hat ring is provided with
oppositely projecting arms, one of which is hinged to oppositely projecting arms, one of which is hinged to
the lugg of the bar or plate. the other being provided with an offset. A lock locks the offset arm of the ring hat can be hung up and securely locked in place so as to prevent its removal by unauthorized persons. The deMop Wringer.-Herrmann A. Wolf, New Haven, Conn. A body portion open at the front is provided with supporting ledges, upon which ledges a per-
forated mop receptacle is arranged to have bearing. forated mop receptacle is arranged to have bearing. A stop is carried by the mop receptacle, which stop ex-
tends over the bottom of the receptacle and is adapted tends over the bottom of the receptacle and is adapted
for engagement with a mop head. This mop wringer is for engagement with a mop head. This mop wringer is so as to force all or most of the water from the mop. Note.-Copies of any of the above patents will be end name of the patentee, title of invention, and date of this paper.

## NEW BOOKS, ETC.

Glass Blowing and Working. For Amateurs, Experimentalists and f Lecture Demonstrations given under the Auspices of the Technical ex County Courcil. With Colored Frontispiece and Numerous Illustra-
tions. By Thomas Bolas. New York: Truslove \& Camba. Pp. 212. Price $\$ 1$.
Anything from the pen of Thomas Bolas is usually not only interesting but eminently practical, and we have no
hesitation in saying this is the best book on glass blowing for amateurs that has ever come under our notice By following the directions and using proper materials any amateur ought to be able in a short time to make such glass apparatus as he needs, even though he does not become an expert glass blower. The illustrations, which number 104, while not particularly wel executed, are clear and give the amateur an excellent isea of how the
work is done. At the end is a bibliography of glass which is of great interest, and while probably not complete,
ble.
Model Engines and Small Boats. New Methods of Engine and Boiler
Making. With a Chapter on Elementary Ship Design and Construc-
tion. By Nevil Monroe Hopkins. Fifty illustrations. New Fork: D.
Van Nostrand Company. 1898. Pp. 74. Price $\$ 1.25$

This little book will be welcomed by all amateurs who are fond of using tools. The directions are very practiThe book describes the building of small engines and boilers, including water tube boilers and the building of
small model ships. We recommend this work to the small model ships. We recommend this work to the
amateur. Mr. Hopkins will be remembered as the author of an interesting article published in the Scientific American for September 11, 1897, on "How to Build
Small Alternating Current Dynamo Without Castings." What is Fire Protection? A Study. By Ed
Pp. 37.
Theater Exits. A Paper by Alfred Darbyshire. With a Description and
Plan of Sir Henry Irving's "Safety Tbeater" London. 1898. Pp. 13.
These are publications of the British Fire Precaution
Committee, and are two of the first pamphlets in the Committte, and are two of the first pamphlets in the
series. Several other important papers are promised.
Transactions of the Astronomical and Physical Society of Toronto.
For the year 1897. lncluding eighth 154. Price $\$ 1$. Toronto. 1898. Pp.

## COIIIUNICATION ON CIGARETTES

 prof.j. w. mallet, of the univerbity of virginia. To the Editor of the Scientific American:ar Sir:
The recent publication in your journal of the re. sults of an examination by me of some brands of cigarettes in general use has led to my receiving a number of making the examination, some in regard to the mode of the brands examined, and others expressing some surprise at the results reported and seeking confirmation of he statements which have been published.
The examination in question looked simply to asce tain any traces of foreign adulterating materials alleged to be sometimes introduced by the manufacturers.
The methods of testing were simple, well approved and easily applied, and the results were clear and posiclusions which admit of no doubt or uncertainty conthe results reported are not opinions, but scientifically ascertained facts.
It is the more remarkable that there should be any
hesitation in accepting these conclucions, and that any credit should be given to the reckless assertion somewith opium, etc, since numerous aderation of cigarettes with opium, etc., since numerous other analyses have before now been made by other trustworthy chemists,
and in all cases the same general result has been recorded I know of no scientific evidence to the contrary.
It is, moreover, apparent to any unprejudiced person, competent to consider the facts, that such adulterations as have been alleged could only be made out of sheer
perversity and would be in plain contravention of the perversity and would be in plain contr
business interests of the manufacturers.
Ignorance of easily ascertainable scientific facts is, brown, oily material formed in the smoking of tobacco being pointed out as nicotine; though in reality this is merely the tar produced by the action of heat on the woody fiber of the leaf.
Nicotine when pure is a colorless fluid of somewhat
oily consistence and strong, peculiar penetrating oily consistence and strong, peculiar, penetrating odor, but it darkens on exposure to air and light, becoming
first yellow and then brown, so that it looks, in this frst yellow and then brown, so that it looks, in this
darkened condition, something like the tarry matter which soils a smoker's fingers or a handkerchief through which tobacco smoke is exhaled, or is often noticed as deposited in the stem of a pipe. This tarry deposit has nothing essential in common with nicotine, and contains
but traces of this alkaloid, when any at all. A part, but but traces of this alkaloid, when any at all. A part, but
only a small part (about one-seventh in the experiments only a small part (about one-seventh in the experiments without decomposition; the remainder is burned and destroyed in the process of smoking.
The sensational statements occasionally made in regard to arsenic, copper, etc., as present in the paper wrappers
would be at once seen to be grossly improbable if it were but remembered that to be grossly improbable if cigarette wetghs little more than half a grain, and that in such a minute quantity of thin, delicate, white paper there could
be introdnced but infinitesimal amounts of such foreign adulterants without their presence becoming perceptible to common observation by the senses, aside from the positive scientific evidence that they are not present. The simple facts are, that such cigarettes as I have
examined, representing a large part of those in general use throughout the United States, are made from pure, light-yellow tobacco of the high grade produced on cercounties of Voirg, prominently in certain of the southern Carolina, with wrappers of the best quality of harmless vegetable fiber paper, and are entirely free from the adulterants which it has been asserted are present, with
no evidence in favor of such assertion, and in absolute no evience in favor of such assertion, and in absolute I am, sir,
robedient servant,
(Signed) $\left.\begin{array}{l}\text { J. W. Mallet, } \\ \text { Charlotteville, }\end{array}\right]$

## ③usiness anò æersonal.

The charge for insertion under this head is one Dollar a
line for each insertion about eiaht words to a line. line for each insertion; about eight words to a line.
Advertisements must be recived at publication office
as early as Thursday morning to appear in the follow. ing week's issue.

Marine Iron Works. Chicago. Catalogue free
For mining engines. J. S. Mundy, Newark, N.J
"U. S." Metal Polish. Indianapolis. Samples free Gasoline Brazing Forge, Turner Brass Works. Chicago Yankee Notions. Waterbury Button Co., Waterb'y, Ct. A good mechanic-photographer, designer, engine
wants situation. " H," Box 976, Meriden, Conn. Bicycle Electric Light Co., Cleveland, o., want agents. Handle \& Spoke Mchy. Ower Lathe Co., Chagrin Falls, O. FERRACUTE Machine Co., Bridgeton, N. J. Full
ine of Presses, Dies and other Sheet Metal Machinery. Improved Bicycle Machinery of every description. Gasoline Engines and Launches. Free catalogue.
Monitor Vapor Engine and P. Co. Grand Rapids, Mich. The celeirated "Hornsby-Akroyd" Patent Safety Oil
Engine is built by the De La Verge P ofrigerating Ma chine Compans, Foot of Fast 138th Street, Neing Ma The best book for electricians and beginners in elec-
tricity is " Experimental Science," by Geo. M. Hopkins. By mail, 44 . Munn \& Co., publishers, 361 Broadway, N. Y Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co., 361 Broadway,

TO INVENTORS


## \% Musturnaris

HINTS TO CORRESPONDENTS
Names and Address must accompany all letrers
or no attention wint be paid theret. This is for oul
information and not for phication eferences to former priciceas or give iate of paper and paye or number of suestion ce repeated : correspondents will bear in mind thal thoughwe endeavor to reply to all
or in thiter byb, lethd
or department. each must
 houses manufacturing or carrying the same.


 sooks
inerals sent for
marked or labeled
(7428) I. E. B. asks : How many cubic feet of gas will an apparatus as mentioned in articie gen. erate in twenty-four hours and how long will the charge
last? Taking such an appratus as mentioned in article last? Taking such an apparatus as mentioned in artic as the base, how warge an apparatus woula it take to sup.
ply ten lights, such as are used in houses, burning eigh hours a day? A. The charge for the Adams apparatus a described is from one to two pounds. Each pound pur carbide generates $53 / 4$ cubic feet of gas, or $111 / 2$ cubic fee for a full charge of 2 pounds. It is not a continuous
generator. When the 2 pounds of carbide is exhausted the charge must be renewed. Care must be taken to keep fire away from the apparatus while it it open supply will depend upon the size of the burners; 10 on foot burners for 8 hours will require 80 cubic feet of gas which will call for an apparatus seven times larger in capacity than the one illustrated in Scientific American. See Scientiric Ambrican Supplement, Nos. 1057, 114,
(7429) C. P. writes: A tank of oxygen was passing down the street. It was of usual size, 4 fee inch, when it exploded, blowing the bottom off and sending the tank through walls, crashing into living apart windows for half a block, blowing the men in charge int the air, they escaping with shattered clothing and slight injuries. I have hitherto regarded oxygen as harmless
and non-explosive. Why this should have exploded after standing three or four days, and after the pressure of the pump and after a little having been used out of it side of the tank that it would combine with the oxyye. and form a spontaneous combustible gas. but in all my experience I have never met with an accident of this king
and I have been in this business, viz. filling and supply ing oxygen and hydrogen tanks of gas, and do not kno tom of the oxygen tank was blown out by too great pressure. The oxygen cylinders deteriorate much fasier than the hydrogen, since the oxygen rusts the iron
teel and hydrogen does not. Probably this tank was. ficient to produce the rupture. We do not thit w theory of spontaneous combustion neceesary. The cy ever be put into a cylinder without drying the gas
(7430) J. C. asks: What is the cause of cold, when you draw the cork? What I mean i , on a cold day if you take a bottle of ale, before you draw the
cork, it is liquid, and if you take it into a warm room and draw the cork, it immediately freezes solid. A. The sud den freezing of water (ale is not necessary; it is the stances is due to cooling it considerably below the free ing point, while it stands quiet. If then it receives mperature changes to ice almost instantly, and the Water has bel ans $4^{\circ}$ Fih below zero freezing. It is ready to freeze, but seems unable to begin any other solid, dropp the water, will start the particles, and they then jump into the solid for
(7431) C. E. asks : Can the core of an mature be made of aluminum, also the axle of an arnature? If not, why? Can you give me any informaower motor can be light the armature of a $1 / 2$ horse stance of which the core of an armature can be made nce it alone can allow the magnetic lines to flo luminum, for here strength is the only consideration but it is not very good material for wear. We do no
know what limit of weight has been reached in $1 / 8$ horse
(7432)
(8432) G. A. B. asks : What is a formula nessage by the chemical process? Or what kind paper is best to use, and what is the best method of treating it chemically, so that an electric current wis pass through it and record on it the message? telegraphy is prepared by soaking it in either of the following solutions: Nitrate of ammonia, 2 pounde; ferriounces; giycerine, 2 ounces; water, $1 / 2$ gallon. O pound ; starch, 112 ounce; water, 2 quarts; use any toug (7433) J. J. R. asks : 1. How can I tem pass needles? A. To temper steel for a magnet, hea the ends of the steel to a red heat and plunge it endwis dark blue color at one pole? How are the soft iron ar matures of sounders blued? A. A simple method for
bluing a small article is to varnish it with a thin shellac
which has been coiored with Prussian blue. It is usually
done by heating, but this requires some experience and done by heating, but
skill. 3. How is hair removed from the body by elec a. To remove hair by electricity apply to "Medical and Surgical Electricity," Beard and Rockwell. Price $\$ 5.50$ by mail. 4. Where is telegraphing by elec
ticity without wires treated of? A. For telegraphin
. ithout wires, see Scientific American Supplement Vos. 790, 955, 995, 1131, an
78, No. 14, 10 cents
(7434) T. H. writes : I am using a coil 18 inches long, 2 inches bore, of No. 23 insulated wire, 1 lies; the purpose is to draw an iron object of consider he heating of the coil stands in the way of the expe In using a coil as a "sucking coil," the effect depend pon the number of amperes of the current and the num ber of turns of wire on the coil. The magnetizing powe rather a small number of turns of wire. You areusid etter to wind twice as many feet of wire on your coil eating effect, while it leaves the magnetic effect the (7435) F. B. nio need to use Scinericio MERIC vanometer," by Mr. James F. Hobart. Can you tell me ent, that is about the connection of coil, what use he lamp, how far is lamp from scale, hand glass fro oil in chimney, what width and length and thickness coil, what is the use of two needles, how long does the
cale have to be, and does the yard stick (if yard stick i sed) have to be reruled or divided in any other wa other than what it is? A. The minor details of the conruction of the mirror galvanometer are such as are com on to all such instruments, and hence are not given in our paper. We do not know any description giving ful etails. It would be very lengthy. We answer you aestions. The account tells you to connect the coils through the other in the same direction, as, for example with the hands of a clock. 'The lamp is to furnish beam of light through the hole in the screen, is reflected om the mirror of the galvanometer back to the scale,
where it will show as a bright spot and will move to and ro as the needles of the galvanometer swing under the power of the current. The lamp is only a few inche he spot of light on the scale is bright and sharp. The stance of the glass from coil depends on the magnif power of the glase and must be found by trial. The
ore of coils might well be 2 to 3 inches long and 1 inc ide. The size of coils depends on the amount of wir sed in them. Two needles placed with opposite poles shown are more sensitive than one would be. The as it is ruled, or a strip of paper may be ruled with an qual scale divisions, no matter what. The dates of the copies of Scientific American you requested are March 17, 1888, and August 31, 1889. We can supply al ears back, and most of the numbers for ten years back, 8 cents each. We always have all back nu
of the Supplement on hand, price 10 cents each.

NDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

MAY 10, 1898,
AND EACH BEARING THAT DATE.

## See note at end of list about copies of these patents.  Aluminates, making alkaline, D. A. Peniakoff.... Ammonia and wast oroduct from garbage, pro- cess of and apparatus for recovering, Traylor <br>  Bag fastener, A. Arkell Baagatele boarr, M. Red Ball mill R Ste <br>  <br> Bench clamp and do. d. automatin, J..... Kog Bending machine, Seyour  <br>  <br> Biccccele seat attachment, M. Kel Bit Bit stock, M. Barber... <br>  <br> Boarr. see Ir foning board <br>  <br>  <br>  <br>   <br>  <br>  <br>  <br> 





 coupling. Pipe coupling. Thill coupling.
Coupling reieasing mechanism, U. Cetwiler.
Crank arms to crank shafts, means for attaching Cultivator fertilizer distributer
tachment.. . B. Whitaker.
Curtan pole bracket, B. Boand
crtain tretcher
 ycle saddle, w. Wh. Clifford.


Ooor buffer, J. F. Forster.
Dor


## 

 yeing apparatus, K. Krose lerer ret al......ynamo or motor, K. Schwedtmann.....

 lectrotherapeutic apparatus, G. G. Duke....... apparatuns for ortng annson.


























Hooboun INSTRUCTION By Malt.
ENGINEERING
nathematics, Mechanical Drawing, and Machine Desi,
SPECIALLY PREPARED TEXT BOOKS FREE.
payable Cash or 82.00 por month. Write for THE UNITED CORRESPONDENCE SCHOOLS,

\section*{| THE HALL |
| :--- |
| PIPE WRENCH |}



ARMSTRONG'S PIPE THREADING


SUB-PRESS PUNCHES AND DIF
 Skinner Combination Lathe Chuck






## STEAM ENGINEERING


$\$ 2$ in ADVANCE and $\$ 2$ a MONTH


 INTERNATIONAL CORRESPONDENCE SCHOOLS,

## FANS FANS FANS

THE
Scientific American
SPECIAL NAVY SUPPLEMENT.


THE BATTLESHEIP "OREGON."
The great desire during the present crisis for ac Navy has led to the preparation of a short treatis n the Navy, which has just been publishe y the publishers to. Every effort has been made manner that it may be readily understood by the time render the in navalication a permairs, and at the same eference.
This issue takes the place of the regular num ff forty pages
The number opens with a historical sketch of to birth in which the programme of shipbuildin authorized in each year is given, together with th classes of ships which it called for.
This is followed by an article which explains th different types of vessels into which a modern navy is divided, and shows, by the assistance of iagrams, the manner in which the various type assist the reader in understanding the detailed illustrations and descriptions of each ship which make up the bulk of the issue.
The ships are grouped according to their typ s classified below. A comparison is drawn be ween different vessels of the same type, and th improvement
pointed out. BATTLESHIPS
"Inciana," 13 cuts; "Massachusetts," 2 cuts Oregon," 2 cuts; "Iowa,"" 3 cuts; "Texas," CRUISERS.
"New York," 3 cuts; "Brooklyn,"" 1 cut; " Min
neapolis," 1 cut; "Columbia," 2 cuts; "Chicago," neapolis," 1 cut; "Columbia," 2 cuts; "Chicago,"
1 cut: "Olympia," 2 cuts; "Cincinnati," 1 cut San Francisco," 5 "cuts; "Detroit," 1 cut Charleston, 1 .

MONITORS.
"Amphitrite, ${ }^{4}$ cen, " ${ }^{2}$. GUNBOATS and TORPEDO BOATS.
"Helena," 1 cut; " Annapolis," 1 cut; ", Mar "Maine's" torpedo boat, 1 cut; "Bailey," 3 cuts. SPECIAL CLASS.

Ram"Kata
Under the cut of each ship is a full table of is supplemented by tables at the end of the work, giving complete tables of the whole fleet. The illustrations number about 90 , and include handsome half-tone views and wood-cuts of all of the vessels above mentioned. Other pictures show in great detail the guns, gun-turrets, torpohes, steering apparatus, conning towers, and if these warships. The whole forms a most complete and fully illustrated periodical.
In addition to the above is included a reliable the West Indies
This issue is inclosed This issue is incl
for preservation.

Price, by mail, 25 cents.
MUNN \& CO., Publishers,
361 Broadway, New York City.


 Lamp, electric incandescent, W.J. J. Pheili.....
Lad safety inca descent electric, F. G. W

 Lock, R. H. H. Hearn.
Lome protector stop
hue......
Lubricator, E. O. Goss


## Matrix drying aparatu, B. F. Jack Mattres, sectional. W. F. Ade Jr. Mechanical movement






Pipe or tube cutter, C. H. Snede.e.er
Plane, block or smoothin, P. Shea
Plant suport C.L. Baldwin.
Planter.


Press. See




Raaililayt, conduit, F. F. Pearson
Raibay, electric, E. C. Crocke


Ree., See Wire reei.

Roiller. See Shade roller.

cale, wagon. A. Bradiey
creen. See Fly screen


ewing machine ripping attachment, Talen
Cewoft.achine thread trimming device, H.

hever and table convertible. E. B. W
hingle saw in machine G. G. Ftedma
hifter, ash, J. H. \& E. W. Countiss....
kirter, ash, J: Payette.
So

Stand or chair base, J. W. Coultas...
Starting device. Stone $\&$ Doane....
Steam generator, J. I. Thornyeroft.
Stat.



witch. See Electric motor switch. Electrical
controlled 8 witch
phone throwail phone throwoff switch.
arik diver C. W. Ewader.

Testing apparatus. L.C.Christie
Thill coupling J. Jhillips.
Thill support and antitattier.



Tire aud felly. Whel. . . B. Jeffery
Tire, elastic wheel, A. L. Cudey.

ires, pue, A.s. Sor Cartwrig
Tobacco pipe Whllating

Traction entine. w. Stephenson
Traction wheel, H. D. Duensing.


Trunk or box attachment
Tube cleaner, Tucker...... Gunn.
(Continued on page 335)
 Any depth from 10 to 2000 feet. Wells for the Improved
Ali Lift Pump a secialty. Oid duak wells made deeper.
Test Boring for Water.
Toundings made for Founda-

$\qquad$
ITHACA, N.V.
$\qquad$

## MIETZ \& WEISS KEROSENE

 This beats Wind, Steam or Horse
Power. We ofer the GAS ENGINE for \$150, less 10 dis discount for cash.
Buint on interchangeable plan. Buit
of best material. Made in lots of 100 theretorewerean made in iots of 100
ed for shipment, weight 800 pound
pound WEBSTER MFG Wrate for Special Catalogue. VAPOR LAUNCH COMPLETE FOR $\$ 150$
Row,
Sail





SUBMARINE TELEGRAPH.-A POP


## THIS

Adjustable DRAWING Table Hardwood Top 20" $\times 288^{\prime \prime}$
vered in United States for $\$ 8.00$
ch. Is easily adjusted, flrm and ADJUSTABLE DRAWING TABLE CO.
Office, Powers Opera House Block.

