
a Weekly journal 0f practical information, art, Science, mechanics, chemistry, and manufactures.

THE MANUFACTURE OF STEEL TUBING-BLAST FORNACES OF THE NATIONAL TUBE WORKS COMPANY, McKEESPORT, PA.-[See p. 264.]

รrientific 영mmerican.

ESTABLISHED 1845

MUNN \& CO.,
Editors and Proprietors
PUBLISHED WEEKLY AT
No. 36i BROADWAY, - - NEW YORK.
TERMS FOR THE SCIENTIFIC AMERICAN (Established 1845.)
One copy, one year, for the U. S., Canada or Mexico...
One copy, six months, for the U. S., Canada or Mexico ne copy.one year,to any foreign country, postage prepaid, $£ 016 \mathrm{ss} .5 \mathrm{~d} .1 .50$ Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 361 Broadway, corner Franklin Street, New York. The Scientific American supplement (Established 1876)

Established $1 \mathbf{5 8 5}$.

Exiton the Scientitl Ameica (Established 18\% (

The safest way to remit is by postal order, express, money ord
Th or

TABLE OF CONTENTS OF
Scientific American Supplement No. 1138
For the Week Ending October 23, 1897.

III. Jhemistr y.-Monazite.-By H. b. C. Nitze.
IV. ECONOMICS.-Japan and the United States Tariff.

 methoas oftransportation among primitive and savage peoples.-

VIL LoCOMOTIVE ENGINEERING. A New French Locomotive.
IIL MECANAICAL ENGINEERING.-The "Ruston". Oill Engine.

XV. TRANSPORTATION.-Primitive Transportation-_18 illustra.

the licensing of engineers

Our attention has recently been called to a New York State law which seems to have been inspired less with a desire of serving the public and protecting its interests than for some less honest and less disinterest ed motive. We refer to a law enacted on May 22, 1897, establishing rules of qualifications for those having the care of boilers, steam generators or steam engines. Precaution should be taken to protect the public against accidents from negligence, ignorance or mismanagement ; but the law in question can hardly com mend itself to the unbiased mind, owing to the very narrow nature of certain of its features. The law is designed, not so much to enforce the employment of engineers for running elevators, boilers and engines in our large buildings, but it is designed to enforce the employment of a licensed engineer in small buildings, dwelling houses or apartment houses where steam heat ing apparatus is in use. To require a licensed engineer to take charge of apparatus of this kind is entirely un necessary and oppressive. It is usual in such cases to have a fireman who is always in attendance and who is under the direct supervision of the janitor or the other manager of the building.
The particular features of this measure which show the animus which inspired the introduction of this bill are to be found in the qualifications governing the applicant for examination. In the first place, the applicant must be a citizen of the United States and over twentyone years of age. The application must show that the applicant has been employed as a fireman, oiler or general assistant under a licensed engineer in some building in the city of New York for a period of not less than five years. It is evident from this provision that a thorough knowledge of steam engine practice is not what was sought after by the pronoters of this bill. A thorough efficiency and a perfect familiarity with al the secrets and mysteries of steam engine practice are not sufficient to entitle the applicant to admission within the charmed circle, but he must " have been under the immediate supervision of a licensed engineer for a period of not less than five years," and, most wonderful of all, he must have been employed in the capacity of "fireman, oiler or general assistant in some building located within the city of New York." We are unable to grasp why this extraordinary limitation should be considered as an essential equipment for an engineer, but it is evident that the society who intro duced and fostered this interesting measure believed that this was surely a clever means for advancing their own interests. The engineer who, perhaps, has been driving a locomotive for thirty or forty years would not be allowed to take charge of any steam heating ap paratus in any building in New York, without first taking up his residence there and undergoing an apprenticeship of several years
This bill, like many others of its class, was passed by the Legislature without proper investigation into its merits or demerits. The bill was introduced to benefit a particular class; it manif estly had no other aim or object. The protection of the public against mischie lation that we have to endure, this tends to makemany suffer for the benefit of the few. The enforcement of this unjust and foolish law will throw out of employment many who have, for years, had charge of buildings and who were competent to manage the same as well as if they "had been an assistant under a licensed engineer for a period of five years in some building in New York."
It is to be hoped that this foolish law will be re pealed. If it is not repealed, it is probable its validity will be tested, and it is more than possible that the act will be deemed unconstitutional.
The interested motives of the promoters of this bill may be noted from the fact that it was to take effect immediately, the intent evidently being to throw hundreds out of employment before they would be able to qualify themselves for passing the required examinations, or even filing their applications there for.

pRISON ASSOCIATION OF NEW YORE EXHIBITION.

The recent exhibition of the Prison Association of New York was held with the idea of giving the public a more intelligent idea of the inner workings of our State prisons than it can glean from the daily press. The objects of the association are practical and humanitarian, and this was evident from the character of the exhibits, in which was very little of a merely sensa tional character. By far the greater part of it consisted of specimens of the handiwork of convicts in the prisons of New York State. A notable exhibit was that of a
complete set of furniture for the warden's office, made by the prisoners at Sing Sing. It was made in oak richly carved and polished, and the work would have done credit to any first-class factory. In the same room was an inlaid box made of nine thousand three hundred and fifty-six separate pieces of wood and a banjo made of six thousand and fifty-one pieces, both being the work of inmates of Auburn prison. The work done by students in one of the art classes was represented by som grille work which showed excellent taste and skill.

The clothing worn by the convicts is made on looms in the prison, and the various State institutions for the blind, the deaf and other unfortunates are also entirely supplied from this source. Here were shown specimens of the various suits, both for men and women, together with prison-made blankets, toweling, etc. The various prison schools and workshops at Sing Sing were repre sented by drawings, cabinet and joiner work, plaster cornice work, boots, shoes and a host of other articles of wear and household use.
The one truly sensational object in the exhibition was the chair used in electrocution at Sing Sing, in which thirteen people have already suffered death. Ex cept for the heavy straps at the arms and legs, there was nothing to suggest its tragic purpose. The celebrated Bertillon system for the identification of criminals was shown and explained, and a typical case of photographs from the rogues' gallery formed part of the exhibit.
In a room devoted to the Elmira Reformatory a sur prisingly large number of the arts was represented by specimens of steel engraving, zinc etching, bookbind ing, printing, photography, etc., done by the boys in the various classes. Near by was a large board of draw ings. mechanical and architectural, which had been made by prisoners who had received only six months instruction.
In looking over the varied collection of articles, all the results of instruction in useful arts and sciences, one found it difficult to believe that it had come from within the inclosure of State prison walls. The exhibition testified to the great advance which has been made over the old methods in the treatment of convicts, and it is easy to see that, as far as the occupations of prison life are concerned, everything is done to improve the more debased and ignorant among the convicts and give them some reasonable hope of honest livelihood when their terms have expired.
The inmates of the State Penitentiary for the Eastern District of Pennsylvania were represented by a large model of that famous institution, made by themselves. This prison is conducted on the much discussed plan of solitary confinement adopted generations ago by that State. The prison is laid out so that the idea of soli tary individual confinement shall be literally carried out. Formerly, from the time the convict entered the massive gate of the prison to the day on which he left it he never spoke to or looked upon the face of any man but his keeper. To secure this result the prison is built on a radial plan. The outer wall of the inclosure is 30 feet high and 640 feet square. In the venter of the square is a tower 40 feet in diameter and two stories high, and from this radiate, like the spokes of a wheel, eleven long, low, one-storied structures. Each wing is built with two outer walls and a central dividing wall and covered with a low pitched roof, and it is divided by partition walls into a long double line of cells. Each cell opens out onto a little yard which is surrounded by high walls and is of about the same area as the cell. Light is obtained by a grated window in the roof Formerly the convict ate, slept and worked in his cell and took exercise in his little yard, absolutely alone. The prisoner is received in the central tower, his pedigree is taken, and he is then taken to one of the cells, which he never leaves except for exercise. The idea of which he never leaves except for exercise. The idea of solitary confinement is not carried out so literally as it
formerly was; but the convict does all his work in his formerly was; but the convict does all his work in his
cell and is never thrown in contact with the other concell and is never thrown in contact
victs in workshops and classrooms.
Very different from this is the modern steel prison, withits modern provisions for light, heat and ventilation. The methods of this construction were shown by illustrations of the new wing of three hundred cells which is being built at one of the State penitentiaries.

A SEVENTY THOUSAND HORSE POWER CENTRAL STATION.

Work is progressing upon a building in New York City which will contain the largest aggregation of mo tive power ever gathered together in a single plant Hitherto that distinction has belonged to the grea cean steamships, the largest power at present being in the engine rooms of the Campania and Lucania, of the Cunard line, each of which is credited with a max mum trial horse power of 33,000 . In this connection it is interesting to note that the huge industrial establishments to be found in the textile and iron industries, with their miles of shafting, their vast power-driven machinery and their employes numbered by the thouand, do not call for one-half the motive power that is to be found snugly stowed away in the engine room of a St. Paul, a Lucania, or a Kaiser Wilhelm de Grosse
The new power house is being built by the Metropol itan Street Railway Company of New York and it form part of the scheme for introducing electric traction on the whole of the 218 miles of street railways owned or controlled by this company. At present there are three different systems at work : the cable, the under ground trolley and the horse car. The mechanical power is supplied from four power houses : a cable power house on Houston Street and Broadway, an other at Fiftieth Street, a third on East Twenty-sixth

Street, and an electrical power station at 146th Street The first three of these furnish power for the Broadway and the lexington A venue cable roads, and the last furnishes current for the Lenox Avenue underground trolley.

Work is now well advanced on the 55 miles of horse car lines which are being equipped with the under ground trolley, and for the present the necessary elec trical power will be furnished from the 146th Street and East Twenty-sixth Street stations, the generating capacity of the former station being increased and a new electrical equipment being added at the East Twenty-sixth Street station.
The many advantages to be gained by operating the whole of their vast system by one method of traction and the uniformly good results which have been ob tained on the experimental electric line on Lenox Ave nue, have determined the company to make arrange ments for equipping the whole 218 miles with the underground trolley. The advantages of economy to be gained by concentrating the power plant at one grea central station are many and obvious, and it is thi consideration that has led to the planning of the monu mental power station which is now under construction near the East River between Ninety-fifth and Ninety sixth Streets.

The economical distribution of current from one cen tral station will be rendered possible by the use of high potential in place of the 550 volt distributio which characterized the practice of a few years ago.

The building will cover a site measuring 201 feet by 270 feet. The foundation will consist of 8,000 piles, upon which will rest a five foot bed of concrete, which will extend over the whole area of the site. The building will be divided by a central wall into a boiler house and an engine room. The former will be four stories, and the latter two stories in height. The three lower stories of the boiler house will contain 87 water tube boilers, with a maximum capacity of 800 horse power each, and arrange ments will be made for the use of forced draught. The upper third of the boiler house will be devoted to a set of huge storage bins, with a combined capacity of 9,000 tons of coal. The coal will be transferred from barges at the adjoining river dock to the bins by a system of elevators, and the ashes will be returned to the river scows by the same means.
In the adjoining engine room will be eleven cross compound condensing engines. They will be of the vertical type, and each will have a maximum capacity of 6,600 horse power. They will stand in two rows parallel with the divid ing wall of the power house and each will be direct connected to a 3 -phase alternating current generator. The current at 6,000 volts will be led to substations where static and rotary transformers will convert it to the 550 volt current used in the conduits.
We are informed by President Vreeland that the estimated time of construction is twelve months. The whole equipment will not, of course, be put in at once, but it will be set up contemporaneously with the demand created by the ultimate extension of the underground trolley to the Broadway and Lexington Avenue cable roads and to the various horse car line or controlled by the company.

LORD KELVIN

Among the distinguished scientists who attended the recent meeting of the British Association at To ronto, Canada, were Sir John Evans, Lord Lister and Lord Kelvin, each great in a different line of work. Lord Kelvin is particularly notable, owing to the fact that he has been a professor for over fifty years, and during this time he has witnessed the wonderful pro gress in physics and chemistry to which his persona contribution is so important.
Lord Kelvin, though of Scotch descent, was born in Belfast, in 1824, and was so precocious that he, then plain William Thomson, entered the College of the University of Glasgow at the age of twelve. Frow Glasgow William Thomson went to St. Peter's College Cambridge, and in 1845 he graduated with highest honors and was elected a fellow of his college. Even before his Glasgow student days came to an end, Wil liam Thomson's original work in science was com menced, and his first mathematical papers, written before he entered Cambridge as an undergraduate are all worthy of attention. From 1842 to 1845 he published important papers on heat, electricity and mathematics. In 1846 Thomson was elected professor of natural philosophy in the University of Glasgow, and thus at the early age of twenty-two he was appointed to the chair which he still holds. Many offers have been made him by the great English universities, but he has preferred to remain in his northern professorship, and his constancy is appreciated by the university which he adorns. The dynamical theory of heat early engaged the attention of Thomson,
and he published important papers upon the subject in 1849, and in 1852 more than one joint paper was undertaken by the life-long friends Joule and Thomson. In 1855, Thompson publisbed a paper on "Electro dynamic Qualities of Metal," and it was while engaged in experimental work connected with this research tha he began to make use of the assistance of his students and this was the commencement of the physical labo atory of the University of Glasgow, which was, in fact the first of physical laboratories. In 1855 and 1856 new field opened itself to the genius of Thompson.
The problem of ocean telegraphy had presented itse to the world, and very soon he was practically called upon to solve it. When the cable was completed it wa found that it required one minute to transmit one word over the cable. Thomson, experimenting with the re flection of the image of a candle thrown from his con ave eyeglass on a sheet of white paper in a fairly lighted room, judged that the flame of a paraffine lamp reflected from a silvered mirror of one-tenth of that area would give an image bright enough for convenently reading telegraphic signals. The mirror gal vanometer was supplied for the 1858 cable. The di rectors of the Atlantic Company insisted that Thomson should go to sea with the expedition and also that he should take a patent for his instruments. To tak out a patent was somewhat against his wishes, as he de sired to give to the public the fruit of his labors, as he did with his sounding machine and his mariner's com-

LORD KELVIN.

pass, but he found in each case that the only way to secure attention to inventions of importance was to patent them and work the patents. In 1867 the siphon recorder was invented and patented. On the successful completion of the Atlantic cable, in 1866, he received the honor of knighthood.
Sir Willam Thomson's other inventions can be onl briefly referred to. They include electrical test instru ments and the improved mariner's compass, to say nothing of the large number of minor inventions. Si Willian Thomson succeeded Sir George Gabriel Stokes, Bart., as president of the Royal Society, in 1890, and was created first Lord Kelvin in 1892. The degree of LL.D. was conferred on him successively by the Universities of Dublin, Cambridge and Edinburgh, and that of D.C.L. by Oxford. He was a fellow of both the London and Edinburgh Royal Societies, and has been president of the British and other associa tions. He has also received various decorations from abroad. He is Grand Officer of the Legion of Honor, commander of the Order of Leopold, and has received the German Ordre pour le Merite. He is a member of a large number of foreign societies and has a multitude of medals conferred upon him for his eminent inentions and discoveries.
In 1876 Sir William Thomson was a judge at the Centennial Exhibition at Philadelphia, and in 1884 he visited America to attend the Montreal meeting of the British Association. On this occasion he delivered a course of lectures on "Molecular Dynamics," at Balti more, to a class composed mainly of professors from different parts of the world, gathered together at the Johns Hopkins University
During Lord Kelvin's present visit to the United States he traveled quite extensively and made a num-
ber of addresses. On September 23, accompanied by Lady Kelvin, Count di Brazza Savorgnan, Prof. Elihu Thomson and others, he visited the Schenectady work of the General Electric Company. The electric railwa work most arrested his attention. He was particularly nterested in the new "surface contact" electric road f the type now being constructed for Monte Carb. Another feature of railroad work shown was the hand ing of one of the cars equipped for the South Side Ele vated, of Chicago, weighing 25 tons and carrying fou 50 horse power motors underneath.
With these cars the rate of acceleration obtained is as much as 40 miles an hour in 15 seconds, giving a tre mendous increase in quickness of service on elevated or suburban lines.
Lord Kelvin was much interested in the experiment which were shown him in high voltage currents. He carried a little green note book with him in which he jotted down formulx, figures and autographs. It wa easy to see in so much advance he was glad to recog nize here, in America, the rapid fruition of ideas and sugestions which the slow pace of European advance would not have allowed him to test on this large and satisfying scale.
Coming away from the works, his indefatigability as an investigator was shown by his leaving a comfortable cariage to ride in a dusty trolley car equipped with magnetic brakes. Emergency stops were made alon the road quite frequently, and Lord Kelvin hung ove the open trap door of the car floor with an interest that might easily have resulted in his disappearance down it, but for the restrain ing hands of those who wished him to go back to Glasgow University safe and sound
The recent awards to this country of import ant electric railway contracts for England and the Continent have awakened great interes among English electrical engineers, who see in these contracts a source of danger to the British electrical industry.
Lord Kelvin was asked by 'The Evening Post representative as to his views on this matter He said : "I do not consider it out of the way o surprising that these orders should be placed here. England has not yet developed her elec tric railway work to as large an extent as you have, and hence is buying, as she always does, in the best market to save money. She ha the engineering and manufacturing talent, but lacks the opportunity. Here you have town of 10,000 population springing up in a year and they naturally want the latest and best, making a good demand which renders easy production on a large scale and also stimulate the older communities near them. We have no such developments in England, and the areas of our towns are smaller, so that the necessity of city transportation is not so keenly felt as with you."
Asked as to the near outlook in England Lord Kelvin said: "The predictions as to the resort in this country to electricity on steam roads in some parts of the country seem to me well founded. From my observation I do not expect, however, any change at present by our big railroad systems in England. They move slowly and with judgment, and thing must be proved. I do believe that all our English tramways and all our city travel must soo become electrical. I do not see any alternative from hat."

Archæological News.

F. Petrie, Honorary Secretary of the Victoria Institute, England, writes to the Rev. Alfred Putnam, D.D., President of the Danvers Historical Society, a letter in which he says: "It will interest you to hear that one of the Institute members writes home from upper Egypt to announce his discovery of a palace of Pharaoh of the sixth dynasty, with numerous valuable inscrip tions. The wine jars of Pharaoh were found in tact in a long cellar. All were hermetically sealed, but on breaking the seals of one, the wine seemed petrified.
With the present year, the Archæological Institute of America will begin the uniform and regular publication of its papers, reports and other documents in a new periodical which will be styled the American Journal of Archæology, second series. The journal of the Archæological Institute of America will be conducted by an editorial board, the members of which will represent the several interests of the institute and the institutions in its care. The new journal will succeed the American Journal of Archæology, and the new periodical will be issued six times a year. It will include the archæological papers of the institute, the papers of the American School of Classical Studies at Athens ; papers of the American School of Classical Studies in Rome; proceedings of the institute and other archæological societies; reports of the institute; summaries of archæological news, correspondence, notes and notices. The journal will be published in England and America by the Macmillan Company.

RECENT INVENTIONS.

We represent herewith some recently patented inventions which seem to have considerable interest.
Mutoscope.-One of the simplest forms of mutoscope is shown in the engraving. It is the invention of H . Casler, of Canastota, New York.
It is designed to show a series of pictures in rapid
one or more teeth, owing to the sudden increase in the speed of the driving mechanism. The raising of the worm does not, however, revolve it, but compresses the governing spring. It is this function which is utilized in determining the speed of the governed engine Ultimately the increased speed of the engine, if not arrested by the governing mechanism, would commu nicate itself to the revolving fan. This would ccur when the spring had resumed its norma tension. but this teudency of increase in the revolution under these conditions is counter acted in the fan itself, which is constructed so as to oppose an increasing resistance to any tendency to drive it faster or a decreased resist ance to any tendency to drive it slowly.
When the worm revolves faster than a predetermined rate, the increased speed of the engine will be taken up first by the raising of th
succession, so as to produce the motions of living objects. The mutoscope consists of a receptacle having an opening in its face and a sliding rack mounted therein; a series of picture cards carried by the rack, a handle for reciprocating the rack, and a finger for momentarily retarding the upper end of the passing card. Supporter for Rotating Shafts.-A novel de- orm and the by the increased resistance to rotation of the fans. The worm being connected to the throt le valve of the engine, the first result of an increased peed of the governor will be a coincident movement of the devices for controlling the flow of steam. The contrary result would be accomplished provided the an were driven at a less velocity.
J. F. Raders, of Flushing, N. Y., is the inventor of this governor
Auxiliary Propeller.-The engraving shows a simple and apparently effi cient device for propelling and steering a vessel in case the ordinary machinery becomes disabled or in case a sailing ves sel requires auxiliary or alternative pro pelling or steering machinery.
The motor case has conical ends and is provided with a motor, either electric steam or air, and a screw driven by the motor. The motor case has a hollow arm which prevents it from turning, and which contains the electric wires or the steam or air pipes connected with the motor The braces serve to hold the case in the position of use.
It can readily be imagined that a device of this kind might prove a very useful adjunct to a steamship, large sailing vessel, or even a war vessel.

A Statue of Tubal Cain.
The iron and steel manufacturers of eastern Pennsylvania have decided to erect a statue to Tubal Cain, the

L. J. JONES-ROTARY FLUE CLEANER.
original worker in metals, as their patron. They propose to honor his memory by erecting a statue on the Ohio River, at the junction of the Allegheny and Monongahela Rivers. The project has been taken up by the Engineers' Society of Western Pennsylvania and the Pittsburg Foundrymen's Association. It is proposed to build the pedestal of the statue of iron and steel, at a

R. M. FRYER-AUXILIARY PROPELLING DEVICE.
R. M. Fryer, of Washington, D. C., is the inventor of this propeller. Hose NozzLe.-The engraving shows an improved
hose nozzle which may be made to throw a solid, round stream or a divergent, fan-shaped stream at will.
The nozzle body is a single casting, with a circular delivery and a flattened delivery, both extending in practically the same direction. A valve plug is fitted to the nozzle body, at the junction of the two deliveries, so that, by turning the plug in one direction or the other, the water may be directed so as to pass through the cylindrical or circular nozzle. This device is the in vention of J. Askins, of Redfield, N. J.
Rotary Flue Cleaner.-L. J. Jones, of East Norwalk, Conn., is the inventor of a rotary flue cleaner, designed to loosen soot, ashes and scale, and at the same time force them out of the flue.
The cleaner consists of a case provided with steam ports, a turbine wheel placed in the casing, mounted on a shaft and capable of revolving with great velocity, and a pair of scrapers pivoted to a cross arm on the shaft and arranged to be thrown outward into contact with the flue by centrifugal force. A tubular handle, attached to the casing, serves as a conduit for steam supplied to the turbine.

Persons in New York may now talk with Council Bluffs, connections just having been completed.
cost of about $\$ 200,000$; upon this will rest a mammoth anvil, while a colossal bronze statue of Tubal Cain will stand in the attitude of swinging an enormous sledge hammer. The position of the statue will be such that nearly every visitor by river or rail will see it from a distance.

Nansen's Outfit Here.
The Thingvalla Line steamship Amerika, which recently arrived in New York from Christiania, Norway, brought the first consignment of relics from the recent

J. ASKins-hose nozzle.

Nansen polar expedition. The famous explorer will sail at a later date. A number of the larger articles used on the famous voyage of the Fram are now on exhibition at the Stockholm Exposition and will be forwarded in a short time. The collection which has already arrived in this country consists of various utensils fashioned for the most part by Nansen and Johannsen when they left the Fram and made a dash for the pole. Each article mutely tells the story of hardship, suffering and daring.

THE LARGEST AND FASTEST PADDLE STEAMER IN GREAT BRITAIN.
by A. J. sinclair.
We present two engravings-an exterior and an interior view-of the new steel paddle steamer "Em press Queen," which is the largest and fastest paddle steamer in Great Britain and which has just recently been completed by the Fairfield Shipbuilding and Engineering Company, Govan, near Glasgow, to the order of the Isle of Man Steam Packet Company, Limited, Douglas, Isle of Man, for their passenger and mail service between Liverpool and Douglas (a distance of 70 nautical miles). The first tical miles). The first
vessel owned by the vessel owned by the
Isle of Man Steam Isle of Man Steam
Packet Company, which have now a fleet of a dozen steam-ers-8 paddle and 4 twin screw steamers -was built in 1830. It was of 116 tons burden and 200 indicated horse power.
It was through the kind offices of Lord Henniker (Governor of the Isle of Man) that the Steam Packet Company secured the consent of Her Majesty Queen Victoria to have the ship called after her own name. The principal name. The principal "Empress of the "Empress Queen" are: Length over all
375 feet, breadth of 375 feet, breadth of
hull 42 feet, breadth hull 42 feet, breadth
over paddle boxes 83
dine. The ceiling of the saloon is in white and gold. Forward of this are the pantry, scullery and plate-room.
The pantry is furnished with all the latest appliances, including steam, hot water boiler and steam carving tables.
Another good feature is the fact that there is saloon galley connected with the saloon pantry wher

MAIN SALOON, LOOKING FORWARD.
feet 6 inches, and moulded depth is $251 / 2$ feet. She is everything may be sent down without carrying the ediconstructed of steel throughout and is of 2,500 gross \mid bles through the saloon, as in the older boats. The tons. The hull is divided into several watertight first class smoke-room is large and agreeably arranged, compartments by means of steel transverse bulkheads, which, besides reducing the risk of foundering to a minimum, materially augment the strength of the structure, forming valuable supports and ties between the decks and framing. The decks are four in number, and are termed "lower," "main," "spar," and "promenade." The dining saloon, on the lower deck, accommodates 124 first class passengers, and is the handsomest saloon of its kind of any Channel steamer afloat. Ample accommodation is provided for the number stated to dine at one time, and in addition to the long tables running along the full length of the room, there are several small tables at which parties can the framing being in oak, the paneling in teak, and the upholstering in dark green morocco, while white and gold are the prevailing colors of the ceiling. The main saloon, which we illustrate, is paneled in mahogany, nlaid with satinwood and ebony, while the ceiling is chastely decorated in white and gold. All the uphol stering is done in the finest mouquette velvet, while the carpets are of the best Axminster, and form a beauti ful contrast in shade with the cushions. The saloon is provided with couches, writing tables, etc., which go to make it as comfortable and complete as the mos astidious members of the traveling public could desire To the right of the main saloon is the ladies'
saloon, which is unique in form and decoration, the latter being in satinwood, and set off in cozy alcoves by means of carved and arched columns in the same kind of wood. It is upholstered in an electric blue shade of velvet, with Axminster carpets to match. Leaving the main saloon. a descent is made by a handsome staircase to the second general saloon, which is fitted up with mahogany and satinwood panels and upholstered in a iight shade of mou quette velvet, with carpets to match.
The forward part of the ship is allotted to the second class passengers. The din ing saloon, forward of the machinery space on the lowe deck, having bar and pantry adjoining provides ample room for the second clas passengers. On the same deck and forward of this, is a ladies' second class saloon, supplied with every up-to-date requisite.
On the main deck above is arranged a second class shelter, which contains a bar, buffet, mail and parcel rooms. The gentlemen's sanitary aplpointments are of the most modern system, and are provided for first and second passengers, abaft and forward of the sponsons respectively.
On the spar deck aft, in houses, are six handsome private cabins, fitted with berths, etc., and amidships on the same deck is a cloak room, and combined bar and smoking room, while all fore and aft all available space is utilized for sitting room, there being sparred seats sufficient to seat over 600 persons.
Above this is a very spacious promenade deck extending from the fore end of the boiler room aft to the end of the first class cabin, with buoyant seats running the entire length, excepting a small portion at the after end, which is appropriated for the sto wage of boats, a feature which has received special attention, so as to allow of the immediate launching of the boats if necessary.
The bridges (36 feet above the water line) that surmount the promenade deck are placed one at the foremost extremity for navigating purposes, and the other between the funnels. and extending from sponson to

sponson, with captain's house under, for the better handling while docking and taking piers. From both of these bridges the bow and stern rudders are controlled by means of wheels connected with independent steam-steering gear placed below on the engine starting platform. A hand-screw steering apparatus is also placed in reserve aft in case of emergency. Docking and engine telegraphs are provided on each of the bridges.
The vessel was engined by the builders and the machinery consists of compound diagonal surface-condensing engines, the diameters of the cylinders being one 68 inches and two 92 inches in diameter, with a piston stroke of 84 inches. They are the largest and most powerful paddle-wheel engines yet built. Their nominal and indicated horse powers are respectively 1,290 and 10,000 . When the ship was on her trials they worked up to close upon 12,000 horse power.
The three steam cylinders are placed side by side, and working on three cranks, the high-pressure cylinder being placed between the two low-pressure cylinders. The high-pressure cylinder is fitted with a piston valve and each of the low-pressure ;cylinders with flat slide valves, all controlled by the usual double eccentrics and link motion valve gear. The crank shaft is a ponderous piece of machinery. It is built, and, together with the paddle shafts, is forged of mild steel and bored hollow. The siasting and reversing is effected by a laros sieam and hydraulic engine on the direct-acting principle.
The condenser is cylindrical, and placed athwartships between the cylinders and the supports for the shafting, and the condensing water is supplied by a circulating pump worked by an independent steam engine.
The paddle wheels are made of steel, and constructed on the feathering principle, with curved floats. The floats are each 18 feet in length. Steam is supplied to the engine by four double-ended boilers arranged in two compartments, one forward and one aft of the engine room. They are adapted to work with Messr Howden's system of forced draught.
The vessel has two funnels and two pole masts, and presents a very handsome and majestic appearance. On July 8, the "Empress Queen" made four trial runs between the Cloch and Cumbrae Lights, when she averaged over 22 knots per hour, and, considering the stormy weather which prevailed on that day, the result was gratifying. The following Monday a six hours' sea trial was carried out on the Clyde with equal success, the average speed over the whole course out to sea being 22 knots. While on her trials on the Clyde the highest speed attained was fractionally less than 23 knots an hour.

The "Empress Queen," which is licensed to carry 1,994 first and second class passengers by the Board of Trade, is now running to and from Liverpool and Douglas, which will be her regular station.

The Railroad in Alaska

The building of a railroad through Chilkoot Pass will be undertaken by the Chilkoot Railroad and Transportation Company, of Tacoma. It will be 8 miles long and will connect Dyea at tidewater with the mouth of the Dyea Cañon. Transportation through this cañon and across the pass to Crater Lake will be effected by a system of tramways, the contract for which has been awarded to the Trenton, N. J., Iron Company, which agrees to have them in operation by June 15,1898 . The tramway will be of the Bleichert system. The first one will be 4 miles in length, reaching from the cañon to Sheep Camp, with a rise of 1,000 feet. A second tram way will extend from Sheep Camp to Summit, $31 / 2$ miles, with a rise of 2,500 feet, and thence to Crater Lake with a fall of 500 feet. Iron supports will be put in every 100 feet. The tramway will have a capacity of 120 tons dailysufficient for the outfits of 200 miners. It is to be hoped that the promoters of this much needed means of transportation will not encounter any serious legal diffi culties. It was believed that the Interior Department had the power to grant permission to run over the public lands, but no provision was made in the act of March 3,1875 , for Alaska, as no one then thought that railroads would be run in the Ter ritory. The same state of affairs applies to the tramways, the cable roads, th telegraph and telephone lines and other enterprise
which demand passage over the public domains. which demand passage over the public domains. The originators of the enterprises will be forced to apply to Congress for charters or for legislation that may enable the Interior Department to take charge of the matter. It is probable that Congress will act at once upon these applications, so that the railroads can be built before the spring season opens. The Interio Department has many applications for such franchises, but it can do nothing but refer them to Congress for action, and so notifies all those who applied. Out of the five passes over which routes could be constructed from the coast to the interior, three have been surveyed for this purpose.

DRIVING GEAR OF THE BAYVELGERE CHAINLESS BICYCLE.
siderable amount of friction. The flexible shaft shown in the accompanying engraving adjusts itself to this distortion or to any bending that may be produced by collision or other accident, and permits each pair of gears to work without binding, even though they be considerably out of line with each other.
The flexible shaft is provided with a four point knuckle joint at each end, the points consisting of steel balls which engage corresponding holes in the ends of the axles of the gears at the crank hanger and the rear hub. Each of the two gear wheels adjoining the intermediate shaft is formed in one with a short hollow axle, whose bearings are carried in a short threaded cylinder which is firmly screwed into the crank hanger or the housing of the rear gears, as the case may be. The two casings are connected by means of a tube with enlarged and threaded ends which just flls the space between the casings, and is held in place by means of threaded couplings. Wear of the intermediate gears is taken up by screwing the cylinders containing the ball races into the casings, and the bal bearings are adjusted by screwing up the cones on the outer ends of the short hollow shafts or axles.
The mechanism is entirely inclosed by the casings and connecting tube, and when it is filled with oil or other lubricant, it will run for months without attention. Taken altogether, it is a highly creditable piece of work, both in design and construction

The Patagonian Expedition from Princeton
 University.

The Princeton Patagonian expedition which left in February, 1896, returned in August. It was under the auspices of Prof. W. B. Scott, of the department of geology. The object of the expedition was to collect vertebrate fossils from the tertiary deposits and the skins and skeletons of recent birds and mammals. The objective points, says Science, was the port of Gallegos on the east coast of Southern Patagonia. From this point investigations were conducted along the coast from Sandy Point, in the Straits of Magellan, to Port Desire, on the north. In this region many interesting fossil forms were secured, and a nearly complete serie of living birds, mammals and plants. After spending several months in the coast region, the expedition wen into the interior, where many new glaciers and water courses were discovered. Being an unexplored coun try, not only were new facts relating to the geography of the region discovered, but many plants and animal new to science were also collected, while the informa tion obtained relating to geological phenomena was of the greatest value Numerous volcanic cones hitherto unreported were discovered
Owing to the difficulty of traveling in the interior, it was impossible to take any great supply of provisions was impossible to take any great supply of provisions.
So it was found necessary to limit the expedition to So it was found necessary to limit the expedition to
Messrs. Hatcher and Peterson. They were absent five Messrs. Hatcher and Peterson. They were absent five
months on this trip, during which time it was impossi ble for them to receive or dispatch any mail and they did not meet with a single human being. After spend ing a little more than a year on the mainland, the expe dition proceeded to Tierra del Fuego and the adjoining islands, where important collections were made and ob servations were taken of the geology and paleontology of the islands.
Throughout their work the Argentine government was very generous and courteous to the expedition giving to its members transportation on its war ves sels from Buenos Ayres to Gallegos and return, offer ing to place at its disposal a smaller vessel for use in researches among the islands. The collection is the most valuable of any formed from that region, includ ing as it does a nearly complete series of mosses and flowering plants, 800 skins and skeletons of recen birds, eight tons of fossils, including mor than 1,000 skulls and many nearly com plete skeletons.

Experiments on the Liqude faction of Fluorine
At the meeting of the Academy of Sci ences at Paris, October 12, M. Moissan read a paper on the liquefaction of fluor ine with Prof. Dewar's instruments in London. He said it retained its liquid form at minus 120 degrees Centigrade, whereas almost every chemical affinit of the most active of known gases disap pears in such great cold. The exceptions
rear wheel, in a rigid casing, which is incapable of being sprung out of shape by any rough usage that may be put upon the bicycle. The power is transmitted from one set of gears to the other by means of a shaft formed with a knuckle joint at each end.
Every wheelman is well aware that, under the strain of hill climbing, when the maximum pressure is put upon the pedals, the rear forks are liable to spring omewhat out of line. This is due to the pull of the chain being applied only on one side of the wheel. In he chain-driven wheel this flexibility is of comparatively little consequence; but any such distortion on a bevel-geared wheel, provided with a rigid intermediat
shaft, would cause the gears to bind and set up a con
are hydrogen and turpentine oil, which even in a tem perature of minus 210 degrees Centigrade combine with fluorine and are incandescent.

Science announces the establishment in Switzerland of a weather bureau. It says: "A dispatch is sent each evening from Zurich giving the weather pro babilities for the next twenty-four hours. The predictions are based on data received from the principa meteorological stations of Europe combined with ex perience of local conditions. The dispatch is furthe distributed by telephone to those communes prepared to subscribe ten francs [$\$ 2$] per month for the ser vice."

The American Institute Fair.
In the basement of the Madison Square Garden will be found an exhibit which will be recognized by visit ors who were present ati the Chicago World's Fair and became familiar with the celebrated display in the De partment of Forestry. Reference is made to the lovely collection of American woods shown by Romeyn B Hough, B.A., of Lowville, N. Y. It was a happy inspiration which led Mr. Hough to conceive the idea of preserving his specimens in the form of ex tremely thin and transparent sections or shavings, instead of in the form of the blocks or thick strips with which we are familiar. The most unique part of this exhibit is a set of albums, each page of which contains three specimens of one particular kind of wood. The sections measure about 2 inches by $41 / 2$ inches and they are cut from the tree in three different directions transverse, radial and tangential. The wood is prepared by a process which in no way interferes with the natural colors and texture of the wood, and the specimens are cutin a special machine which produces sections varying from $\frac{1}{84}$ of an inch for transverse to $\frac{1}{20}$ of an inch for radial and tangential sections.
So fine is the work of the machine that sections of California white pine are shown which are only ${ }_{4^{\frac{1}{00}}}$ of an inch thick. These are of course transparent, and on holding up the hand to the light and looking at it through one of these sections a curious so-called X ray effect is produced, due to the refraction of the light in passing through the wood. In addition to the exquisite beauty of this work, the collection of volumes forms a complete treatise on the subject of American woods. The exhibit also includes preparations of woods for the stereopticon and the microscope, and a collection of wooden cross section cards for visiting or business purposes. The printing qualities of the wood, either for type or steel plate, appear to be excellent, and the grain and delicate tints of the woods give them a dainty and artistic effect.
The exhibit of the American Gas Furnace Company, of Elizabeth, N. J., comprises an oil gas machine placed in Machinery Hall, and in the Main Hall a large number of furnaces for hardening and annealing steel work, gas forges, brazing blowpipes, a furnace for automatic hardening, and an automatic tempering and coloring machine, in which the work is fed into a hopper and passes through a revolving spiral way, where it is constantly subjected to the action of sand or ground flint, heated to the proper degree, and finally leaves the furnace drawn to the desired temper-color.
The oil gas machine for converting naphtha into a fixed gas is automatic in its action, requiring no further attention than keeping the storage tanks filled. A 2 inch pipe is laid from the gas machine across the Garden to the floor above, and the mixture of atomized naphtha and dry air is so well combined that there is no evidence of condensation at any point. The gas is delivered to the furnaces at a pressure of 1 pound to the square inch. The lighting qualities of the gas are shown by means of a number of Welsbach lamps, to which it is fed through a pressure regulator, which reduces the gas pressure of 1 pound to the square inch required for the furnaces to 4 inches of water pressure. This is the first public exhibition made by this com pany, and its plant is certainly an interesting feature of the fair.

The Otto Gas Engine Company, of Philadelphia, show four of the justly celebrated Otto engines, the oldest type of gas engine to take a successful hold upon the public. Seven thousand of these engines are at work in England, and one of these shown at the fair is num bered 5,588 , showing that over this number have been built in the United States. The exhibit comprises one 9 horse power horizontal engine, driving a 110 volt dynamo; a 25 horse power marine engine; a 36 horse power horizontal power engine and a $31 / 2$ horse powe vertical engine.
The Harting Gas Engine Company call attention to the few parts of their machines, rendering them easy to operate by the unskilled hands of the amateur. The governing is done from the exhaust, and the claim of simplicity is certainly borne out by the appearance of the $21 / 2,1$ and 34 horse power engines exhibited.
Wietz \& Weiss, of New York, show four gas engines, ranging from $1 / 2$ to 8 horse power, which they claim will develop a horse power hour on 17 cubic feet of gas, and 1 horse power and 2 horse power kerosene engines, which are said to burn but 1 pint of oil per horse power per hour. A closed oil tank, carrying sufficient oil to run the kerosene engine ten hours, is attached to the
cylinder above the crank chamber. The oil is forced into the cylinder through a small tube, and there it is vaporized and mixed with the proper quantity of air. To control the engine under varying load, the number of injections is regulated by a governor connected to an eccentric on the main shaft.
An exhibit worthy of special mention is that of the Clauson-Kaas Manufacturing Company, of New York. The stall is filled with a varied assortment of the very beantiful papier maché models which are made by this company, chiefly for use in the lecture room. The dif ferent departments include models of fruits, vegetables,
botanical specimens, the anatomy of the human body
and many other objects. The models are all hand painted, and the greatest care is taken to give them perfect shape and color. The imitation is carried to the point of weighting the objects, and the surface is made to give the correct sensations to the touch. . This reproduction of the "feel" and weight in the case of fruits and vegetables is very deceptive, and it is diffi cult to realize that the weighted papier mache potato is not the garden-grown article. The most difficult and successful modeling is shown in the anatomical depart ment, and the model of the human ear, in which each
articulated detail is exactly reproduced, is a masterpiece of modeling. A curious display of models is that forming part of the mycological cabinet, which is the name given to the imitations of mushrooms and toadstools of all continents. The object of this cabinet is to prop agate and enlarge people's knowledge of all edible and poisonous mushrooms and toadstools. It is considered that the surest way to teach the public what to gather and what to let alone is to teach them by means of these models and the description that goes with them. It may surprise the uninitiated to learn that the collection includes models of 119 specimens, of which 21 are poisonous, 14 suspicious, 24 not edible, the re
-less than one-half of the total-being edible.
A modest stand, but one that should commend itsel to every resident of the city that has the welfare of the dumb creation at heart, is that containing the Hallanan rubber horseshoe pads. The pads are made of rubber and canvas, backed with sole leather. They are made slightly larger than the horse's foot across the quarters, and form part of the shoe. The shoer fits the foot and pad with a three-quarter steel shoe of uniform thickness, and the space between the pad and the foot is filled with tar or oakum. The object of the pads is to place the weight, of the horse evenly on the sole and frog and prevent the jar to the foot. It also tends to prevent slipping on smooth pavements or on ice-covered ground. It is used by the fire department. of New York and Brooklyn, where it is said to giv good service and it has received the indorsement One of the best pieces of mechanical construction in the Fair is an angular coupling or quarter turn counter shaft, shown by T. R. Almond, of Brooklyn. It is in tended to be used in place of the quarter turn belt or miter gears. At the point of intersection of the cente ines of the two shafts, and at right angles to them, is a vertical shaft upon which is a stout sliding sleeve provided with two short horizontal arms placed 90 degrees apart. The arms terminate in steel balls which engage sockets on the extremities of two short rocking levers which are pivotally attached to the two counter shafts. As the shafts are turned the sleeve on the ver tical shaft has a rotating and sliding motion. The de ice, which is ingenious and well worked out, is said to develop less friction and show less wear than the more common methods of making quarter turn con-
nections. The inventor was awarded the John Scott mections. The inventor was awarded the John Scot
medal the recommendation of the Franklin Insti tute.
A pair of electric dumbbells are shown by the W and S. Electric Company, of Brooklyn. A small dry battery is suspended between the shoulders, and the wires are carried to the two dumbbells, where they connect with the wire wrapping of the handles. The strength of the current is regulated by a switch placed n the chest of the user.
The New York Trade School has contributed an ex hibit of the excellent work turned out by its students which calls for special mention. The question of trade chools and apprenticeship is a very live one just now, and if any one doubts the value of the instruction which is given in technical night schools, he should examine this exhibit. The work is shown on boards and comprises most of the departments. The work done by the class of $1896-97$ in blacksmithing is ex eedingly fine and much of it shows a finish which would do credit to a skilled journeyman. There are
also exhibits of work in stone cutting, sheet metal work, steam fitting and plumbing.
The management have introduced some novel feature in this year's exhibition, notably the food show and the exhibition of fruits and flowers. The latter is somewhat limited, but what there is of it is very choice, many of the exhibits coming from professional exhibit ors, and from the gardens and conservatories of such xhibitors as Cornelius N. Bliss, William Rockefeller, J Loeb and D. Wilson. The field is such a vast and at tractive one that it should soon be possible for the an-
nual exhibit of fruits and flowers to develop an independent existence. There is sufficient wealth and en thusiasm devoted to floriculture alone in and around Greater New York to fill the whole Garden with exhibits at an annual show.

Remedy for Yellow Fever.

A special cable dispatch to the New York Sun, from Montevideo, on October 10, states that Dr. Sanarelli the discoverer of the bacillus of yellow fever, announce hat he has discovered a curative serum for that dread disease. He will shortly publish the results of his expe

The steamer City of Topeka arrived at Seattle October 11, from Juneau, Alaska, bringing severa niners from the Klondike regions and $\$ 300,000$ in gold. Among the passengers was John F. Maloney, of Juneau who came out from Dawson City with the Galvin party. He stated that the previous accounts of the wealth of the Klondike were overestimated. He also tated that one claim would produce $\$ 1,000,000$, and that over $\$ 2,000,000$ would come out of the Klondike egion this fall. Patrick Galvin, who is recognized a one of the bonanza kings of the Klondike and who ha been engaged in mining for three years, said : "There are 461 claims which have been operated sufficiently to prove their richness. There are 280 claims staked out but not developed. Taking these claims and figuring ut their cubic contents and making a conservative stimate, I do not see why the output from these claims alone should fall short of $\$ 50,000,000$."
In a letter from Lake Lindermann a newspaper writer says that there is chaos on the Dyea trail Thousands of people are struggling hopelessly on with damaged outfits and thousands with no outfits, clothes food, or shelter are beating back against the storm, trying to reach Dyea. For eleven days the storm has aged, the wind blowing a gale and the rain falling in torrents. To the 800 or 900 people cooped up between the mountain lakes, high above the timber line, the past has been a nightmare. Baking powder is held at 55 per pound; horseshoe nails being 25 cents each One man at Crater Lake went back over the trail and cathered up 500 nails from the hoofs of dead horses and old the lot to one man for $\$ 65$. A stick of dry wood he size of a man's arm sold readily for $\$ 4$, and green wood sold at the rate of $\$ 1,000$ a cord. It is gratifying to note that our new Supplement Catalogue has been eagerly received by the large libra ies of the country and has been placed on thei helves as a valuable work of reference. Many of the librarians have been so favorably impressed with the catalogue that they have wished additional copies for various departments of their libraries.
The librarian of the Wabash College Library says is "An elaborate and most excellent index catalogue. The librarian of the Carnegie Library, of Pittsburg says: "This little volume will get so much use in our library that we should like another copy, if you could spare one." "The librarian of the Public Library Peoria, Ill., says: "We shall find it of great value in reference work." The librarian of the Cornell College Library, Mount Vernon, Ia., says : "It will be of much help to us in using our back volumes of the ScIENTIFIC American Supplement.
Copies have been filed in the libraries in different departments of the United States government. Thi catalogue is a valuable reference index to a whole scientific and technical literature, much of which has not yet been published in book form. We are still able to supply a limited number of cloth-bound copies which are mailed for twenty-five cents. Copies of th paper cover edition mailed free to any address in the world.

Explosion of Acetylene Gas.
While experimenting with acetylene gas in his ma hine'shop'in Rochester, New York, on October 4, Valen ine Long, his brother, Frank Lons, and Jacob Fas sott, an employe, were injured by an explosion of the tank used in making the experiment. Valentine Long'sskull is. fractured over his right eye and he lost the sight of both his eyes. It is said at the city hospita that he will probably die. The other two men are not seriously injured. The tank was a strange-looking affair, about two and a half feet in diameter and made of galvanized iron, with bands of iron running along he sides to give it strength. It was placed in Long's shop a few days ago by an acetylene company recently ormed in Rochester, in which Mr. Long was inter ested. At the time of the accident Valentine Long was preparing to make a pattern for a new valve tha is used on the tank. A lighted gas jet that stood about three feet above the tank is supposed to have ignited the acetylene and caused the explosion. Fas sott had a narrow escape from instant death. A piece of the iron from the tank grazed his body, cutting ff the buttons from his trousers and making a ren across the bosom of his shirt.

The Steamer Cymric Launched.
The new White Star Line steamer Cymric was launched at the yards of Harland \& Wolff, Belfast, on October 12. The Cymric is a freight and passenger steamer of 12,000 tons and is considerably longer than the Georgic, which is the largest of the White Star freight steamers now in the New York service. It is tated that the White Star Line has contracted for over 100,000 tons of new steamer property. The Oceanic was to have been launched in January, 1898, but, owing to the strike in the engineering trade in Great Britain it is possible it may not be launched until May or

A NOVEL HAND CAMERA

The remarkable progress that has been made within the past few years in the construction of hand cam ras, whereby their cheapness, lightness, compactness, simplicity and accuracy are some of the predomiant points, is well exemplified in the camera called the Adlake, which is the subject of our illustrations.
The well known box form of camera is adopted, and comprises at the front all of the important essentials for good work; as, for exainple, a lens easily removable for cleaning, a set of diaphragins quickly adjusted, a very simple yet rapid shutter, easily released, positive in its movement and quickly adjustable for time or instantaneous exposures. There are also the usual two finders for taking the picture in a vertical or horizon. tal position. On the rear is a space for holding twelve remarkably compact and simply constructed metal plate holders, plainly observable in Fig. 1 and in detail in Fig. 2. Each plate is exposed separately, withdrawn from the box and transferred to the rear of the series until all, or as many as desired, are exposed, each holder having stamped on it a separate number.
The construction of the plate holder and mode of operation will be observed in Fig. 2. Two vertical grooves in the box on each side hold a metal plate holder frame having a small recess cut out in each side, as will be noticed by a black space in the upper part of Fig. 2. The thin metal plate holder, just, thick enough to hold one glass plate, provided with a hinge side, the latter having on its upper edge and outer corners light wire clamping or locking springs, is pushed down in the metal plate holder frame just described. Just in front of the frame are two skeleton fingers, having at their upper ends curved portions which fit into the black recess shown in the plato holder frame, and are attached to the axis of a revolving shaft at the bottom, at the end of which is also a push crank projecting through the box, the knob being seen in Fig. 1, on the side. To make an exposure the finger frame is turned into a vertical position until it fits snugly into the plate holder frame. The plate holder is then inserted, which brinys the corner projecting clamping wires into the curved ends of the finger frame. The cover of the box is shut, then the knob on the outside is pushed down. This carries forward the finger frame downward in the arc of a circle which takes with it the door of the plate holder, leaving the latter in a horizontal position on the bottom of the camera. After the exposure is made the knob is pushed up tightly which closes the door of the holder, it being secured by the three wire clamping springs. The cover of the camera is opened, the plate holder removed and an other plate inserted. The plate holder is made with a thin rabbet edge, in which the edge of the plate holder door, or side, fits and exoludes all light.
Referring to the mechanism of the shutter, Fig. 3, it will be noticed that the shutter is of the ordinary oscillating fan-shaped type, having an elongated aperture, working on a pivot from one side to the other in oppo site directions, and that a very small movement just below its axis produces rapid movement above. To this portion is attached a link secured to the lower end of a long swinging vertical arm, or lever, pivoted at the top, seen on the left. A rapid move ment of this lever near its fulcrum will give an extremely rapid motion to the shutter Behind this lever will be seen the pivoted black operating swinging lever, on the end of which is secured the operating os cillating spring, having one end attached to the long vertical lever not far from the fulcrum.

When the operating lever is pushed in one direction by the knob on the outside the spring is partly rotated until its center is above the attached end, causing the shutter lever to be suddenly pushed in the opposite direction, giving a corres ponding rapid movement to the shutter Pushing the operating lever in the opposite direction makes the spring carry the long lever to the other side. In this way a slight side pressure on the push button quickly operates the shutter without a jar or difficulty. A second pivoted leve (shown at the right. Fig. 3) pivoted at the bottom, the axis of which is a flat spring, has a horizontal arm projecting from its center which engages with a like short arm projecting from the shutter proper. It may be called a time lever. When the button on the outside is pushed toward the lens, the arm on the lever engages the arm on the shutter and stops its movement, leaving the aperture open for time exposures. When pushed away from the lens, the lever releases the shutter and allows the latter to close.
Above the shutter and working just behind the lens will be observed a star-shaped diaphragm plate turning around its center and having three different aper tures. On the surface of the plate are slight indents, which engage in the end of the horizontal flat locking
springs. The diaphragm plate is attached on the front to a rotating ring surrounding the finder lens, and is thus rotated from the outside to whatever working aperture is desired.
Convenient strap rings are attached to the handle of the camera for carrying it over the shoulder or on a bicycle. Pictures we have seen made with it are clear cut and distinct, showing that its cheapness is no bar to the production of good work.
Its simplicity and certainty of working are its sali ent features, while at the same time its strength o structure is such as to permit of rough handling with out detriment.
The camera is manufactured by the Adams \& West-

the adlake hand camera.
lake Company, 108 Ontario Street, Chicago, Ill., from whom further particulars may be had.

Kite Experiments at Night.
Mr. William A. Eddy recently tried some interesting experiments with kites at night. The first of these was a thermometer ascension. Three six foot kites were sent up bearing with them a self-registering ther mometer which was to ascertain the temperature of the upper air. The thermometer's place on the kite string was indicated by a red lantern, and its altitude of 1,167 feet was calculated by triangulation on a base line of 525 feet. When the thermometer was sent aloft the temperature of the earth was 50 degrees. It was 48 degrees on the ground an hour later when the ther mometer was hauled down, and the register showed that the minimum temperature of upper air was 46 degrees. The second ascension was made a few minutes later. The thermometer was raised to a height of 1,530 feet and left there ten minutes, and when it was drawn down it registered 47 degrees, while the ground tem-

the steel pipe and tube industry.
 -The manufacture of the pig iron.

The manufacture of pipe and tubing is one of those branches of the iron industry that have been slow to discard puddled iron in favor of Bessemer steel as the raw material of manufacture. This reluctance to use the new material has been due to the difficulty in producing lap and butt welded steel pipe that would be as strong at the weld as in the body of the pipe, and it is undeniable that the earlier attempts were marked by repeated failure. The obvious advantages of strength and smaller cost in the use of steel were so great, however, as to stimulate the manufacturers to an earnest study of the problem, and of late years it has been so completely solved that welded steel pipe and tubing can now be made, and is made, thatshows a larger percentage of strength at the weld than at any other point. It has been found that to procure a perfectly reliable weld a special grade of steel must be used, and that the chemical composition of the pig iron itself must be made the subject of careful study. Under the old system the manufacturers of steel tubing were apt to purchase their raw material in the shape of pig iron with very little, if any, regard to its composition; whereas it is now the practice of the best manufacturers to exercise the greatest care in the selection and mixture of the pig before it is melted down for treatment in the converters.
The National Tube Works Company, whose plant is the largest and most representative in the world, attach much importance to this branch of the manufacture, and they make every ton o pig that goes to their steel plant in their own blas furnaces. Every lot of pig that is cast is carefully analyzed and its composition recorded, and when the cupolas at the steel plant are charged the pig is selected from various casts with reference to its chemical composition, so that the molten cast iron as it is poured into the converters shall have the desired chemical proportions.
Before entering into a detailed description of the blast furnaces, it may be mentioned that the National Tube Works Company, whose plant has grown to such vast proportions, was formed in Boston in 1865, and is, therefore, thirty-two years old. It made a modest beginning at its present location, McKeesport, Pa., in 1872, with a pipe mill which employed two hundred men. The company at that time merely rolled the "skelp" (as the plates from which the pipe is made are called) into pipe, buying the skelp in the open market. In order to render themselves independent of the market and secure a more reliable material, they built in 1879 their own puddling furnaces and rolling mills. Shortly after this a forge was added, together with Swedish efineries and "knobbling" fires for the manufacture of the charcoal iron, of which the company's locomo tive boiler tubes are made. The present steel plant was erected in 1893, and there is at present an entirely new plant in the course of erection for the manufacture of old-drawn seamless tubing.
Thus has been built up the present vast establish ment, which can claim to be not only the largest tube works in the world, but also one of the largest steel works of any kind in this country. Those of our readers who have never had an opportunity to visit a works of this magnitude can form some idea of its size from the following statistics: The combined steel plant and rolling inills cover an area of 90 acres and give steady employment to an army of 7,000 men. The raw material brought into the works and consumed every day averages 1,000 tons of ore, 1,500 tons of coal, 700 tons of coke and 300 tons of lime stone, not to mention other material in lesser quantities. For the intershipment of material within the works there are $121 / 2$ miles of standard gage track and one mile of narrow gage. The rolling stock of this system of railroads consists of 350 cars and 11 locomotives, the latter varying in size from the smallest of their kind up to machines of 75 tons weight. The total output of tubular goods for the year is 200,000 tons.
The raw material-coke, limestone and perature was 44 degrees. The minimum temperature iron ore-is brought into the works on cars and run up registered in the highest strata was 43 degrees. Mr. Eddy and his associates next raised a triangular reflector, 24 by 5 inches, covered with silver paper, to watch its operation in the light of a full moon and see what it would do with the rays. One of Mr. Eddy's associates went to a point a quarter of a mile distant, and from there could plainly see the reflector, although at first it was difficult to distinguish it from the stars.

A company has been organized at Seattle, Washing ton, to develop the coal and oil fields recently discovered in Alaska, some 350 miles west of Juneau. Thirty thousand feet of piping has been ordered for this purpose from the Pittsburg district.
onto raised trestles, from which it is dumped into long rows of bins. From these it is drawn off, as will be explained later, for charging the blast furnaces. The plant contains two blast furnaces, known as the Monongahela furnaces, of the latest type, with a capacity of about 700 tons per 24 hours. These furnaces, with the elevators for raising the ore, coke, etc., to the charging platform, the hot blast stoves and the foundry in which the pig iron is cast, are shown on the front page engraving. Each furnace consists of a massive cylindrical structure of brick and steel 80 feet in height and of varying diameter. At its mouth it has an internal diameter of 16 feet, and it increases in the first 60 feet of its depth to a diameter of 20 feet, the taper being

A 1.450 horse power blowing engine.

the base of a furnace 80 feet high-casting the metal.

REMOVING PIG IRON FROM THE SAND.

loading ore at the bing for the furnaces.
given to allow of an easy descent of the material. The walls are 3 feet in thickness, and the greater part of their weight is carried upon a circular row of massive cast iron columns, which bear against heavy stee girders placed beneath an offset forsued in the wall at this point. From here to the level of the blast tuyeres the furnace tapers to a diameter of 12 feet, and this diameter is maintained to the bottom of the furnace, 8 feet below the tuyeres. The massive walls are built of brick, with an outer casing of sheet iron and an inner lining of firebrick. It will thus be seen that a modern blast furnace presents the appearance of sections of two hollow truncated cones, placed base to base and terminating in a cylindrical chamber or basin. The upper portion is known as the "shaft " o body," the lower portion as the "boshes," and below this is the "hearth "or "rucible, will be seen, lie just
cast iron collects. The boshes, it will cast iron collects. The boshes, it will be seen, lie jus
above the tuyeres, and as the material which they above the tuyeres, and as the material which they
contain is exposed to the fierce blast of the furnace contain is exposed to the fieree blast of the furnace,
the walls at this point are provided with hollow bronze castings built into the brickwork, through which a strean of cold water is constantly circulated. These extend completely around the boshes and penetrate the wall to within a few inches of its inner surface. At the bottom of the boshes the wall is pierced by seven tuyeres through which the hot blast is introduced.

In the ea:lier blast furnaces the hot gases were allowed to escape at the mouth of the furnace, from which great masses of flame issued continuously and gave that weird and brilliant night effect for which the iron manufacturing districts were formerly noted. This was, of course, an extremely wasteful practice thousands of dollars' worth of fuel being recklessly burnt away to no purpose. To-day the mouth of every furnace is closed by a massive cast iron cup and cone arrangement, which is only opened when a fresh charge is to be lowered into the furnace. The cup is a mas sive casting, which rests upon the inner edge of the wall and extends down into the furnace mouth. The cone is suspended within the cup, its lower edge being of larger diameter than the cup, so that when it is drawn up it completely closes the opening.
On one side of the furnace, just below the hopper, is a flue opening, through which the gases escape down a large riveted steel pipe to a dust collector, where the cinders and all solid particles remain and are taken out from time to time through a chute at the bottom. The gase is led to utilized for two different purposes. blast on its way from the blowers to the furnace, and part is conducted to the batteries of boilers, shown in Fig. 2, where it is utilized in raising steam for the blow ing engines.
The Cowper stoves, of which there are seven, stand in a line opposite the furnaces. Each stove is a cylindrica wrought iron tower 20 feet in diameter and 79 feet inches in height. It is closed by a dome-shaped roof and the whole interior is lined with fire brick. On the side next the furnaces is a large vertical flue into which the furnace gases pass by a valve at the bottom. The body of the stove is taken up by a mass of fire brick pierced with innumerable small, vertical flues, extend hot gases are ignited on entering the base of the large flue by admitting air through a valve, and the hot products pass up the main flue and down through the mass of fire brick, finally escaping to the large steel chimney, which stands between the furnaces. When the interior of the stove has been heated to a proper temperature, the gases are shut off and turned into the next stove. The cold blast from the blowers is now turned on at the bottom of the stove and passes up through the brickwork, from which it absorbs the heat, finally passing down the main flue, from which it is led to the circular blast main which surrounds the furnace just above the tuyeres. By the time it leaves the stoves the air is heated to from $1,300^{\circ}$ to $1,400^{\circ}$ Fah-
renheit, the difference between this and the cold blast representing heat saved from the gases and restored to the furnaces.
The gases that are not used in the hot blast stoves are carried in large riveted pipes to the boiler house, of which we give an interior view, Fig. 2. Down each side of the room are arranged sixteen two-flue boilers, each of which is 54 inches diameter and 30 feet long. There are also four 250 horse power double deck water tube boilers in two batteries, making thirty-six boilers in all. All of these are fired with the furnace waste gas, which is distributed by the large pipes which extend through the boiler house near the roof From the main pipe it is led down beneath the foot plates, and there controlled by valves which admit it to the burners, which will be noticed curving over from the floor to the furnace front. Here the air necessary for combus box. The supply of gas is controlled by means of a rack and lever, which serves to slide the burner to and from the furnace and increase or reduce the opening by which the gas enters it.
After passing down through the long line of boilers
ne is prepared to find an imposing display of motive one is prepared to find an imposing display of motive
machinery in the engine house-and it is indeed a truly
impressive sight that meets the eye. The blowing en
gines, one of which is shown in Fig. 1, are all gathered gines, one of which is shown in Fig. 1, are all gathered of nearly 5,000 horse power. On one side of the room is a group of five Allis-Corliss condensing blowing en gines with 42 inch steam cylinders, 84 inch air cylinders, and a common stroke of 5 feet. Each engine develop 00 horse power, and each is provided with its own con densing pump. There is also a very handsome com pound condensing blowing engine, of which we give an illustration, with a 40 inch high pressure and 76 inch low pressure cylinder, and twoair cylinders 76 inches in dia neter, the stroke being 5 feet. This engine develops 1,434 indicated horse power, and with the other engine brings the total up to close upon 5,000 horse power.
The 2,000 tons of limestone, coke and ore which ar consumed daily by the furnaces are brought into the works by the train load. The cars are run up onto trestles, from which their contents are dumped into long rows of bins. Our illustration, Fig. 5, shows the chutes at the bottom of the ore bins, which latter ar ranged down the long shed which is seen to the left in the front page engraving. The "burden," as the mix ure of ore, limestone and coke with which the furnace is charged is called, is made up according to the grade of iron which it is desired to produce. It is taken frou the bins in iron trucks in the proper portions, and wheeled to the large elewators shown in the engraving which lift it in the trucks to the charging platform at he mouth of the furnace. Here it is dumped into the hopper, and as soon as the latter is filled, the cone is owered, permitting the charge to fall into the furnace The furnace is kept constantly filled with burden, and when it is once started it is kept burning continuously, the solids descending and the gases rising to be carried off by the flue. If we could look into and note the con-

transverse section throvgh cowper hot BLAST STOVE.
dition of the contents, we should find at the top a layer several feet thick of raw materials, the temperature of which was about 500°. Below this would be a few fee in which the ore was somewhat reduced by carbon. In he next layer, at a temperature of $1,000^{\circ}$, the limeston ould be found decomposed into lime and carbonic acid. Below this would be a wider belt at from 1,500 to 1,700 degrees temperature, where the iron, now re duced from the ore, would be taking up the carbon to orm cast iron. A little lower down oxides, such a silica and phosphoric acid, are reduced, the silicon and phosphorus combining with the iron. Within the boshes the iron is completely melted, as is also the sla which results from the combination of the fluid with the various impurities. The molten mass finally collects
in the hearth, the slag being on the top, and the heavier ron at the bottom. The slag is drawn off through an opening at the top of the hearth, and the cast iron is tapped through a narrow slit near the bottom. The illustration No. 3 is taken from the interior of the foundry in which the pigs are cast. In the foreground is seen the base of one of the great furnaces The large circuar pipe which surrounds it is the hot blast main, from which the seven smaller pipes lead to the tuyeres be low. On one side is seen the trough throngh which the slag is drawn off, and on the other side the molten ron is being drawn off, through the tap hole. The cas takes place six times a day, and the total output of the two furnaces is about 700 tons per day. The sand is prepared by forming parallel lines of moulds which connect with the central channel down which the molten iron flows. The tap hole is opened by breaking away the clay with which it is closed, and the meta flows at a white heat down to the end of the main channel, where it spreads right and left into the moulds The filling commences at the extreme end and finishes at the furnace.
When the cast has cooled off sufficiently to be han dled, the pigs are broken loose and laid across each
other in a position convenient for handling by the other in a position convenient for handling by the
man who carries the heavy pair of tongs. (See Fig. 4.)

They are then lifted, oneat a time, by a gang of powe ul and well-muscled men, who carry them through the open archway at the side of the foundry and load them into cars on which they are hauled to the steel-makin

We reserve the description of this department for a later issue.
M. de Morgan's Last Discovery in Egypt.

We may give a fuller account of discoveries which we mentioned briefly a few weeks since, says The Independ ent, made in the Nile Valley by M. de Morgan, Director General of Antiquities of the Egyptian government The most important of these discoveries is an extensive tomb which appears to be the most ancient yet unearthed in Egypt. M. de Morgan began his investiga tions in that portion of the Nile Valley formed by the bend in the Nile between Thebes and Abydos, where he brought to light many of the oldest records belonging early Egyptian history that have yet been found
The first notable discoveries were a number of an cient flint arrowheads, and other implements in the hape of indented flint blades, which had probably been used as saws and sickles. All of these evidently belonged to a period considerably antedating the time of the fourth dynasty. It is thought that the sickle date from even the first dynasty, for the reason that wheat is believed by historians to have grown wild in Egypt at that time, and that these implements wer evidently used for harvesting this wild cereal. M. de Morgan also found evidences that these ancient people had a religion of their own, which he believes to hav been a sort of fetichism, as he can in no other wa explain the curious inages, the slate figures of fishes birds and turtles which he dug up. He says
"These figurines must have belonged either to the first dynasty or to a race and period preceding it, as I have found them only in these autochthon places."
He adds that in no other tomb of the ancient empire that has been discovered have any fragments of this kind been found.
Continuing his study of the ground, M. de Morgan made his way along the valley until he reached a point near Negada, where an extraordinary mound attracted his attention. Excavations were begun at the base of the mound, and revealed the existence of a huge quad rangular-shaped tomb, which the explorers believed to be intact. One of the solid sides of the tomb was pierced, and an opening made the size of a large door way. On entering the tomb it was found that variou galleries extended at different angles, and long pas sageways with rows of carved columns descended int subterranean chambers. From top to bottom the walls were covered with hieroglyphic inscriptions and with figures of men and animals cut deeply into the surfaces. Warriors in bass-relief, different from any thing seen in other tombs, and images of children kneeling as if in fear, appeared here and there on the sides of the passageway.
The main gallery led into a series of twenty-one ooms, each containing many objects, such as pieces of furniture of different designs, fragments of bronze statues and a quantity of broken vases. In the center of each room were placed sarcophagi, containing the mummified remains of the dead. The vases were cut out of alabaster, rock crystal, quartz and a subtance resembling obsidian, and were carved with peculiar designs. A large central room contained single sarcophagus, resting upon a pedestal of solid ock. Around it, crudely carved in ivory, were forms of fishes and dogs; and near the feet were the remains of what appeared to be a mammoth lion, made of countless pieces of ivory put together. At the head of the sarcophagus and facing it was a life size statue of a nan, carved in wood. The sides of the room were covered with inscriptions of a period so remote that interpretation was impossible. The explorers opened the sarcophagus, and found an inner mummy case, covered with hieroglyphics. The sarcophagus was then closed and sealed, and prepared for removal to the museum at Gizeh, where the body will be carefully unwrapped. The sarcophagi in the other rooms, all of which were supposed to contain the bodies of royal persons, were also removed to the museum, where they will be opened. In all the rooms, M. de Morgan found large urns tightly closed and having on top what is known as a "banner name," or the seal of the kinga conclusive proof of the great antiquity of the tomb These, as well as all the fraginents and other loose objects, were carried to the museum.
The ceilings of the passageways and rooms were lined with what appeared to be sun-dried bricks of coarse workmanship, while the pavements of the floors were of granite. In many places the walls were in such a crumbled condition that large portions of the incriptions had become obliterated. The royal names upon the sarcophagi consisted of a few signs; and, instead of being written in cartouches, were inscribed n a square similar to the "banner name" on the vases. The seals on the vases in the king's chamber were made from a cylinder, and not from a scarab, according to the Egyptian fashion, as found in other royal tombs. Everything bore evidences of the most remote age.

Sorrespondence.

A Needed Patent office Reform.

To the Editor of the Scientific American
In your valued issue of the second instant you pre sent an article on the "Proposed Amendments to Our Patent Laws."
In addition to the propositions of the National Association of Manufacturers of America, I desire to call your attention to an inconsistency in the present working of the Patent Office which forms a sufficient grievance for another amendment.
The injustice (and it is nothing less) to which I refer is the unnecessary time and delay consumed in getting an application for a patent through the Patent Office.
With a surplus of $\$ 300,000$ accumulated during the past year, and a total surplus to its credit of more than $\$ 5,000,000$, it would seem there is no excuse for sub. mitting inventors to such long delays as is now the case in the examination of applications; especially, on the ground that the office is overworked, or that the force of examiners is insufficient to cope with the vast amount of business pouring into that office each day.

If more examiners are necessary to the proper dis patch of business, there is nothing to prevent the doubling or trebling of the present force, in the light of the resources at hand.
The writer has a number of applications for patent now before the Patent Office, and when he is told respecting one set of papers that this particular application "will come up for examination in about four months from the date of filing," it seems an absurd pro position for a government institution to make, which exists for and is backed and supported by an army of inventors, whose fees have enabled the office to pile up an unheard of surplus over and above its expenses.
Four months before one's application can reach an official examination! This is almost an insult to the inventive age, and certainly leads to the conclusion that there is large room for a grand reformation along this line, and that it is high time some action were taken looking to the correction of this evil and a bet terment of this branch of our patent service.

In patent practice the great desideratum is the utmost dispatch consistent with absolute accuracy, and there is no reason why the United States Patent Office there is no reason why the United States Patent Office
should not be so skillfully equipped as to be able to pass on each and every application in at least two weeks after the date of filing thereof.

To compel an inventor to wait four months or more, before he can know what the outcome of his applica tion is to be, serves to tie his hands, and prevent him from marketing what might prove a valuable invention, and at the same time keeps out of his possession funds which are absolutely necessary to his work and funds whe.

Were every inventor a manufacturer, then the tim consumed in passing upon these applications would not so materially affect him, for he could manufacture his invention with the usual "Patent applied for" stamped thereon, and patiently wait the pleasure of the Patent Office; but when, as is now the case, inventors are dependent upon manufacturers, it is impossible to dispose of a patent which the Patent Office has not as yet granted; and as money is what the inventor needs, he is unjustly compelled to wait until the insufficient force of the Patent Office reaches and passes upon his application.

Unless some reform is inaugurated to correct this grievance, what is to be expected of the future, when the accumulation of applications at this date has put the examiners four months or more behind in their work? How does the office expect to cope with inventive expansion, if they find themselves handicapped with work at this stage? And why is that $\$ 5,000,000$ surplus lying idle, when it might be expended in supporting an increased force of examiners, and thus facili tate the work of examination?
If the National Association of Manufacturers of If the National Association of Manufacturers of America are seeking amendments to the patent laws
of this country, they would do well to incorporate the above in their repertoire, and thus bring about a badly needed reform.

William E. Heath.
Baltimore, October 9, 1897.

Electrical Show-Madison Square Garden Selected

Another electrical show has been planned for New York. Indications are it will be larger than the first, and for that reason the management lately signed a lease for Madison Square Garden for the month of May, 1898.

The exhibition company was incorporated in Albany last week. The officers are: C. O. Baker, Jr., president F. W. Roebling, vice president ; George F. Porter secretary and treasurer, who, with L. F. Requa, C. H Lieb, H. H. Harrison and J. W. Godfrey, compose
board of directors. Mr. M. Nathan, the general super board of directors. Mr. M. Nathan, the general super-
intendent of the last show, will have the manacement intende
The new electrical inventions and improvements developed since the last show, and the interest and co-
operation of many manufacturers already assured, will count for much toward making this a more com plete demonstration of all the applications of electricity and its branches than was possible in the first exhibition in 1896.

THE COLOR CHANGES IN LIZARDS.

by c. f. Holder, pasadena, cal

The chameleon of eastern countries has attained a world-wide reputation for its wonderful faculty of changing color. In America we have a lizard, shown in the accompanying illustration, which is, if not so remarkable, one of the most interesting of this group of animals. Anolis principalis is best and most familiarly known in Florida and some of the Southern States, where it darts about among the vines and other vege tation, mimicking the dark green verdure and present ing a really wonderful illustration of this singula phase of nature.
At one time I possessed several specimens of the anolis, and endeavored, with poor success, to introduce these little animals into Southern California, hoping these little animals into Southern California, hoping which prevail here, but my lizards simply became pets and apparently preferred the house, where they were provided with flies and other delicacies. These little creatures were about five inches in length, of a general
dark green hue shading to gray, assimilating the various objects upon which they rested slowly but

medium by which the different tints were obtained The act of adaptation is perfectly involuntary, or made without the knowledge of the animal, being the effect which certain colors have upon the pigment cells of the animal. At least this is the generally accepted explana tion, and the experiments which have been made with blind animals seem to show beyond question that the eye is the medium.
These peculiar changes, which are so well known in fishes and reptiles, can be understood by glancing at the pigment cells of a frog. The skin is seen to consist of two portions, the cutis and epidermis, the lat ter apparently being made up of cells. The cutis has large cavities among the nerves, which are commonly filled with pigment and are very sensitive, contracting and expanding in a remakable way. The pigment cells are called chromatophores, and vary in color in differ ent animals and in the parts of each animal, and may be red, brown, green, yellow, black or various shades. The color: of the chromatophores appears to change during contraction or expansion and constitutes a most complicated and delicate study. Thus, in a little fish (Gobius Ruthensparri), Heincke, the German na turalist, while watching its yellow pigment cells, saw hem gradually expand and become black.
These cells are distributed all over the body with more or less regularity, and upon their contraction and expansion depends the prevailing color of the animal Thus, if the pigment cells or chromatophores expand the prevailing color will become black and the very light spots in the animal dull. On the other hand, if they contract, a reverse effect obtains. Exactly how these wonderful changes in all animals which adapt themselves to their environment are produced is not known, but it is assumed that certain colors through the medium of the optic nerve produce contraction expansion, and the result is a protective tint or one which assimilates that upon which the animal is rest ing. Theeye receives the stimulus or impression, which passes from the optic nerve to the sympathetic nerve so reaching the various series of chromatophores Thus, when a flounder is taken from the sandy bottom and placed on a black bottom, it at once grows darker; in other words, the color of the bottom has in the manner described caused a relaxation of the chromatophores, and the brown and orange colored ones have turned black or dark, thus aiding in the protection of the animal-a protection at once re markable and interesting. Among the flounders this is very marked. In the octopus I have produced almost instant changes, waves of color being seen to pass over the animal. This is especially noticeable in the little squid cranchia, while the larger squids are mar velous illustrations of this faculty. The dolphin, so common in the Atlantic, is well known for its wonderfu changes, not necessarily protective.
The little Florida anolis is easily domesticated, and two specimens kept by me became interesting pets, crawling about without the slightest fear; seeking the snug shelter of the binding of a book in cool weather coming out to bask in the hot sunshine, showing them selves to be perfect thermometers.
It is doubtful if the anolis would thrive in Southern California as the nights are often very cool. All through the winter here all the reptiles enter what is known as a winter sleep or partial hibernation. At half past four, or as soon as the direct rays of the sun begin to be missed, the lizards leave the rock heaps where they have been sunning themselves, and crawl into the crev ces and into holes in the ground, stretch out thei limbs to the rear, stiffen, and enter what is apparently complete hibernation ; but, as the sun rises the follow ing day, they are warmed into life again and renew all their activity.

Automatic Coupler Law.

The Chicago and Alton Railroad and other roads recently filed petitions with the Interstate Commerce Commission asking for extension of time within which their cars, under the act of March 2, 1893, are required to be equipped with the automatic couplers and power or train brakes, the time fixed by the act being January 1, 1898. The commission has made an order fixing the hearing of such petitions for Wednesday, December 1.
The commission has also ordered that any railroad filing application for extension shall also make, on or before November 20, 1897, a statement under oath of the number of freight cars owned and the number of freight cars which will be equipped wlth automatic couplers and the number which will be equipped with couplers and the number which will be equipped with power or train brakes by December 1 , 180, and with
number of freight cars which have been equipped with number of freight cars which have been equipped with automatic couplers and the number which have been
equipped with power or train brakes each calendar year since the act went into effect.

Arship Crosses to France

Cablegrams from France state that the balloon of Charles Pollock, who started from Eastbourne, England, October 12, across the Channel, descended safely near Domart, fourteen miles northwest of Amiens.

The Effect of Great Cold on Animalcules， Worms，Insects and other Animals． Worms，Insects and other Animals．

That certain animalcules，worms，insects and other nimals can and do experience no appreciable harm when subjected to extremely low degrees of tempera－ ture，the following experiments and observations would，unquestionably，indicate．
Until，comparatively speaking，a few years ago， freezing was considered to be absolutely fatal to all forms of animal and vegetable life．So universal was this belief that contaminated and filthy water was thought，by both scientist and layman，to be rendered potable after it had been subjected to great cold． Some ten or fifteen years ago，however，several severe epidemics of typhoid fever were traced directly to the
use of ice which had been taken from ponds into which there flowed surface drainage．This observation occa－ sioned an entirely new opinion to be formed．
In 1889，I subjected various cultivations of the spe－ cific germs of tuberculosis，typhoid fever，cholera and anthrax，by artificial means，to degrees of tempera－ ture far below any degree of cold that ever occurs naturally．These colonies were in bouillon，agar agar， and other culture media and were，therefore，easily studied．When the media containing germ colonies were gradually thawed out and then submitted to mi－ croscopic examination，no appreciable change in the various microbes was to be observed．When minute portions of these colonies were transferred to fresh cul－ ture media，the germs immediately began to increase and multiply，thus showing．that they had not been killed or even injured by the intense cold to which they had been subjected．It is claimed that the germs of yellow fever and kindred diseases are destroyed by cold．If this is true（and I have no reason to think that it is not），this fact goes far toward demonstrating the truthfulness of a proposition which I have long ad－ vocated，namely，that there are two kinds of microbes
－the animal and the vegetable．It has long been －the animal and the vegetable．It has long been known that intense cold is fatal to many organisms known to be vegetable，while，on the other hand， process of freezing alone
Infusorians appear to be uninjured by great cold， even when it lasts for weeks at a time．An experiment， and one easily performed，will demonstrate to any one the truthfulness of this assertion．
Let the observer satisfy himself that the pond or ditch froin which he wishes to take the ice necessary for this experiment contains the infusorian，say the＂slipper animalcule＂（Paramœcium）；this he can do in October or November．Then，in the depths of winter，when the ice is thick on the ditch，after a hard and long－con－ tinued freeze，let him take a small piece of the ice（a portion containing confervoid growths will be neces－ sary，as this particular infusorian seeks shelter there－ on），gradually thaw it out，and then place a drop
of the water or a bit of conferva beneath the object of the water or a bit of conferva beneath the object
glass of his microscope．He will soon discover paramo－ cia full of life，and absolutely unaffected by their so－ journ in their ice envelope．
Vorticellæ or＂bell animalcules，＂so called from their bell－iike shape，draw in their cilia and shrink upon or coil their stalks just before the water becomes con－ gealed．This interesting performance can easily be ob－ served if a colony of these animalcules is watched on the stage of a microscope．This observation，to be
successful，must be carried out in a room whose tem－ successful，must be carried out in a room whose tem－
perature is about $18^{\circ} \mathrm{F}$ ．A fragment of duckweed， perature is about $18^{\circ} \mathrm{F}$ ．A fragment of duckweed，
alga，or any pond weed known to be inhabited by vorticellæ should be placed in a drop of water beneath the object glass．The stage and glass slide will rapidly become cold．Finally，the drop of water will freeeze，but just before congelation takes place，the vorticellæ will draw in their cilia，coil their stalks and sink to rest on the weed．If the slide be carried into a warm room and begin to erect themselves on their stalks and to move their cilia in the act of feeding．A certain rhythmical pulsing of the umbrella（nectocalyx）of a medusa or jelly fish can be noticed as the creature swims in th water．This pulsing varies in frequency according to circumstances．When medusæ are placed in water whose temperature is being gradually lowered，at first this rhythmical motion will be accelerated．I have seen the nectocalyx under such circumstances pulsate Gradually that its movements could heared the freezing point，this pulsing would become slower and slower and finally cease．This inactivity would disappear，how－ ever，as soon as the temperature of the water became higher．Semper asserts that long－continued freezing is fatal to all infusory animalcules．Now this state ment is misleading and indefinite，from the fact that he does not fix a time limit．I am certain that severa days＇freezing is not fatal to the infusorians which I had under observation．I have also found live infusorians in the sediment of ice water，the ice from which it was derived having been harvested several months previous to the time of examination．These forms were not ad－ venitious，but were true fresh water infusorians（Para－
mœcium）．The contractile vesicle（the infusory heart）
of this little animal gradually slows its＂pulse＂as the
temperature is lowered，and finally ceases all motion． temperature is lowered，and finally ceases all motion． out，it will resume all of its functions．Rhizopods， rotifers and other animalcules likewise stand freezing with perfect impunity．In fact，all cold－blooded water animals appear to be indifferent to the lethal effects of extreme cold．
Last winter，while carrying on these investigations，I observed a very curious thing．I was examining a giant water beetle which was frozen in a lump of ice I noticed，just below the head of this insect，an uncon－ gealed drop of water；in this clear drop，not unlike kindred drops sometimes found in quartz crystals，I observed a little animal swimming freely about．I could not make out its genus through the intervening ice；so fractured the lump in order to obtain the animalcule． Unfortunately，it was lost and I cannot describe it． Had this creature an inherent quality which kept the water in its immediate vicinity in a fluid state，thus affording it safe domicileduring winter，or was the drop due to some law of crystallization？The little mite seemed to be perfectly at home，no matter what gave ise to its miniature lake．
Some of the higher water animals，such as fishes and frogs，can endure great cold without harm．Not long since，I saw a carp（C．carpio）in the very center of a cube of ice．This fish resumed all the functions of life as soon as the ice melted and set it free．It is claimed by explorers that the waters of the North Polar seas are remarkably destitute of the lowest forms of life indeed，of all forms．Yet that they are absolutely with－ out life has not been shown，for even in the ice cold waters of the extreme North Arctic Ocean micro－ scopic animalcules，to a limited extent，defy the benumbing and otherwise fatal touch of the Frost King ！
Turbellarians，nematoids or thread worms undergo freezing without appreciable harm．Little worms will frequently be found in ice taken from ponds，lakes，etc． This has given rise to the idea that ice＂breeds worms．＂ These little creatures are simply nematoids which have become frozen in
by liquefaction．
tiff without earth worm（L．terrestris）may be frozen earth worms were tancing any harm whatever．Several and placed in a jar containing eart h ．This was done early in autumn，so that the creatures might become accustomed to their surroundings by the time winter set in．Every now and then decaying vegetable sub stances，such as leaves，rotten wood，etc．，were sprinkled over the surface of the earth in the jar；water was also occasionally sprayed in．Thus，the worms had an abundance of food and water．The jar was set out in the open air，though a roof of boards was placed above it to keep off the snow and rain．It was sub－ jected to all the cold of a severe winter．On one oc casion the thermometer registered $-10^{\circ} \mathrm{F}$ ．in the center of the jar for ten or twelve hours．As soon as the milder weather of spring set in，the worms began to
move about，some of them laying eggs，thus showing that they had not been hurt by a temperature many degrees below freezing point．Again，several worms
were taken from a vermicularium and surrounded by an envelope of dampened earth an inch in thickness they were then exposed to a temperature of $-10^{\circ} \mathrm{F}$ for ten hours．When examined，they were found to be almost rigid ；indeed，some were quite so，breaking in the fingers when they were bent．Yet these worms （that is，the unbroken ones），when gradually thawed out，showed no sign of injury
Last autumn I saw a bumblebee take up her winte quarters beneath the bark of a locust tree．The frag ment of bark under which she crept was slightly resilient，so that she was partly supported in her place by its elasticity．She was fully exposed on all sides， save her shoulders and part of her back，to the air the piece of bark made a very efficient roof which kep off the snow and rain．During a cold wave，when the hermometer registered－ 6 F．，I lifted the bark and removed the insect with forceps．I would not touch
her with my fingers．I was afraid that their warmth might produce local temperature changes on her body， thereby inciting frost bite．She was，to all appear ances，frozen through and through．Here was this insect（covered only with her own velvet robe），sur half which she rested was being riven and split asunder by the intense cold．Was she alive，or did I hold in my forceps only a frozen，inanimate lump of gauzy wings legs，body，intestines，etc．？This question was an wered later on；in fact，on the fourth day of April when she awoke from her long winter sleep and re sumed her place in the economy of animated nature
I happened to be near when she awoke and came ou on the bark．She carefully smoothed down her vel vety body covering of black and yellow and essayed short flight．She then flew to a pot of water and drank a long，deep draught．Finally，she flew about the was in search of something．And so she was．She was looking for a suitable spot in which to establish
nest．This she eventually selected near a rose bush and soon disappeared beneath the turf．
The common toad（B．lentiginosus），at the approach of winter，burrows an inch or two into the ground and surrounded by the roots of grasses，weeds，or herbs goes into its winter sleep．Last November I saw one take shelter beneath a tussock of couch grass（T．repens）， boring its way beneath and between the tough roots by a rooting motion of its head．Its fore legs or ＂arms＂and its fingerlike claws were also used to grea ＂arms＂and its fingerlike claws were also used to great ing and shaping its winter＂dugout．＂At one time ing and shaping its winter＂dugout．＂At one time
during the winter the soil was frozen solid to the depth during the winter the soil was frozen solid to the depth
of four inches．During this cold spell，I carefully dug of four inches．During this cold spell，I carefully dug
up the tussock of grass and，upon examination，found the toad stiff and，seemingly，frozen through and through．I replaced both grass and toad，packing the frozen earth about the roots as well as I could under the circumstances．On the 18th of March I again dug up the toad．It was，to a certain extent，torpid，but otherwise，was entirely uninjured by the great cold through which it had passed．

A friend，on one occasion，was blasting out stumps on his plantation，when a large mass or ball of snake of various kinds was unearthed and exposed to view all of which，seemingly，were without life．It was very cold，in fact，some 8° or 10° below zero．This gentle man placed a thermometer in the center of the ball of snakes and found that it registered 5° below zero He carried home a large black snake（Bascanion con－ strictor）and a small copperhead（Ancistrodon contor－ trix）．The snakes were gradually warmed and soon gave such unmistakable evidence of returning anima tion that they were summarily dealt with．Now，an interesting question intervenes．These two specie are，generally，very bitter enemies．Do they lay aside personal animosity at the approach of winter and seek one another for mutual protection，or do their natures change at or about the time of the inception of hibernation？

We have seen that animals may be frozen through and through and yet suffer no harm．Where，then dwells the vital principle in these creatures－in what organ or organs？Reduced to a frozen mass，they yet hold within themselves the elements of life which only need the awakening touch of heat to be set in opera t：on．Of what charactur is that mainspring，which although，for the time being，completely locked as it i in the hard grasp of the Ice King，is，nevertheless through the influence of warmth，set free，and at once resumes its power and puts in motion the phenomena of life？
When we come to examine the higher animals，we find that some of them are able to endure very great cold．In fact，it has been demonstrated that the inter nal temperature of some of these animals，during win ter，approximates that of the external atmosphere．In the case of the zizel（Spermophilus citillus）Horvarth declares that he detected a temperature of $2^{\circ} \mathrm{C}$ ．Says Semper：＂The zizel．when lying in its winter sleep， always has the same，or nearly the same，degre of warmth as the surrounding air．In one case the temperature was 2° above zero，and a thermomete showed that its internal temperature was exactly the same；in another experiment the animal was sleeping in a room，at about 9° to 10° ，for several days，and its internal temperature was 8.4° ．＂Thus it will be seen that in this animal we have the wonderful phenomenon of a warm－blooded creature changing to a cold－blooded creature in winter，＂since its temperature corresponds with that of the surrounding atmosphere．＂Most of the warm－blooded hibernating animals，however，keep up their internal heat by the oxidation of their fat；thus，th bear，the opossum and the raccoon，which on entering the winter sleep are remarkably fat，but which，when they awake in the spring，are thin and lean．Some rodents，however，show comparatively speaking very low temperatures；for instance，the ground hog，in which，on several occasions，I have detected a tempera ture as low as $60^{\circ} \mathrm{F}$ ．

A Trolley Ride One Hundred

The network of trolleys with which New England is now covered makes it possible for any one to ride for 124 miles on trolley roads．This is probably the longest trolley line in the world．Of course the trip would have to be made in a number of cars．From the resi dence of Mr．Henry H．Rogers，vice president of the Standard Oil Company，at Fort Phœ⿱亠䒑⿱⺊口灬，in Fairhaven to Nashua，New Hampshire，the route is as follows New Bedford，Fall River，Taunton，Bridgewater Brockton，Braintree，Quincy，Boston，Malden，Melrose Wakefield，Reading，Wilmington，Billerica，Lowell and Dracus，to Nashua．

Penmarch lighthouse，on the Brittany coast，with its $10,000,000$ candle power elec ${ }^{\dagger}$ ric light， 180 feet above sea level and visible sixty miles away，is a monument o Marshal Davoust，Duke of Auerstadt，his daughte having given the French government $\$ 60,000$ for the purpose．

RECENTLY PATENTED INVENTIONS

Engineering．

Power Device for Pumping Wells - Joseph J．Kwis，Findlay，Ohio．According to th cally direct connection can be made between the engine or other motor used and the mechanism employed fo operating the surface rods in oil pumping machinery，the motion being so communicated through the driving wheel as to prevent any twisting strain whatever on the and may，if necessary，be secured to a single timber，dis pensing with a built．up foundation

Mechanical．

Pipe Wrench．－Edward B．Charlet Kewanee，IIl．The stock of this wrench has a slightly curved，toothed forward end，and in an opening in the rear of the curved toothed portion is pivoted a hook
shaped jaw，having teeth to operate in conjunction with teeth on the stock．In a notch in the stock is held the rear end of a spring whose forward end bears against the back of the hook－shaped jaw，to throw it into engage ment with a pipe or other article to be gripped，a sleev holding the spring in position，and the tension of the
spring being increased by slipping the sleeve forward． spring being increased by slipping the sleeve forward

Agricultural．

Cultivator．－George McDougall，Ce dar Junction，Kansas．For the cultivation especially of listed corn，this cultivator is made with parallel runner conrected by arches，above which is the driver＇s seat carrying upon a spindle a cultivator disk．By means carrying upon a spindie a cultivator disk．By means of driver the cultivator disks may be brought to any desired angle to the row of corn under cultivation，and locked in such position，causing the dirt to be beaped up to areater or less extent around the roots．Arms extend outwa

Disk Pulvertzer．－David Harper scott County（Post Office，Neelyville，Morgan County） Ill．Upon a parr of axles supporting a main frame
 rear series of rotating disks or pulverizers，the series o
each axle being adapted to be moved to an adjusted each axle being adapted to be moved to an adjusted held for movement independently of the series on the opposing axle，by means of operating levers which exten up through the platform in convenient reach of the ariver．All of the disks on the rear shaft may，if desired be set crosswise to the right or left，and held to such position by pawl and rack devices on the lever，the culti ator being designed acter the first

Miscellaneous．

Mechanical Calculator．－Robert Duncan，Knoxville，Tenn．This is a device more espe－ made for a guest at a hotel，without mental figuring，and it may also be nsed for ascertaining amounts due workm or，with slight changes，for computing interest，etc．It omprises a casing in which are mounted a calendar and cost price disk and a rotary rate disk．Four separate divisions of the day are noted for computing the cost clerk then simply moving the disks to correspond there－ o，and finding in a properly marked division the total sum due，indicating the amount of the bill．
Tally Sheft．－Herbert L．Baker， White Castle，La．For books having tally sheets used by arranged to permit of readily writing the tally marks in he proper spaces，and to indicate at a glance the total number of feet in any number of pieces of lumber．The sheet has a head line of figures to show the number of pieces tallied on each line，a column of figures to show the amount of each piece tallied，and spaces for receiving ntly keep tally on the sheet at the proper place and at the
feet．

Section Liner for Parallel An attachment enabling the user of a paroulel conveniently and rapidly draw with the ruler sectiona lines equally spaced apart forms the subject of a patent issued to this inventor．An arm slidably and adjustably held on one member of the ruler has its otber end pro－ jecting over the otber member，the projecting end being provided with a foot adapted to engage a stop pin projects．

Musical Instrument．－Benjamin McLaughlin，Boston，Ma improvement in instruments of the banjo，guitar，man－ dolin and violn type，whereby may be obtained a tone
of greater volume and purer quality，while also afford－ ing convenient means for raising and lowering the pitch of the instrument after the strings have been tuned．It consists principally in the employment of a resonator， located in the body of the instrument，its upper surface being adapted to engage the bridge，and it beng en－ gaged by an adjusting screw，whereby the resonator may be moved to and from the bridge to increase or de－
crease the resonant qualities of the instrument，and raise or lower or change the key or pitch，without ne－ cessitating the manipulation of the keys．The invention also provides a novel arrangement of the bridge．

Framing for Furniture．－John C． Horn，Chicago，Ill．In the construction of such arti－ provides for their framing by means of corner posts having dovetail slots，longitudinal bars and locking bars having tenons on their ends，etc．，in such manner that the
furniture may be put together without using glued joints for holding the parts，and so that it may be shipped in
knock－down form without liability to marring the knock－down form without liability to marring th nish，and readily put together without any specia preparing the parts may be done by machinery，thus making such furniture comparatively inexpensive，while it is of less welght than ordinary furniture．
Knife Guard．－Frank W．Waite and William D．Broadwell，Petersburg，Va．This is a devic apted to be applied on the cutting edge of a knife and thus adapting a portion of the blade to the especia purpose of removing the rind or skin from fruits or vegetables and absolutely preventing this portion of the blade from cutting into the article being prepared，a or slicing cutting etc．The device is and readily applied or removed from the blade

Currycomb and Brush．－Martin V B．Gr．fey，Moscow，Ky．The is a combinkion mple nent adapted to be used separately or together，the brush being hinged to the comb and adapted to be folded back thereon witn its back toward the back of turned down to have the the comb there being means for fastening the brush in either of these positions．It is evident that when the comb and brush are fastened in line with one anothe he horse is both combed and brushed by each single troke．Springs connect the currycomb with the hand rame，and its teeth thus become somewhat yielding， are the bristles of the brush．
Carriage Call．－John A．Kunkel ew York Ciry．The noise and confusion usually a ndant upon the calling of carriages when theaters ar att or the opera is over，or after a numerously attended eception，often amount to a very serious annoyance
nd to obviate this difficulty is the object of this inve ion．In a casing with guideways are placed multiple eries of transparent plates，each carrying a numeral and means are provided whereby，on simply pulling a cord，the attendant may elevate any desired numeral designation so that it may be seen by everyone in the icinity，the range of the device covering any designa ion from 1 to g ，and

Bale Band Tightener．－John L Duval，Houston，Texas．To permit the operator onveniently place the bands in position and fasten th provides for the use recesses for the bands，while spring－pressed bars extend between the grooves or recesses and beyond the face of the platen，serving as guides for the bands and a support or the bale before it is compressed，the bars recedin into recesses in the platen when pressure is brought ear on the latter
Non－Refillable Bottle．Louis J A．Fernandes，New York City．This bottle is made en direly of glass，and has a valve，so arranged that the con－ cannot be again refilled for use as an original packag Within the neck 18 a valve cage，and an upper extensio of the neck，in which the cork is placed，is fitted on and filled．A spring presses the valve to closed positio when the bottle 18 held upright or in horizontal position， but，when the bottle is tipped farther over，the spring yields to allow the valve to open and the liquid to flow

Distilling Apparatus．－Jose Galle os，Antigua，Guatemala．This invention provides mean practically pressure within the apparatus will be kep chamber whose capacity is regulated by a counterweight hus preventing any excessive pressure that might burs the apparatus．Any loss of vapors of the substance
under distiliation is also most effectively gainst．
Note．－Copies of any of the above patents will be
 of this paper．

NEW BOOKS，ETC

Electric Smelting and Refining By Dr．W．Borchers and Walter G． incott Company．Pp．415．Price pincot
$\$ 650$.
The＂Elektro－Metallurgie＂of Dr．Borchers has bee
for quite a period a leading authority upon the subject with German engineers，and this volume is a new editio McMillan，lecturarer mated and with additions by Mr． McMillan，lecturer on metallurgy in Mason College，Bir mingham．The author has had twelve years＇practical
work in chemical and metallurgical industries，and treats of all those metals in whose extraction aud working the electric current has found any application，excluding， however，electrolytic analysis and electroplating．To each chapter is aiso added a short survey of the purely metallurgical methods of treating the metals，so that the reader may compare such processes with the electrome－ tallurgical processes．All of she．descriptions are brough enough being stated under each of the varions metalis separately，to give a good general idea of the presentin－ dustrial position of that branch of the subject．
MODES OF MOTION；OR，MECHANICAL CONCEPTIONS OF PHYSICAL PHE NOMENA．By A．E．Dolbear．Bos－
ton．\quad Pp．119．Price 75 cents． The professor of physics at Tufts College endeavors， in this little volume，to make it clear how one kind of needed for transforming it．Electrical and magnetic phe nomena are presented as depending upon simple me chanic
ether．

『usiness and ゆersonal．

 he charge for insertion under this head is One Dollar aline for each insertion ：about eioht words to a line． Advertisements must be received at publication offic as early as Thurs
ing veek＇s issue．

Marine lron Works．Chicago．Catalogue free For logging engines．J．S．Mundy，Newark，N．J
U．S．＂Metal Polish．Indianapolis．Samples free．
Yankee Notions．Waterbury Button Co．，Waterb＇y，Ct Handle \＆Spoke Mchy．Ober Lathe Co．，Chagrin Falls， ， Walling Excavations．Patent for sale，United State
or Canada．w．C．Thomas，Kansas City，Mo． We Canada．
We make small metal goods and novelties for other pe
le．Place \＆Terry， 247 Centre Street，New York． Improved Bicycle Machinery of every description The Garvin Machine Co．，Spring and Varick Sts．，N．Y． Concrete Houses－cheaper than brick，superior
tone．＂Ransome，＂
T57 Monadnock Block，Chicago． For ratus，write Reedsburg Electric Mfg．Co．，Reedsburg Wis．，U．S．A
Machinery manufacturers，attention！Concrete and
mortar mixing mills．Exclusive rights for sale．＂Ran ome，＂ 757 Monadnock Block，Chicago．
The celebrated＂Hornsby－Akroyd＂Patent Safety O Engine is built by the De La Vergne Refrigerating M The best book for electricians and beginners in elec ricity is＂Experimental Science，＂by Geo．M．Hopkins．
By mail，$\$ 4$. Munn \＆Co．，publishers， 361 Broadway，N．Y． Send for new and complete catalogue of Scientif and other Books for sale by Munn \＆Co．， 361 Broadwa

驚

HINTS TO CORRESPONDENTS．
Names and Address must accompany all letters
or no attention will be paid hereto．This is for our
information
or no attention will be paid thereto．This is for our
information aud not for publication．
References to former articles or answers should
give date of paper and page or number of question
nquiries not answered in reasonable time should
be repeated：correpondente will bear in mind that
some answers require not a little research，and，
though we endeavor to reply to the either by letter
or in this department．each must take his turn．
or in this department．each must take his turn．
Buy ers wishing to purchase any article not advertised
in our columns will be furnished with addresses of
houses manufacturing or carrying the same．
ectaters of
Witcen Information on mater
expected without remuneration．
ientific American Supplements referred
to may
Scientific American Supplements referred
to may be had ar the oftice．Priee 10 cents each
Books referred to promptly supplied on receipt of
Minice．
marked sent for labeled．
（7221）W．A．P．asks ：1．What is water hammerand its causes ？A．Water hammer in pipes is caused by the surging of the water in partially filled
steam or water pipes．In steam or return pipes in heat－ ing apparatus air or steam may be lodged in places along horizontal pipes，separating portions of water，which，by the natural condition of moving water，produces wave mo－ tion and impact upon the inner surface of the pipe．In water pipes the presence of air in horizontal pipes pro－ uces the same action as in heating pipes．The absence of air in the water pipes of a house near the bibbs to the arrest of the momentum in the long column of water in motion．The air chambers in plumbing work act as a cushion．2．How can the true water level in a boiler be told when it is foaming，and what is the best
thing to do when you find that the boiler is foaming thing to do when you find that the boiler is foaming
A．The water level may be judged from the mean of the water surge in tha water gage．If gage cocks only
are used，the approzimate water level may be judged from the manuer of opening the gage cocks．By slightly opening the gage cocks one after the other，you may ob tain clear steam from the upper gage，a drizzle of water and steam from the middle gage and more solid water from the lower gage，when the mean height is between the middle and lower gage，with variations suitable to high or low water．A boiler may foam from excessive An engineer should always be able to judge whether the boiler is too small for its work or whether dirty water and want of cleaning is the cause of foaming．

INDEX OF INVENTIONS
For which Letters Patent of thed
United States were Granted OCTOBER 12，1897，
AND EACH BEARING THAT DATE．
See note at end of list about copies of these patents．

Provertisements ORDINARY RATES. Inside Page, each insertion, - 75 cents a line
Back Page. each insertion, - $\$ 1.00$ a line High For sates are required.
Hiases of Advertisements, Special and

 W00D or (IIETAL WORRERS
 SEND FOR CATALOGUES-
A-Wood-working Machinery. SENECA FALLS MFG. COMPANTY.
695 Water St., Seneca Falls, N. Y. ROTARY PUMPS AND ENGINES:

 -20 Pipefitters! STILLSON WREN Which is particularly adapted for turning out the best are drop-forged. once tried, it is always used. It hasmany imitations but no equalis. See explanatory cuts.
mrice iiston application tou oliver
WALWORTH MFG. Co., 20 Oliver Street, Boston, Mass.

DRY BATTERIES A PAPRR Bohm, treating of open circuit patteries, , historical dry
batteri,s.b modern dry bater
Bry an's battery

PLUMBERS' IRON LEVEL With ponble

 $A D O D \longrightarrow \begin{aligned} & \text { seecial } \\ & \text { device } \\ & \text { giving }\end{aligned}$piping. Price 82.25. Size 12 inch. For book on the
C. F. RICHARDSON \& SON
Fluting, Grooving and Channeling
\qquad can be most quickly, easily and
accurately done by using the RIVETT LATHE Eiight-inch Precision Lathe with

Eyelet machines.

We can furnish the Latest Improved Eyelet Machines
for making sooe eyelets and special eyeleles of all
descritions of Special Wireworting Machinery.
BLAKE \& JOHNSON, P. O. Box 7, Waterbury, Conn., U.S.A WELL DRILLING MACHINERY, WILLIAMS BROTHERS. ITHACA, N.Y. OOUNTED OR ON SILLS, FOR DEEP OR SHALLOW WELLS, WITH
STEAM OR HORSE POWER STEAM OR HORSE POWER
SEND FOR CATALOGUE

Tre TheThe Berkefeld House Filter.

 See Taus. Article in Scientifc American, June 23, 1894 .

ARMSTRONG'S No. 0 THREADING MACHINE
 Can be attached tobench or post.
Doesilned for threading the
smaller sizes of pipe, iron 0 or

Harrow, iask ㅇ.lilit

Hat dedimoniond Briabiber

 Land roller, Miidieieto \& Liomis

 Letterrng device L. Rust.
Lititig jack. G. W. Turne
into

 Oar Iock. J. R. Supple.

 sh
 Shuter tatener, J. Bananan..

 SCIENTIFIC AMERICAN SUPPLE-

'WOLVERINE GAS \& GASOLINE ENGINES Stationary and marine.

 WOLVERINE MOTOR WORKS,
Huron St., Grand Rapids, mich
VAPOR LAUNCH Complete

 ALCO VAPOR LAUNCH

Marine Vapor Engine Co.. tt. Jersey Av., Jersey Citt, N.J.

A.W. PABER

LEAD PENCLLS, OOLORHD PENCLSS, SLATE PENS, INSS, PENCGL CASES IN SILVERANDIND
GOLD, STATINERS RUBBER GODS, HULERS, COLORS AND ARTISTS' MATERIALS. $78 \begin{gathered}\text { Reade } \begin{array}{c}\text { Street, } \\ \text { Manufactory }\end{array} \text { - - New York, N. } \\ \text { Eshed 1761. }\end{gathered}$

NMMMAL_ 50 YEARS' quickone sending a sketch and description may nvention is probably patentanleee Commmurica-
ions strictly confldential. Handbook on Patents

Scientific American.

A handsomely illustrated weekly. Largest cir-
culation of any scientifc journal. Terms. .3. a
year; four monthe, st. Sold by ail new sdealers.
MUNN \& Co. 361 Broadway, New York

Artibmeicic of Gevertricily

By Prof. T. O'CONOR SLOANE.
138 Pages, Illustrated, Price $\$ 1.00$

 Followed by an exten in ive
Series of Trable, includin the
foliowing subjects Alli Kinds

 manner that will attract the attention of th
are not faniliar with algebraical formule.
as follows: : Arithmetic of Electricity, 138 pages..... $\mathbf{8 1 . 0 0}$

Standard Electrical Dictionary, 682
page.
Electricity
3.00
Simplined,

dive Send for special circular containing full table of
contents of the aboore books. IIUNN \& CO., 36I Broadway, New York.
KRAFTUBERTRAGUNGSWERKE RHEINFELDENV Society for the Utilization of the Water

(Home
gestions a d examples of Modern Architecture in the handsomes aral Magazine ever published
"The Scientific American Building Edition.'
Each number is illustrated with a colored plate and numerous Hasome enyravings made direct from photographs of builuings together with interior views, toor plans, description, cost, location,
owners' and architects' names and addresses. The illustration
The include seashore, southern, colonial and city residences, ehurches All who contemplate building, orrime impouses. etc.
of any kind, have in this handonome work an almost endless seties of any kind, have in this handsome work an alm.
makee selections, thus saving time and mones.
Published Monthly. Subscriptions $\$ 2.50$ a Year. Single Copies 25 Cents. Semi-Annual Bound Volumes, $\mathbf{5 2 . 0 0}$ each. Yearly Bound Volumes, $\mathbf{5 3 . 5 0}$ each. For sale at all neews otands oradress MUNN \& CO., Publishers, 361 Broadway, New York

PUZZLE

- send for Ilus. catalopna

CHAFFEE \& SELCHOW,

WOODEN TANKS.
 W.

促

TYPEWRITERS

HaLF PRICE

National Typewriter Exchange, 2unh falote
SHORTHAND

Experimental Patern and Model Work opitical

 Experimental \& Model Work

 miamernanater THE SANITARY STILL.

"EIVE MARE NOVETMELTIES "GRAPHOSCOPL,", ${ }^{\text {THITSO}}$
 Are you interested in acetylene-

Invalid's Home Healer

ELECTRICITY, the great curative a
This ELECTRO-MAGNETIC MACHINE is the result of combining Medical Science with Mechanical Genius. DR. CUMen ualities. It is intended for medical use, and for this purpose has far surpassed the hopes of its inventor, and places vithin reach of all the benefts of HOME TREATMENT
For those who cannot afford an expensive course of electrical treatment, this
dinamo will prove a great boon. It develops without shock or irritation, a strong and continuous DIRECT CURRENT (not alternating) essential to the best This HOME HEALER is always ready for instant us
The current may be accurately gauged to the needs of the patient, mild or hich may be applied to any part of the body. STRONG, SIMPLE AND EFFECTIVE. Will last for ser
H : CUonderful : Electrical : Doveity. This Hand Dynamo may also be run as a motor by connecting four or five cells
any kind of Batterv. It may be used for electroplating, running small incanof any kind of Battery. It may be used for electroplating, running small inc
descent lamps. ringing makneto-bells, running small experimental machines, etc. The Dynamo comprises permanent field magnet and armature connected with
multiplying gear giving great speed, switch for controlling current and conductor cords attached to electrodes, mounted on polished wood base. DR. CUTTEN'S TREATISE on ELECTRIC HEALING, giving explicit directions for home use, free with each dynamo.

```
PRICE \(\$ 1.00\)
BY MAIL, \# 1.20 .
```

ROBT. H. INGERSOLL \& BRO., 65 CORTLANDT ST., Dept. I47, NEW YORK

any patent in thy of the specitcation and drawn msued since soas. will be furnished from tins oftce for
 Cann dian parents may now be obtained by the in
ventors for

 Blackings and dressinss, stains, and waxese, boot
sooen and leather, Herriott 'rothers $\&$ Com
pany

 Crackers and càkes, Ünitèd stàtes Bakinğ coom Prink tabiete w. .i. Divenny

Injectors, Penbertthy Injector Company Leather, artincial Boston Artifcial Leatier Com

 Pictare anparatuis, moving, American мütoscoop

PRINTS

DrDvertisements. ORDINARY RATES. Inside Page, each insertion, - 75 cents a line Hior For some co classes of Advertisements, Spectal and
Hipher rates are required. The above are charges per agate line-about eight
words per line. This notice shows the width of the line.

 ment. as the letter press, Advertisements must be
reecived at Publ cation office as early as Thursday
morning to appear in the following weezs issue. Cribune : Bīycle Tested and True.

The Easiest Running Wheel in the World.
Send for Catalogue. THE BLACK MFG. CO., ERIE, PA. THE BICYCLE: ITS INFLUENCE IN

Remington 4. Standard Cypewriter

FAGTORIES
Charter Gas and Gasoline Engine
and Territory Proof
the Un CHARTER GAS ENGINE CO., Box 14B, STERLING, ILL Proor
 Toull ZUay You Like
 VAN NO NRAN "'DUPLEX

 Waltham Watch Tool Co_{0}, Spring ineild, Mas A PAINTING MACHINE

.50\%Carbon PioneerBrand SteelTube

Every Bicycle Manufacturer should use it Every Dealer should insist on having it. Every Rider should demand it.

While Weight for Weight in a bicycle our FIFTY CARBON Steel will last so long and TWENTY-FIVE CARBON Steel will last only so long

NOTE THE FULL IMPORT OF THE PARALLEL LINES.
The comparison which they graphically make indicates the result of the prolonged investige
tions of the most practical expertio
or the world
 The Margin of Safety is Greatly Increased by the Use of This Tabe。 The Margin of Safety is Greatly Increased by the Use of This Tabe.
Send for Catalogue.
THE POPE TUBE CO., HARTFORD, Conn

Geography Becomes

RILEY BROTHERS, Bradford, Eng. 16 Beekman St., New York The Largest Stereopticon Outfitters in the World. Branches-Boston: 36 Bromfleld St. Chicago:
Washineton St. Ransas Criv, Mo.: 515 East 14th

DORMAN'S

 VULGMGIZNRS
 SCREW - CUTTING IDE HEADS SELF-OPENING and ADJUSTABLE.
The begt die head on the market. Some

"Ite Cells e Aboute Cools"

$\left\lvert\, \begin{aligned} & \text { HALLF A } \\ & \text { Interesting } \\ & \text { history of the cy }\end{aligned}\right.$

SO SIMPLE A CHILD CAN USE THEM
 5 Aqueduct Street, Rochester, N. Y. A FOLDING CAMERA. - WORKING

HUBS. O • •

Che Cypewriter Excbange

 13/ Barclay St. ${ }^{38}$ Court Squartósion 818 Wyandote St,
KANSAS CITY, Mo

 $\underset{\substack{\text { ters or all makee } \\ \text { ro } \\ \text { send for catlopue }}}{ }$

S

Guery

 ScientistScientific American
He cannot afford to be without it any more than It is the leading scientifc publication of the world and is everywhere acknowledged as the
standard authority on every subject pertaining standard authority on every subject pertaining
to sclence in all branches. It consists of sizteen to science in all branches. It consists of sixteen
large pages, profusely ilustrated, and contains articles by the most eminent writers on the mechanical arts. It is a weekly record of new
patents and inventions, and is indispensable to patents and inventions, and is indispensable to
every person who is interested in the progress and improvement of manufactures and means of manufacture. 8300 a year. 8150 for six months. For sale by
all newsealers. Remit by check, draft, all newsdealers. Remit by check, draft, express
or money order.
MUNN \& CO., Publishers
361 Broadway, New York City.

PRINTING INKS

