THE CALIFORNIA FLYING FISH AND ITS ENEMIES. BY c. F. HoLder.
In the waters about the offshore islands of Southern California, and along the California coast, is found a fish locally known as the tuna and to science as Orcynus. It is remarkable for its vigorous assault upon other fishes, especially the flying fishes, which constitute its favorite food. The tuna ranges in weight from seventy-five pounds to nine hundred or more pounds, and ranks as the largest of the bony fishes; but the average weight is one hundred and fifty pounds. In appearance the fish resembles a mackerel, being long and finely built, adapted to speed and vigorous motion.
My first experience with the tuna was at Santa Catalina Island, where during the summer months they apparently lie off the north and south ends of the island, coming inshore generally late in the afternoon, and sometimes at night, driving in the flying fishes (Exocœtus californiensis). Standing on a hill, above the little town of Avalon, per haps six hundred feet above the water, which was without a ripple. I suddenly saw, some distance to the south, a patch of foam, embracing perhaps twenty acres or more. There was not a breath of wind, yet, in some mysterious way, the sea was being worked into foam, a white, silvery mass covering the surface. It was moving gradually up the channel, and knowing that it must be occasioned by a large school of fish, I hurriedly descended to the beach, took a boat and rowed out, and was soon drifting directly in the path of the oncoming foam. The cause now became evident, as large fishes, from four to five feet in length, were seen leaping in every direction. They would rise from the water directly upward, like arrows, six or eight feet, possibly more in some instances, then turn gracefully and drop, head first, into the sea.
In a few minutes I found myself in the center of this piscatorial high and lof ty tumbling, and could see that if a tuna of large size should strike my light boat in the downward fall it would pass through it. The fish dashed about within fifteen feet of me, without, apparently, noticing the boat They were charging a school of flying fishes, which they had driven up the island, and the latte were frequently in the air, passing this way and that, like quail flushed by dogs.
Never was a better opportunity afforded to observe the movements of these, the largest of flying fishes, some of which were eighteen inches in length. Al about my boat the water was filled with their forms, many moving slowly and with difficulty-as though completely exhausted. The tunas swam in every direction, wildly excited, and the white caps which I had first noticed were occasioned by their rushes at the flying fishes along the surface. If the flier was not caught it would impel itself into the air by a vigorous screwlike motion of the tail, which gave to the entire body a vibratory motion which in turn was communi cated to the pectoral fins, causing them to vibrate with a tremulous motion a few seconds until the fish was clear of the water from a foot to two feet, when the wings or fins, pectoral and ventral-four perfect parachutes-seemed to be locked or set, and the fish went soaring away
This remarkable method of escape did not always enable the fish to elude the tuna, which followed, like an avenging Nemesis, directly behind the flier. The latter would soar perhaps three or four hundred feet, then beginning to grow weary, its tail would drop, at which the tuna would make a snap at its prey, but by a vigorous, screwlike movement the flying fish again renewed its flight. This I saw repeated in some instances several times, until the flying fish must h ave covered an eighth of a mile, when it would drop heavily, literwould drop heavily, liter-
ally into the jaws of the ally into the ja
voracious tuna.
Scores of flying fishes were in the air at one time, passing in every direction. Noting one some distance off coming toward me, I watched to see if it would turn or avoid me. On it came, about three feet above the water, its large black eyes staring, and its four fins fully expanded
the eye could follow them. On another occasion I encountered a school of tunas on the southern end of the same island. A strong wind was coming in from the west which materially aided the flying fish. The latter invariably left the water and soared against the wind, which, as soon as they cleared the water, caught them raising them in the air like birds, so that they gradually turned away before it with a gracefu sweep and dashed along, apparently evading the tunas. The sight of numbers of flying fishes in the air, glistening like giant insects, was a fascinating one, and well illustrated the devices of Nature in protecting her dependents.

On the northern shore of Santa Catalina I have frequently observed the tunas at night dashing into the little bays and forcing the flying fishes in shore, so that often dozens of them would fly out on the beach and into boats.
Whether the flying fish has the power to control its movements at such times is an interesting question difficult to decide. In some instances it would appear they have so illustrated this. I have seen a flying fish approach a steamer, soaring two feet above the surface, and when within a few feet of the vessel, dip down and avoid it. But such an instance is very rare. In nine cases out of ten the fish will strike the vessel and drop.
I have had a flying fish cross my boat within two feet of my face, moving on without deviating an inch ; and it is not uncommon for the fishermen at Santa Catalina to be struck by these fliers

As the result of hundreds of observations, I am convinced that the California flying fish does not fly nor move its fins or so-called wings. The flut tering motion is caused by the wriggling of the tail and when the fish is once in the air its fins are fixed and become parachutes, the action of th fish being identical with that of birds, as the pelican, crow, eagle and condor, which move long distances upheld by the rushing air. In brief, they never beat the fins, but simply use them as parachutes.

Quostions Asked the Smithsonian.
Une branch of work done by the Smithsonian Institution, Washington, is very little known, yet it is a very important one from the popular stand-
THE TUNA (ORCYNOS) OF THE PACIFIC.
casioned by their attempts to catch the flying fishes in the air. A tuna in search of prey would suddenly notice a flying fish moving along a shortdistance above the surface, and would rush directly upward, hurling itself out of water like an arrow. They rarely caught their game in this way, but I observed one rush in which the tuna struck the flier with its head and sent it whirling over and over some feet upward, undoubtedly catching it as it fell.
These tunas apparently averaged from one hundred to two hundred pounds, and in their rushes were marvels of power and vigor. Some idea of their strength can be imagined from the fact that a large one hooked on a line fastened behind a sail boat, which was going before the wind, fairly stopped the boat.
The school in which I was drifting moved slowly up
the coast, and continued their depredations as far as

THE FLYING FISH (EXOCETUS CALIFORNIENSIS) PURSUED BY THE TUNA
point. This is the answering of questions from all over the United States, on every subject.
Fifty thousand letters are received a year, and none of them are neglected, if it is a question that can bc answered. This is the only government which does such a thing.
Prof. Henry inaugurated the system in vogue some forty years ago. He was of the opinion that a well in formed man was a much better citizen than an igno rant one, and that it was his duty to impart information whenever requested, whenever such information was obtainable. Of course the questions are of a wonder ful variety. For instance, when a New York Sun re porter called at the National Museum recently, he found Prof. Otis T. Mason engaged in finding a suit able name for a country seat for a lady in California She wanted a naine taken from some Indian language. This is only an example of the work done in this line, and sensible questions are always answered, even though they may seem trivial.
The Smithsonian Insti tution is of great benefit in the distribution of knowledge, its ramifications extending to all corners of the world. Scientists can send the results of their researches to the Smithsonian Institution in bulk, and they forward then to the persons whom they know to be especially interested in the book or pamphlet. This system of international exchange is, of course, extremely beneficial.

A PAPER was read before the Academy of Sciences, on July 5 , reporting experiments of the French aeronaut, M. Tatin, at Carquenez. M. Tatin's machine was nearly three times as heavy as Prof. Langley's machine, and had a double instead of a single propeller, and attained a speed of 18 meters (59 feet). The length of the run was 140 neters (460 feet).

Giants and Dwarfs.

Giants and dwarfs, according to a recent suggestive paper read by Hastings Gilford before the Royal Medical and Chirurgical Society, in London, are not only sufferers from diseased conditions, but from the same disease-that known as "acromegaly" or abnormal development of the extremities. Says the Hospital, in commenting on this,paper : "Of course every one admits that some men may be large and others small without in any way departing from the normal in regard to the relation of their different parts, and that we may thus have men who are perfect though gigantic in every part, while also we may have dwarfs who are but men on a tiny scale. But it is pointed out that neither all giants nor all dwarfs are built with such symmetry intelligence quiteprecocious, giants are very commonly not built on an equally large scale all through. The not built on an equally large scale all through. The cism are but diverse manifestations of one conditiondisease if one likes so to call it-the dominant feature of which is not largeness nor smallness, but lacek of proportion between the different parts, taking different forms according to the time of life when it occurs. Un-
der the name of acromegaly, we know of this as a disder the name of acromegaly, we know of this as a disease which shows itself as an abnormally large develop ment of the extremities, and it is said that many so-called giants are but specimens of this disease, and that some of them are as small in some parts as they are large in others. On the other hand, in certain cases which were described by Mr. Gilford, while the frame as a whole was small, the head was large, as also were certain parts of the skeleton; and the intellectual development, although not perhaps marked by brilliancy, was at least far more advanced than that of other children of the same age. The possibility of such disturbances of proportion being due to some such morbid condition affecting the development as to de serve the name of a dise ase is all the more interesting from the fact that, although such cases as those related by Mr. Gilford are undoubtedly rare, no one can walk about in that vast pathological museum which the streets of London form to those who have an observant eye, without perceiving that in a slighter degree signs of partial dwarfism or giganticism are by no means of uncommon occurrence among people who, in one way or another, succeed in earning their living in competi tion with normal man-if there
The British Medical Journal says :
" Mr. Gilford certainly seemed to establish his point that the two cases-the one lescribed by Mr. Jonathan that the two cases-the one lescribed by Mr. Jonathan
Hutchinson ten years ago and the other observed re
cently by himself-were examples of a peculiar form of disease characterized by arrest of development and that certain dwarf whe showe been to time as curiosities were probably examples of this disorder, possibly in a somewhat modified form. His speculations as to the possible relation of the condition to acromegaly raise a question of much pathological interest, but it may be doubted whether the evidence is sufficiently strong to bear the suggestion that all dwarfs belong to the same class. It seems very possible that
we have to do with more than one pathological factor."

Mr. W. Crookes on Diamonds.

Before a meeting of the Royal Institute, London, Mr William Crookes delivered a lecture recently on dia monds. The London Times gave a report of the lecture rom which we extract :
The lecturer began by giving an account of the South African diamond mines, and, after briefly surveying the chief chemical and physical characteristics of the dia mond, proceeded to say that speculations as to the probable origin of the diamond had been greatly forwarded by improvements in the means of obtaining high temperatures. Thanks to the success of Prof Moissan, they could now be manufactured in the labora line form and appearance, color, hardness, and action on light the same as the natural gem. The first neces sity was to select pure iron and pack it in a carbon crucible with pure charcoal from sugar. Half a pound of this iron was putinto the body of the electric furnace and a powerful are, absorbing about 100 horse power ormed close above it between carbon poles. The iron rapidly melted and saturated itself with carbon.
After a few minutes' heating to a temperature above $4,000^{\circ} \mathrm{C} .$, the current was stopped and the dazzling fiery crucible plunged in cold water until it cooled be low a red heat. Iron increased in volume at the mo ment of passing from the liquid to the solid state hence the expansion of the inner liquid on solidifying produced an enormous pressure, under stress of which the dissolved carbon separated out in a transparent dense, crystalline form--in fact, as diamond. To obtain the diamond from the metallic ingot required a long and tedious process of treatment with various strong reagents, and the specimens thus obtained were only was lascopic. The largest artificial diamond yet made stances pointed to millimeter acr the diamond of the chemist and the diamond of the mine were strangehe chemist and the diamond of the mine were strange-
taken place at great depths, under high pressure. How the great diamond pipes came into existence was not difficult to understand. After they were pierced they were filled from below, and the diamonds, formed at ome epoch too remote to imagine, were thrown out of a mud volcano, together with all kinds of debris eroded rom adjacent rocks. According to another theory, the diamond was a direct gift from heaven, conveyed to the earth in meteoric showers, and the so-called vol canic pipes simply holes bored in the earth by the impact of monstrous meteors.

The Storilization of Water.

A simple method of sterilizing water has been pub ished by Dr. Schumburg, chemist to the German Arm Medical Academy, says the Practical Engineer. He finds that the ordinary means of filtration by portable filters is unsatisfactory, but asserts that a solution of bromide destroys the pathogenic germs, and that the ubsequent addition of ammonia renders the wate palatable. Dr. Schumburg has made a number of experiments with water to which pathogenic germs had been added, and among them one or more in which a liter of water from the Spree was sterilized by the addition of 0.2 gramme of a solution of 20 grammes of bromine and 20 grammes of bromide of potas sium in 100 grammes of water. The bromine is removed by a dose of a 9 per cent solution of ammonia It is possible that some simple mixture may be devised the addition of which to doubtful water will render it perfectly safe, so far as the pathogenic germs are con cerned.

Simple Fire Extinguishor

Hand grenades, the simplest form of fire extinguisher can be made at home cheaply and easily. And it is well to have at hand a simple contrivance for extinguishing a small fire at its start
Take twenty pounds of common salt and ten pounds of sal ammoniac (nitrate of ammonia, to be had of any druggist), and dissolve in seven gallons of water. Procure quart bottles of thin glass, such as are ordin arily used by druggists, and fill with this, corking tightly and sealing, to prevent evaporation.
In case of fire throw so as to break in or near. the lame. If the fire is in such a place as to prevent the bottle from breaking, as in wool or cotton, knock off the neck and scatter the contents.
The breaking of the bottle liberates a certain amount of gas, and the heat of the fire generates more, thus working its own destruction.

RECENTLY PATENTED inVENTIONS.

Rallway Appliancos.
Extension Car Step. - James A. Campbell, Lenox, Mass. According to this invention the stationary steps of the car are held between two rigid
side boamme, one end of each of which is extended beyond the stationary steps, and pivotally mounted therein is an extension step with two treads connected by a riser, the step being adapted to swing outward into ex-
tended position or to lie directly against the adjacent tended position or to lie, directly against the adjacent
siationary step. The pivoted step has at one end a gear sutionary step. The pivoted step has at one end a gear
actuated by a gear on the lower end of a rod extended up oy the hand rail at the end of the car, and by turning a hand wheel the step may be extended or withdrawn, a
catch operated by the foot holding it firmly in either position.

Electrical.

Arc Lamp.-James J. Walsh, Paris, Texas. To regulate the feed of the carbon-carrying rod there are, according to this invention, two escapement devices, one at the side of the other, and the two being
alternately acted npon. The escapement wheels are araiternately acted npon. The escapement wheels are ar
ranged on one shaft, the teeth of one wheel alternating ranged on one shaft, the teeth of one wheel alternating
with those of the other, and pendulum-governed eacape ment dogs aiternately coact with the wheels, the doge ment dogs alternately coact with the wheels, the dog
swinging independently of each other, and the reeistance being exactly equal between each escapement device. By the slow and regular feed possible with this improve ment it has been found that the change in voltage is rednced to a minimum, beling ecarcely perceptible by volt-
meter testa, and at any time of feeding not exceeding two volts.

Bicycles, Etc.

Bicycle Support. -- James Judge, New York City. To support a bicycle in motion while one is learning to ride, this invention provides for attaching to the rear fork supporting rods, each having a roller
at its lower end, the upper end of the rod being attached at its lower end, the upper end of the rod being attached
to an arm which is connected with a member of the rear Pork by clamping rings. The supporis diverge at their lower ends, extending in a line substantially paralle
with the fork members, so that the rollers engage the ground at some distance from the wheel, and the connection between the supports and the fork is readily adjustable to adapt the device to different bicycles.

Mochanical.

Drill.-Herman Richter, Jr., Jersey City, N. J. This drill has been devised especially for overhead work, and the drill shaft is adjustabis secnrea
npon a base with a rolling support, the shaft veng made in coupled sections, whereby it may be given the length to reach a ceiling of any height. The feed is controlled at the base of the machine, and the driving mechanism may be reailly operated by one standing on the floor.
The frame in which the drill shaft is sustanned may be given any dealred angle to drill a hole at an inclination,

and a gage is provided

Well Operating Power. - George . Grimes, Blufton, Ind. This invention is for a crank and eccentric mechanism for operating oil well drills or actuating oil pump rods, and affords a simple and eco nomical construction designed to bave sufficient strength
and rigidity to operate several pumps from a central station. Upon the power shaft is a crank arm, with perforations, and an adjustably monnted crank attachment in connection with rod-actuating plates, there being also
on the shaft a crank wheel, with flanges engaged by rod plates or rings.

Miscellaneous.

Cartridge Loading Implement.Edwin H. Cant, Honolulu, Hawaii. A simple and com pact machine has been devised by this inventor by whic cartridges may be looded, primed and crimped quickly
and conveniently, and with eafety to the operator. The and conveniently, and with eafety to the operator. The
machine also extracts primers from cartridges that have machine also extracts primers from cartridges that hav
been fired, and in reloading expands the open ends of the cartridges, smoothing out the crimp and rendering the old shells as readily refllable as new shells. A spe cial form of primer extractors is provided for the long primers generally used with high grade smokeless shells.
Carpet Cleaner.- Kelly Girvin, Broklyn, N. Y. According to this invention a casing with opposite inlet and ontlet for the carpet, and yielding supports therefor, is provided also with a rocking beater and exhaust fan, the arrangement being such that a
carpet may be readily fed through the machine and beaten without injury to the pile of orussels and othe carpeta, and without tearing or injuring ingrains. The from the body of the machine, and from the portion of the carpet being cleaned as rapidly as it is loosened. in, New York City. For properly calking the decks of vessels, floors of slanghter houses, stables, etc., this in-
vention provides a weighted frame with traveling wheeis vention provides a weighted frame with traveling whee.'s
and calking disks which extend below the wheels, a forked handle pivoted to the frame having downwardly extending arme carrying friction rollers, the latter form ing it to different cracks or seams, into which the calking material is pressed by the disks.

Label Gumming, etc.-William H. Burland, Punta Gorda, Fla. A device deaigned to be very serviceable to druggists and others has been de
vised by this inventor for conveniently and rapidly ap. plying an adhesive liquid to a label to be attached to a bottle. The body is preferably of glass and has a longi
tudinal trough with two tudinal trough with two beveled side portions and a scraper, and an overhanging seat adapted to carry a
brush, while an npwardly projecting nipple commnni catee with the trongh, and
wherelo the nipple 1 rooelved.

Paper Fastener.-George H. Bennett, New York City. This is a device preferably made
of a single piece of wire or sheet metal, formed with a of a single piece of wire or sheet metal, formed with a
back having its midale portion pliable, sol that it may be bent over and carry the corners of the sheets along, and
with loops at the sides and a croes bar connecting the loops. The device is inexpensive and may be readily arranged to clip together a variable number of sheets of paper, etc., without perforating them.
Envelope Fastening Device.-Ed ward A. Goodchild, Thompson Falls, Montana. Ac cording to this linvention, the parts of the envelope o
package at which the seal is located are made with graduated perforations or openings in the several fiaps,
that the seal may have a locking action upon the various that the seal may have a locking action upon the various
folds that may be beneath it, thns avoiding the possiYolds that may be beneath it, thns avoiding the possi-
bility of an inner flap or fold being opened to gain access to the contents of the package while the package yet sealed and without disturbing the seal.
Wrapping Cotton Samples. - Claud H. Robinson, Anniston, Ala. A machine has been de of cotton may be quickly and compactly done up in a roll between suitable wrappers and tied, forming a parce to be shipped without injury. The machine comprises folding strips hinged at each slde of and extending over a table, in combination with tension-controlled boxes in which a shaft is mounted to turn, wherewith a single at
tendant may in a short time do np and tie a large numtendant may in a sho
ber of such parcels.
Shawl Strap and Luggage Carrier. -Edward A. Lefebre, Jr., Brooklyn, N. Y. According handle, and from the roller a binding strap and alko an operating strap extend outward through the handle, the device affording convenient means for binding shawls, books or packages for carrying from place to place. On one end of the roller is a ratchet wheel engaged by pawl preventing a reverse movement of the roller, the
device affording considerable leverage for operating the dinding strape.
Bottle and Stopper. - William J. Hope, Clayton, Miss. The neck of the bottle, accor ing to this invention, has at ite outter end a globular sea
adapted to receive a ball stopper, the upper end of the moath being curvedto form a shonlder. The stopper made of a yielding material, preferably as a hollow rnb ber ball, and may be readily forced within the mouth by a gentle sidewise pressure, but is securely held in posi
tion by the presenre from gas or liquid within th bottle.
Closure for Bottles, Jars, etc.Theodore Diebold, New York City. In this device the stopper is formed with a metal head lined on its under
side with cork, and the lining is preferably held in place by a disk made of tanned sheepesin or parchment, de locked in place by a ring on which are eyee which re
latter is locked in place on the jar or other vessel. Th stopper is made to be easily and thoroughly cleaned an Hame Tug.-William F. Dale, Bow nanville, Canada. This device comprises a chain at number of links passing through links of the chaing, a through the casing to receive the trace attachment and act as holders for the trace body. The extra links have enlarged shoulders on their inner side bar which engage the edges of the chain links.
Rein Holder.-Robert R. Richardson, Portland, Oregon. This is a simple device for at which is a yoke open at one side, a hollow cam having a nger piece swinging in the yoke, and a plate spring ex tending through the cam, the spring being secared a painst the gielding engagement with the reins.
Horseshoe Pad.-Michael Hallanan New York City. This pad is formed of flexible mate ial, preferably of rubber and leather, and has a trans. portion at ite lower eide, there being a back plate ove the inner side of the pad. The rounded surface forms a rolling support for the horse's foot, and the pad is espe aily
Otl Lantern. - Julius L. Wandler Brooklyn, N. Y. This is a cheap and strong lamp mor especiany designed for campaign purposes. The fount
has a central wick and filling neck into which fite an las a central wick and filling neck into which fite a pertured stopper beld on the nnder side of the chim and extending through the stopper. The chimney in held between springs extending npward from the support, the handle being attached to the springs.
Receptacle for Viscous Substances. -Francis L. Littlefield, Portland, Me. This is a re ceptacle for mucilage, glue, paste, blacking, etc., which has a valve-controlled outlet in its bottom. The valve projects slightly below the bottom and is pushed up
ward when the contente are to be withdrawn, the valv being returned to ite seat by
opening pressure is removed.

Designs.

Tape Measure. - Eila G. Brewer Brooklyn, N. Y. This design comprisee fioral decora tions on the gradnated side of the tape symbolical of the four seasone-May flowers for spring for the firs olden rod for the third quarter and holly for the fourt arter.
Notr.-Copies of any of the above patents will be
Curoished by Munn \& Co. for 10 cente each send name of the patentee, title of Invention, and date send name of
of thie paper.

