the hemet irrigating dam, sodthern california.
A very remarkable undertaking has just been concluded in Southern California in the completion of the great Hemet dam, in Riverside County. In height it is second only to the Crystal Lake dam of the Spring Valley Water Works, near San Francisco.
Riverside is one of the most newly formed of Southern California counties, and in natural advantages of soil, climate, and productiveness, it is surpassed by none. With irrigation the growth of all temperate and some tropical plants is amazing.
The rainfall of the locality is below the average of Southern California. if anything, and is unevenly distributed, falling almost entirely in the winter month and early spring ; but the mountains, which rise to an altitude of over 10.000 feet, afford storehouses of snow, which, melting during the hot season, affords an ever flowing stream of the purest water, of volume sufficient to irrigateall the productive lands of the surrounding country. The slopes of Mounts San Jacinto and Grayback, the former 10,987 feet in altitude and covered with snow the greater part of the year, provide an immense watershed whose outlet is the San Jacinto River. of which South Fork, flowing through Hemet Valley, is the largest tributary. The exact data for the whole district is wanting ; but the area of the watershed of the tributary is estimated at 150 square miles.
The outlet to Hemet Valley is a narrow cañon, with sides of granite, through which the stream plunges for

the aquedjct-Irrigated lands in the valley below.

with occasional interruptions until a height of $122 \cdot 5$ feet above the creek bed, or 135.5 feet above the lowest foundation was reached, and at this level it remains for the present, though ultimately the height will be increased to 160 feet. The site of the dam seemed specially calculated for a masonry structure because of the excellence of the bed rock foundation. There was abundance of good granite and sand right at hand, nd sand rint at hand, and the cañon itse.f was
very confined. A rock fill dam was first considered, but as the side walls of the cañon were no higher than the maximum of the height of the dam proposed, most of the rock would have had to be hoisted and transported from quarries above and below. material to be handled would

VIEW OF THE DAM FROM DOWN STREAM HEIGHT 110 FEET.
Moreover, the volume of base and has a batter of one in ten on the water face have been so much great- and five in ten on the lower side. Its present crest is hat there was no apparent 260 feet long. The length at the bottom is but 40 feet economy in such a struc- It was carried up with full profile to the height of 110 ture. The site chosen was feet above base, where it is 30 feet in thickness. Here inaccessible, and an expen- an offset of 18 feet was made and the wall reduced to sive road with heavy grades a thickness of 12 feet. At the top it is 10 feet thick. had to be constructed, in- The dam is arched up stream, with a radius of 225.4 volving very great expense. feet at the upper face on the 150 feet contour, and it is The stripping of the foun- built of uncoursed rough granite rubble laid in Portdations occupied severa months, and a cableway was utilized for dumpinir water below the dam site A "pot hole "encountered directly below the base of the dan was excavated, and several weeks were thus employed. This was filled with bowlders and gravel lightly rammed, and might have been built over with perfect safety, but it was determined to take no chances. A counter trench of irregular depth and width was cut in the rock on either side from bottom to top, as an anchorage for the masonry. Cement had to be hauled from Hemet Station, a distance of nine miles, making a total descent, in that distance, of \mid twent y-three miles and with an ascent of 3,200 feet, at 2,000 feet. The altitude of the dam is 4,300 feet, and a cost of $\$ 1$ per barrel. A sawmill for the cutting of the climate at this point frosty and the country barren. timber was one of the accessories, and over $1,500,000$ feet

The project of utilizing the water at this point was were thus providea. The dam is 100 feet thick at the first broached in 1886, and plans were drawn for an impossible dam, four feet in thickness from top to bottom and curved, the convex face being upstream. It was to be constructed of cut stone laid in cement and it was to have the shortest possible radius. This plan was abandoned, and on the reorganization of the original company it was decided to first utilize the waters of the living stream to their fullest extent, and to conduct them to a tract of 7,000 acres of valley land owned by the company and over which it was proposed to distribute the water in pipes.

For this purpose a 13 inch pipe line was laid at the junction of Strawberry and South forks, and conducted $31 / 8$ miles down the cañon to the lands. The storage dam, though contemplated, was deferred for some years on account of financial reasons, until it was found that persons hesitated about acquiring lands which were supplied through a source that was regarded as a temporary expedient. On this account a storage reservoir was demanded, and work on a dam was inaugurated on the 6 th of January, 1892, and carried on until floods and inclement weather compelled a suspension of construction for several months. At this time the dam had reached the 45 foot contour. Work was again resumed in 1893, and carried on without cessa. tion until the dom had reached a height of 107 feet, but again floods interrupted. and it was not until the fall of 1895 that work was resumed, and continued

THE HEMET DAM DURING CONSTRUCTION, SHOWING THE ROCK CRUSHER. TRAMWAY AND THE DISTANT VALLEY, NOW THE BED OF THE RESERVOIR.

A bedding of concrete 3 inches or more in thickness was made for each of the large stones. The use of cement enabled unskilled laborers to perform much of the work. Stone masons were only employed on the facings. Wages were $\$ 1.75$ for laborers; stone masons were paid from $\$ 3$ to $\$ 3.50$ per day. The total cost was somewhat below $\$ 200,000$.
The capacity of the reservoir created by this dam is 10,500 acre feet, equal to $3,430,000,000$ gallons of water. At the ultimate height, 160 feet, the water inclosed would be fully three times greater. At ordinary requirements this would irrigate 15,000 acres.

The above particulars of the enterprise are from a

A FEW NEW INVENTIONS

We give a group of illustrations of patented inven tions taken from patents recently issued from the United States Patent Office.
The selection has not been made with the view of showing any special class of inventions, but merely to show the great and diversified activity that prevails among inventors.
Gas Exhausting Apparatus.-This exhausting ap paratus is designed for use in connection with the exhausting of the bulbs of incandescent electric lamps.
It has many features in common with other mercuria
or one ten-thousandth of the original quantity of gas, and so on until, after the tenth manipulation, the resi dual gas in the bulbs and ring, e^{2}, will be one-quintillionth of said original quantity.
J. W. T. Olan, of New York, is the inventor of this apparatus.
Tilting Saddle Bar and Seat Post for Bi CyCLEs.-The object of this invention, which has been patented by Charles Wooster, of New York City, is to secure an easy, adjustable saddle which may be rendered adaptable to any rider, or to the same rider under different circumstances.
The seat bar is jointed to the saddle post and pro-

C. WOOSTER'3
TILTING SADDLE BAR AND SEAT POST FOR BICYCLES.

SOME RECENTLY PATENTED INVENTIONS.
paper read before the Technical Society of San Francisco by James E. Schuyler, C. E.

The Knapp Roller Boat Launched
The roller steamer designed by Lawyer Knapp, of Napanee, was successfully launched at Toronto, September 8. The vessel is cylindrical, 110 feet long and 25 feet in diameter, and has a 60 horse power engine at each end. It is made of three-eighths inch boiler plate, and has an inner and outer casing with watertight space between them. The engines are expected to drive the outer cylinder rapidly around and make it roll over the water, the inventor looking for a speed of at least forty miles an hour.
vessel of mercury.
Each manipulation of the vessel, $\boldsymbol{g}^{\mathbf{3}}$, up and down will exhaust from the lamp bulbs and the ring, e^{2}, ninety nine one-hundredths of what remains of the gas at th ine one-hundrea mon the eglning of each if is the first only one on when the considered, the remaining quantity of gas in the bulbs and ring., e^{2}, after the first effective manipulation of the vessel. \mathbf{g}^{3}, in the manner described will be one one-hundredth of the original quantity of gas. After the sec ond manipulation the residue will be one one-hundredth of what remained after the first manipulation,
vided with a serrated sector which is capable of being clamped in any desired position by a follower placed in the side of the seat post and pressed by a lever screw.
This device permits of adapting the saddle to different persons. and it permits the same rider to vary his position from time to time
Combined Stram Eingine and Boiler.-We give a sectional view of a new form of steam engine patented by W. Schmidt, of Ballenstadt, Germany.
This invention relates to steam boilers and engines in which the cylinder of the engine is either partly or wholly arranged in the boiler. There are combined steam engines and boilers in which the cylinder is ar.

