
a Weekly jouknal 0F practical information, art, sCience, mechanics, chemistry, and manufactures.

GENERAL VIEW OF PARK.

(xientifir simmerican.

ESTABLISHED 1845.
MUNN \& CO., - - - Edtors and Proprietors.
pUblished weekly at
No. 36i broadway, $-\quad$ NEW YORK.

TERMS FOR THE SCIENTIFIC AMERICAN. (Established 1845.)

 MUNN \& CO., 361 Broadway, corner Franklin Street, New York.

The Scientific American Supplement

Building Edition of Scientific American. (Established 1 S85.)

Export Edition of the Scientifle American Established 1898)

 Readers are specially requested to notify the
aillure, delag, or irregularity in receipt of papers.

NEW YORK, SATURDAY, JANUARY 16, 1897.

TABLE OF CONTENTS OF

Scientific American Supplement

No. 1098.

For the Week Ending January 16, 1897.
Price 10 cents. For sale by all newsdea

 v.

v.
v.

XI. ORDNANCE.-Cane's Duplex Mounting for Quick Firing Guns:

COMPETITIVE SYSTEMS OF TRACTION IN NEW YORK CITY.

There is probably no city in the world where so good an opportunity is presented for a comparative test of the merits of the various systems of street traction as that which is offered on the lines of the Metropolitan Traction Company, New York. In addition to it world renowned Broadway cable line, which carries by far the heaviest traffic of any cable road in existence the company operates some miles of electric under ground trolley road on Lenox Avenue, upon which also is running experimentally some compressed air mo tors built on the Hoadley patents. The fierce competi tion between the surface and elevated roads of the city is favorable to an unbiased judgment of results; for it is safe to say that after complying with the restrictions of the law, that system which proves to be the mos economical and effective will be finally adopted.
In a recent interview with President Vreeland, of the Metropolitan Company, we were given certain fact regarding the situation which are timely and signifi cant. The policy of the company in building the cabl road on Broadway, and its later extension on Lexing ton Avenue, and also the proposed underground trolley lines on Eighth and Sixth A venues, has been determined by the exigencies of an ever increasing and overbur dened traffic. So rapid has been the growth of travel in New York City that there has never been a time when it has not exceeded the capacity of the company's roads. Extensions and improvements have been made under the spur of pressing necessity, and the company has never been able to afford the time necessary for any lengthy experimental work of its own to determine the best forin of traction. In all contemplated improvements it has had to choose the best system in sight at the time. This was the case when the cable was chosen for Broad way, and it is the same pressing necessity that causes the company to put in the costly underground trolley on forty-three miles of its lines on Eighth and Madison Avenues, be fore its experiment
Wors is completed. that in spite of the high state of efficiency to which electric traction has been brought and its superio economy under average conditions the cable is the best form of traction for the exceptionally heavy traffic on Broadway. The fact that electricity is replacing the cable in San Francisco and elsewhere, and showing a higher comparative economy, proves the case only for such conditions as obtain on these lines, where the volume of travel is moderate and the headway between cars is measured by minutes. The Broadway cable road, however, is operated under conditions that find no parallel in any city of the world. The average head way between cars is twenty seconds, and during the "rush "hours it is as small as ten seconds. Add to this that the bulk of the travel on the busiest portions of the line is local, necessitating frequent stops, and one has some idea of the enormous demand that is put upon the power house, and the value of having at com mand the great reservoir of momentum which is pro vided by the cable and its miles of moving cars. The problem of transportation on a line where the head way is measured by seconds instead of by minutes re solves itself largely into one of celerity in starting and stopping, and the management and engineers of the Broadway line are satisfled that this is more efficiently solved by the existing cable than it could be by any form of electric traction.
That the company considers this efficiency to hold good only where the burden of traffic is abnormally heavy is proved by its intention to equip the paralle lines on Eighth and Madison Avenues electrically These lines are at present operated by horse cars, and the change is being, made chiefly with a view of re lieving the congestion on Broadway, and incidentall to provide a better service on these lines. The chang will affect forty-three miles of road. The Eighth Avenue line will extend from One Hundred and Fifty third Street to Fifty-ninth and thence by way of Sixth Avenue to a terminus at the lower end of the city. The Madison Avenue line will extend from One Hun dred and Thirty-eighth Street to the Post Office by way of Fourth Avenue, the Bowery and Center Street The construction and equipment will be similar to that which is used on the Lenox Avenue line. an illustrated description which was given in the Scientific Ameri CaN of February 22, 1896. Power for the Madison Avenue line will be furnished from the Twenty-fifth Street power house, in which will be erected four 850 kilowatt generators, driven by direct connected engines of 1,300 horse power. At the One Hundred and Fortysixth Street station three 850 kilowatt generators will be added to the two 400 kilowatt generators which are already in place.
With reference to the experiments in compressed air traction which the company is carrying out on Lenox Avenue, we are informed that electricity was not chosen for the new lines because of any unfavorable results which had attended these trials, but simply because the experiments had not extended over a suf ficient period to allow any reliable data to be tabu-
lated. The results have so far been satisfactory, and two more motors will soon be added to the equipment The company still has over one hundred miles of hors car lines which have yet to be changed to some form of mechanical traction, and if the compressed air motor fulfill their present promise after a sufficiently length rial, they will probably in time be placed on a portion of these lines.

WELDED RAIL JOINTS.

There is certainly no part of the roadbed of steam railroads that has received more careful attention of late years than the rail joints. Time was when thes were the most neglected portion of the track, and two small strips of iron, loosely bolted to the web of the rail, were considered to be a sufficient reinforcement. So long as the ends of the rail were held fairly well in ine, the roadmaster was satisfied. The idea of attempt ng to restore the whole strength of the rail does not seem to have been seriously entertained, and as a con sequence the rail ends soon became permanently bent under the incessant pounding of the traffic, and every joint becanie a hollow spot, lying more or less below the rack level. To-day, however, the engineer has changed all that. By designing the joints on scientific princi ples, giving them a section adapted to the strains which they have to endure, it has been possible to produce a length of track whose vertical stiffness and strength are continuous, the joints displaying these qualities as ully as the body of the rail itself.
Such, at least, is the condition of first-class modern track when it is first laid. Laboratory tests have hown that some of the modern joints possess even greater rigidity than the rail itself, at least under the conditions of test where the load is applied as a static ressure, and has no dynamic effect. Conditions of ervice, however, are so entirely different that it can easily be understood that the results fall far below those which are obtained in the testing machine. The loads, represented by the weight of the train concen rated on the wheels, come upon the joints with the dynamic effect of a blow, the bending effect of which is ar greater than would be due to the quiet load. The tendency of this pounding is to loosen the fastenings and allow movement and wear of the parts, with the ul timate result that no amount of screwing up will take out the "sag," and keep the joint up to level. Al though it is true that by increasing the weight of rails and fastenings these difficulties are reduced, yet in the best of track the joints still remain the chief source of care and expense.
In view of this fact, it is natural that engineers should be directing their energies to the design of a continuous joint, in which there shall be no break in the netal. Such a joint would at once get rid of the de fects of all "fished" or spliced joints-always provided, of course, that the welded joint shall be perfectly sound Of late years the production of better rail joints has been greatly stimulated by the rapid development of lectric traction, and this for two reasons: First, the destruction of joints was increased by the heavy pounding of rigidly supported motors (a difficulty which the partial supporting of the motors on springs has merely reduced, but has not removed); and secondly, the desire to secure the greatest possible elec trical conductivity has directed attention to welded joints
The first efforts to secure a continuous metallic joint were made by electrical welding, and this was followed by what is known as cast welding. In the first case a powerful electric current is passed through the ends of the rails and pieces of iron, known as chucks, which take the place of the fishplates. When the metal has been raised to a welding heat, heavy pressure is brought against the side plates and they are welded to the rails, the flow of metal filling in the space between the rail ends and forming a butt weld. It is claimed, and justly so, that a perfectly welded joint is stronger than the body of the rail. In cast welding, molten cast iron is run into a mould which incloses the abutting rail ends, which are thereby heated (or are supposed to be) to the welding point so that the resulting joint is solid and continuous.
Mr. W. K. Bowen, superintendent of ihe Chicago City Road, has recently given some data in a paper before the convention of the American Street Railway Association, at St. Louis, which promise well for this style of joint. He stated that, of the 17,000 cast welded joints made on his road in 1895, only 154 were lost, and these breakages were due to flaws in the metal. Comparative tests have shown the joint to be "far stronger than the rail itself." The joints are made as follows : After the rail ends have been scraped or filed off so as to present a bright surface, a cast iron mould is placed around the joint, the fit being made so snug as to prevent the escape or any metal from the mould. The metal is then poured in, and the outer part of the casting, being chilled by the mould, sets first, forming a crust which retains the molten metal. As this crust contracts faster than the interior, the latter is orced up against the rails and a more perfect contact insured.
Although the first object of electrical engineers in
making welded joints, electrical or cast, was to secure better electrical conductivity, as a matter of fact the mechanical advantages of this style of joint are of scarcely less importance. The strength of a bolted joint is entirely dependent on its fastenings being tightly held in plaee; and the construction of city tracks is such in plaee; and the construction of city tracks is such that these fastenings are often beyond the reach of
the trackman's wrench. However well they may be the trackman's wrench. However well they may be
secured when the track is laid, they soon slack up unsecured when the track is laid, they soon slack up un-
der the pounding of the traffic. This fact will account for the noisiness of street as compared with main line track. The welded joint requires no attention and may be covered up by the street paving with impunity.
As to the question of expansion and contraction of the rails due to change of temperature, it was proved in an experimental test at Johnstown, a few years ago, and in subsequent tests, that the elasticity of the steel and in subsequent tests, that the elasticity of the stee
is capable of accommodating such changes of length as is capable of accommodating such changes of length as
take place. It should be noted in conclusion. however, take place. It should be noted in conclusion, however,
that a continuously welded track, to be safe from distortion, must be exceptionally well spiked to the ties, and the ties and ballast must be of first class quality.

We Latest Plan of Rapid

The plan of rapid transit adopted by the Commission at its last meeting shows important modifications of the proposals recently made by the chief engineer. The reason for the changes, as stated by the president of the Commission, Alexander E. Orr, is that the main object of any proposed railway must be to secure really rapid transportation between the northerly and southerly portions of the city, and to obtain this requires the running of expresstrains and the consequent construction of a four-track railroad. While a threetrack road permits the running of express trains at certain hours of the day, a two-track road in a city must be run solely as a local road. It follows that, if two two-track railroads were constructed north of Forty-second Street, the one east and the other west of Central Park, as originally proposed, the scheme would entirely fail in furnishing rapid transit to the district to the north.
The amended route is as follows: A two-track road starting from a loop at South Ferry and running beneath Broadway as far as Chambers Street. From Chambers Street and City Hall Park, where another loop would be constructed, a four-track underground road would be run beneath Elm Street and Fourth Avenue to Forty-second Street; thence westerly, under Forty-second Street, to Broadway; thence northerly under Broadway and the Boulevard to One Hundred and Fourth Street. At One Hundred and Fourth Street the road will divide into two two-track branches, the westerly branch continuing to the north under the Boulevard, Eleventh Avenue, Elmwood Street and Broadway, to a point in Kingsbridge immediately north of the Harlem River, where connection could be made with existing surface roads running north. The easterly branch from One Hundred and Fourth Street and the Boulevard would run in a northeasterly and the Boulevard would run in a northeasterly direction beneath private property, One Hundred and Sixth Street and Central Park, to Lenox Avenue; thence northerly beneath Lenox Avenue to the Harlem
River, beneath which it would be carried by a tunnel. River, beneath which it would be carried by a tunnel.
From the Harlem River the line would be carried to Bronx Park.
The west side line would be underground from the Battery to One Hundred and Ninetieth Street, except across Manhattan valley. The easterly branch would also be underground from One Hundred and Fourth Street, beneath the Harlem River, to a point east of Third Avenue, beyond which an elevated road would be built.
The estimated cost is somewhat less than $\$ 35,000,000$, and the Commissioners are of the opinion that, while such a system would not be complete, it would soon demonstrate its success, and would ultimately be supplemented by say a branch from Forty-second Street to Fourteenth Street, and another branch on the east side of Central Park, from Forty-second Street to One Hundred and Tenth Street, to connect with the pres. ent proposed route.
Taken altogether, the revision of the original plans shows good judgment and is warranted by the city's experience with the existing roads.
The substitution of a four-track for two two-track roads from Forty-second Street to One Hundred and Fourth Street, with a view to securing unobstructed tracks for express service, is well made, for the new scheme must give an accelerated service if it is to secure popular approval. The Commissioners have also supplied an important missing link in the original plans, by including a two-track underground from South Ferry to City Hall Park.

The wave length of Roentgen rays has been ascertained by Dr. Fromm, of Munich, at fourteen millionths of a millimeter, that is about seventy-five times smaller than the smallest wave length for licht. This determination was based upon interference phenomena observed by Dr. Fromm, says Prometheus.

The Hheinfelden Hydraulic Power Plant.

Most American tourists who cross the ocean every year to pay a visit to the Continent know that part of the Rhine which forms the frontier between Switzer land and the Black Forest that is, the part between the picturesque Falls of Schaffihausen and the ancient city of Basle. Many of the visitors may also remember city of Basle. Many of the visitors may also remember
the rapids over which the Rhine rolls its foaming waters near the little town of Rheinfelden, near Basle This quiet and pretty little town has now got quite a lively aspect, since a work has been commenced in its immediate neighborhood which is destined to change the whole surrounding country. Some enterprising men, among whom are some of the leading engineers and financiers of Germany and Switzerland, had, a couple of years ago, formed a company for the utilization of the water power of the Rhine, and as there was no difficulty in obtaining the concession from the two adjoining countries, a well known engineer, Prof. Zschokke, of the Zurich Polytechnic School, was in trusted with the execution of a work which, on com pletion, will be the largest of its kind in Europe. In short, once more nature is to be made serviceable to man, and the considerable quantity of water (on an average 12,400 cubic feet a second) which the Rhine carries over the rapids of Rheinfelden will be brought to yield some 30,000 horse power, to be transmitted as electrical energy to industrial establishments within a radius of twenty miles.
The first part of the work is nearly finished, and it is expected that before next autumn 16,800 horse power will be available. To obtain this force a canal had to be constructed five-eighths of a mile in length and 165 feet wide, which is partly built in the bed of the river, and is separated from the river proper by a wall from 33 to 39 feet in height, with a width of 15 feet at the foundation. This wall alone absorbed some 23,550 cubic meters of solid rock, mostly excavated from the bed of the river, which, with innumerable mines, had to be deepened considerably at the lower end of the canal, so as to allow the water to flow away easily after having passed the turbines
At the lower end of the canal, standing diagonally across it, we find the building which contains the twenty turbines, all manufactured by the well known firm of Escher, Wyss \& Company, of Zurich, and each of which has a capacity of 840 horse power. The same building contains the electrical machinery which produces the current. These engines are constructed partly by the famous "General Electric Company," of Berlin, and partly by the "Manufactory of Oerlikon," near Zurich.
By means of an iron bridge the works, which are situated on the German side of the river, are connected with the Swiss side. This bridge also carries the numerous cables which are to transfer the electric energy to the various industrial centers in Switzerland. The whole of the network is to cover some 315 miles. More than half of the available energy is already disposed of to industrial enterprises, which have come to establish themselves at Rheinfelden in order to take advantage of the exceptionally cheap motive power, the prices for which rank considerably below those of steam. Some large electro-chemical factories are now in course of construction, which will be manufacturing aluminum, chlorine, soda and calcium carbide. Several railway lines are also being built now in order to connect the
large territories belonging to the company with two of large territories belonging to the company with two of
the principal railways of Germany and Switzerland. In fact, to look at the activity displayed round the electric works of Rheinfelden, where hundreds of work men are busy building and constructing, the casual visitor would hardly recognize the quiet old town on the Rhine.

Death of General Francis A. Walker.
General Francis A. Walker, President of the Massachusetts Institute of Technology, died suddenly at his residence in Boston, on January 5. General Walker was born in 1840. He graduated from Amherst College in 1860 and then studied law. When the war broke out he enlisted as sergeant major in the Fifteenth Massachusetts regiment and was rapidly promoted. He was captured at Reams Station and kept for some time in Libby prison. At the close of the war General Walker taught classics and tried journalism. In 1869 he was appointed chief of the Bureau of Statistics at Washington, and a year later organized and conducted the Ninth Census. His executive ability was seen and recognized and some of the best features in the Bureau of
Statistics date from General Walker's incumbency as Statistics date from General Walker's incumbency as
chief. In 1871 he became United States Commissioner of Indian Affairs, and in 1873 Professor of Political Economy at the Sheffield Scientific School at New Haven. In 1876 he was chief of the Bureau of Awards at the Centennial Exhibition. In 1879 he organized the Tenth Census, and in 1881 he became president of the Massachusetts Institute of Technology.
General Walker attained by his many writings and lectures a great reputation as a political economist Notwithstanding these various interests General Walker devoted the bulk of his time to the Institute of Technology since he became its president, and his wonder-
ful faculty for organization resulted in a continuous expansion of the work of the institution, until it is now the front ranks of American scientific schools. As an educator, General Walker will be sorely missed.

A Suggestion for Laying Gas Pipes.
Those of our readers who have undergone the vexa tion of having their lawns cut up and more or less disfigured by the process of pipe laying will find the method adopted by Mr. Charles Lurcott, an employe of long standing in the office of the Scientific American, of practical interest. Mr. Lurcott was desirous of putting in the gas in his amateur work shop, which is 24 feet distant from the house. To avoid digging the customary trench across the lawn and the permanent disfigurement which follows, he and the permanent disfigurement which follows, he
determined to bore a hole through the soil from the determined to bore a hole through the soil from the
cellar to a point below the floor of the shop. The boring apparatus was extemporized out of a piece of $\frac{8}{16}$ inch flat iron, a $3 / 4$ inch bar, some 6 foot lengths of piping and a carpenter's brace. The flat iron, $\frac{3}{16}$ by 1 inch and 2 feet long, was bent cold with a twist of hal a turn in 6 inches at one end, the other end being scarfed and riveted to a 6 foot length of $3 / 4$ inch round iron. Theoppositeend of the $3 / 4$ inch iron was threaded into a $3 / 8$ inch pipe coupling, and with the addition of three 6 foot lengths of $3 / 8$ inch pipe and couplings, the apparatus was complete. To connect the carpenter's brace with each piece of pipe as the boring proceeded a short length of $1 / 4$ inch pipe was screwed into a $3 / 8$ inch cap, its other end being filed square so as to enter the brace. With this simple and cheap boring machine completed, all that was necessary was to remove a stone in the cellar wall and commence boring. The auger cut its way readily through the soil, and in just 15 minutes a hole large enough for a $1 / 2$ inch gas pipe was made for the required distance of 24 feet. The auger cut its way without any tendency to swerve out of line, and had any rocks been encountered, it would have been easy to dig down and remove them.
It should be added that the ground at the time wa frozen and covered with several inches of snow, and anyone who has had to dig a trench under such circumstances will appreciate the saving of labor attending the methods of pipe laying employed by Mr . Lurcott.

A Large Waterfall.

A special dispatch from St. Paul, Minn., says that the ollowing letter has been received from S . A. Thomp son, at Santa Catalina, Venezuela
"During the exploration of the concession of the Orinoco Company, headed by Donald Grant and other Minnesota men, a trail was cut to the Imataca Moun tains, starting from this point, a village of 150 inhabi tants. The duties assigned to some members of the party kept them upon or close to the Orinoco until a few weeks ago, when two of us, Leslie O. Dart, of Litchfield, Minn., and myself, of Duluth, found time to make an excursion to the mountains.
"Pushing on beyond the point reached by the other party, we heard from the top of a mountain a sound which at first we thought to be thunder, but afterward decided that it must come from a waterfall of considerable magnitude. Working in the general direction of the sound over a difficult trail, we came, at noon on Thursday, October 15, to a large river, and discovered what must rank as one of the greatest waterfalls in the world.

The river bursts diagonally through an almost per pendicular cliff, which I estimate to be 1,600 feet in height, breaks into half a dozen separate streams, which divide and subdivide, spread out into broad, fanlike expansions, and twist about in such a curious, corkscrew fashion, that the water at the bottom of the falls flows in exactly the opposite direction from the falls flows in exactly the opposite direction
course it holds where it first comes into view.

By clinging to bushes and going up the giant creepers hand over hand, we climbed up the cliff until the aneroid indicated an elevation of more than 500 feet, but it was impossible to reach the top and learn how much higher the falls are."

Rich Lands in the Far North.
Mr. Tyrell, of the Geological Survey Department, has arrived at Winnipeg, bound for Ottawa, and re ports having discovered rich tracts of agricultural and stock raising country hitherto unknown. He left Selkirk on January 24 . From Norway House he de scended the Nelson River in a canoe to the Pine River, ascending it to Wolf River. Again the Nelson was de scended for seventy-five miles, until the Brentwood River was reached, thence down the Grassy River to the Sturgeon, which brought them to the Saskatche wan at Cumberland House. Recently they reached Prince Albert. Mr. Tyrell says that there are large areas of rich, cultivable lands west of the Nelson River, and though wheat is not grown, simply because it would be of no value, all varieties of vegetables are produced in the gardens of the Hudson Bay Company posts, and prove hardy. Except for the climate, he declares that that country is as richly blessed as the famed Red River valley.

THE TENNESSEE CENTENNIAL EXPOSITION.
Since the Chicago World's Fair, of 1893, there have been expositions held somewhere in the United States every year, with one exception, the California Midwinter Exposition and the International Cotton States Expo sition following each other in quick succession, and now the present year is to witness what the indomita ble energy of a single State can accomplish. Tennessee
will hold what will be called the "Tennessee Centennial and International Exposition" at Nashville. The date of the opening of the Exposition is May 1 and that of the closing October 31. The occasion of the Exposition is the one hundredth anniversary of the admission of Tennessee as a State into the Union. It is very creditable that this progressive State should express its gratitude to the founders of the comnonwealth in such an eminently patriotic manner. Tennessee is the first State in the Union to so celebrate the one hundredth anniversary of her statehood, and the interest which has been evinced by all sections of the country shows that the celebration will be of national importance. It is not intended to run the Exposition as a money making scheme, as it is largely prompted by sentiment, and the grave defects in the management of all the American expositions since and including the Chicago World's Fair have been carefully guarded against. President Cleveland has signed the bill appropriating $\$ 130,000$ for the erection of a suitable building to contain the government exhibits; so that the success of the Exposition seems now assured. Many of the Exposition buildings are already finished and nearly all will be ready to re ceive exhibits by March 1 ; so that there is very little chance of any delay in the opening of the Exposition.
Shortly after June 1, 1894, a company was organized, a charter was secured and stock was issued. Notwithstanding the fact that the Exposition was arranged for at a time of great financial stringency, the money necessary to guarantee the success of the Exposition was forthcoming. As was the case with the Chicago World's Fair, it was found impossible to finish tir work in time to allow of opening the Exposition on June 1 position on June 1, 1896; so, following the precedent set by the World's Fair, the grounds were dedi cated with appropri ate ceremonies on the anniversary and the opening of the Exposition itself was postponed for one year.
The selection of a site for the Exposition was a happy one. The old West Side Park and contiguous property was secured, the area covered being 200 acres. The tract is a magnificent stretch of blue grass land lying within two miles of the public square of Nashville. The ground was improved at once. Two beautiful lakes were created, the rolling surface was terraced, 1,000 trees were planted and miles of drives, walks and bypaths were laid out, while the drainage

AUDITORIUM.
and lighting has been carried out on approved lines. By May 1 the Park will be all that a perfect climate, a fertile oil and artistic landscape gardening canmakeit. In the great circle around the center lake is an imposing col lection of monumental, though ephemeral, Exposition buildings. As will be seen by reference to our bird's ye view, the ensemble is most imposing; in fact, it looks like a bit of the Columbian Exposition, set down under kinder skies, in a more genial climate. In front of the masnificent reproduction of the Parthenon, which is the center piece of the Exposition, stands a piece of the Exposition, stands a
heroic statue of Pallas Athene, 43 feet high. A little further on is a reproduction of the famous bridge of Venice, the Rialto.
The Parthenon, the noblest example of ancient architecture, is reproduced exactly, as to out ward form and color, and stands on a considerable elevation. It is a fireproof structure and is intended to house the art collec. tions. The light comes from a large skylight in the roof, as in ali Greek temples. The largest building on the grounds is the Commerce building, which is at
the left of the Parthenon. Its dimensions are 500×315 feet, the wings being 150 feet wide. The height of its central dome is 175 height of i

State will be exhibited. The design provides for a Greek cross with a dome. One wing will be used for colonial history, another for early times in Tennessee, the third for Confederate relics, and the fourth for Federal relics of the late war. The building will, of course, be made fireproof, owing to the great value of its contents. The space between the two lakes back of the Parthenon is devoted to the minerals and forestry, the Auditorium, the Horticulture and the Government buildings. The Minerals and Forestry building is built in the Roman-Doric style. It measures 400 ing is built in the Roman-Doric style. It measures 105 feet. The building will prove especially attractive to those who are interested in the wonderful nineral and timber resources of the Middle and Southern States. In the southern end beautiful marble, onyx, granite and sandstone specimens will be shown, while at the northern end will be placed all grades and kinds of coal and countless varieties of timber. The Auditorium is colonial in design and Ionic in treatment. The interior of the building is furnished in hard wood, the seating capacity being 6,000 , and the stage and band pit are ample for all purposes. Above the colonnades are pleasant balconies for the viewing of pageants by day and the elaborate electrical and fireworks displays by night. The tower is 140 feet in height and affords a magnificent view of the exposition. The Women's building occupies the corner of the Exposition grounds, and is designed by a woman, as the building is devoted entirely to women and their work. An assemby hall is provided for meetings under the control of the women's board. Other rooms are devoted to the various arts and industries in which women have been engaged; one section feet. This building will house many of the important exhibits, both foreign and domestic. Tennessee is a great agricultural State, producing almost every crop grown in two zones. Naturally their agricultural exhibit was given one of the finest buildings on the grounds. It measures 525×175 feet. As is the case with the other buildings, the exterior is covered with staff. The building to the right of the Agricultural building is the Machinery building, constructed in the Doric style. It is of the type of the fanous Propylæum in Munich, and measures 375×138 feet. In order that the building may be pleasant on warm days, no steam will be admitted, but the boilers and engines will be
at the power house, which is directly back of the Agri- |being devoted to patents taken out by women, another cultural building. Simplicity is the feature of the de- to books and musical compositions by women, and so sign selected for the Transportation building, which on, to painting, sculpture, cooking, embroidery, eduis directly opposite the Machinery building, across the cation, etc. little lake. A most pleasant effect has been obtained, without the use of a single column, merely in the grouping of the masses in the proper proportion.
The building has a frontage of 400 feet and a depth of 125 feet. Next to the Transportation building is

COMMERCE BUILDING FROM LAKE.
being devoted to patents taken out by women, another

The Children's building is one of the unique features of the Exposition. It belongs to the children, and in it various things will be designed and arranged for their amusement and instruction. The design of the building is pretty, and fills the interval between the Administration and the Women's buildings. The most interesting department will be that in which the work of the children will be exhibited. Another section will present whatever is of interest and use to the children gathered from all over the world. In the rear of the building, for the pleasure of the little visitors, a park of tame deer will be kept.
The offices of the Exposition will be Exposition will be
located in the Administration building, a handsome structure, erected in the club house style, with hard wood interior and wide interior and wide porches. The offices are furnished with every convenience.
The United States The United States
Government buildGovernment build-
ing is directly back ing is directly back of the Auditorium. It is destined to contain an interesting expartments of the federal covernment Among the other
buildings are the History building, the Negro building, Dairy, etc.
Excellent means of transit to and around the grounds have been provided. America this section is now universally known as the " Midway," in honor of the Midway Plaisance of the Chicago Exposithe Chicago Exposi-
tion, but in the Tention, but in the Ten-
nessee Exposition a nessee Exposition a
new name has been new name has been esting center. It is called "Vanity Fair," after the show mentioned in "Pilgrim's Progress," which was seen by Christian in his journey through life. In the triangle of the ground many features which were attractive at the World's Fair will be in evidence, as well as a number of new shows. The Director General has, howGeneral has, however, decided that there shall be no exhibitions which will
be offensive to any one. Another of the special features which add to the beauty of the grounds will be what is known as a "gourd arbor." This will be a long avenue will be a long avenue
leading from the leading from the
main entrance of the main entrance of the
Auditorium to the Auditorium to the with flowers and vines.
are divided by law into two classes. Waterways of the success, serving as a novel feature in many parades first class must be able to carry boats of 2 meters and making all its trips without a breakdown or accidraught, and the locks, if there are any, must be able to pass boats $38 \cdot 50$ meters long and 5.20 meters beam. There are 4,204 kilometers which come up to these dent of any kind. At one time it carried one hundred
and four men, this being the entire crew of officers and and four men, this being the entire crew of officers and
men. The car was designed to run slowly through the

The amusement feature of all world's fairs has come to be regarded as a very important one, and in walks of the western part of the park. A light, airy framework covers the walk, which will be overgrown

It is, of course, too early as yet to give any idea of what the exhibits will be, but there is every reason to believe that they will be so interesting that visitors will come from every State in the Union, and possibly from abroad. The foreign commissioner of the Exposition spent a long time in Europe, and obtained a large number of commercial exhibits from abroad. Th chief officers of the Exposition are: Mr. John W. Thomas, president; Messrs. V. L. Kirkman, W. A. Hen derson and John Overton, vice presidents; and Mr. Charles E. Currey, secretary. The Director General is Mr. E. C. Lewis. The buildings are under the direction of Mr. Robert T. Creighton, engineer, and the chief of the Bureau of Promotion and Publicity is Mr. Herman Justi, to whom we are indebted for courtesies.

French Wate ways. According to an official report recently issued there were in France at the close of at the close of 1895, says th Engineering and Mining Journal, a total of 13,751 kilometers of interior navigable waterways, of which 8,833 kilometers kilometers were rivers, lakes, and other natural channels, and 4,913 kilometers were canals. The natural waterways include a
number of rivers which have been made navigable built at Terre Haute, this new idea is suggestive of for at least part of their length by dams, locks, or endless possibilities for future occasions of celebrations, other artificial works. From 1878 to 1895 there was parades, and novel special cars. The cruiser McKinan increase of about 15 per cent in the total length ley was operated through the principal streets reported, chiefly due to the improvement of rivers. of Fitchburg and surrounding towns, during the These channels are under the control of the State, and late presidential campaign, and was in every way a heavy freight, which must be moved at a low cost.

\triangle TROLLEY MAN OF WAR

While the comic papers have been cartooning military engagements of the future as between portable forts operating on trolley lines, it has remained for the enterprising superintendent, W. W. Sargent, of the Fitchburg \& Leominster, Mass., Street Railway to actually build what to all appearances was a very formidable fighter. Like the steam locomotive copy

trolley man of war dsed in the late campaign

 front, on both sides and in the rear, while many of the officers would ride, then during a long jump from town to town, officers and men would ride together. The boat, which is 37 feet long, was built on a construction car 26 feet long with 6 foot 6 inch wheel base, equipped with two 12-A, 30 horse power Westinghouse motors. It was constructed of sheathing and timber, the whole being covered with canvas painted and varnished. The hull was painted white, superstruc ture cream, ironwork bronze, guns, and an chor chain black sponsons, lifeboats and turrets white It was lighted with It was lighted with twenty - five incan descent lamps. Red fire was used on many occasions in the smokestack which gave it a decided martial appearance. After celebrating the victory, special parties wer special parties wer to enjoy the novelty to enjoy the novelty total quantity of freight moved on the rivers and canals' of a ride on the cruiser. A few days ago she wa in 1895 was $27,173,904$ tons. Of this traffic $32 \cdot 3$ per cent dismantled and will be erected on a raft at the was stone, brick, lumber, and building materials, $28 \cdot 1$ pleasure park of the company (Fitchburg \& Leoper cent was coal, and $7 \cdot 4$ per cent was iron, steel, and minster Street Railway) in early spring. The boat was other metallurgical products. These three items make, designed by naval architect W. W. Lapointe, and was up 67.4 per cent of the total. The waterways were constructed at the car house of the Fitchburg \& Leoused, as might be expected, chiefly for the carriage of minster Street Railway Company, under the direct su-The results of the thirty hours' coal consumption trial of the second-class cruiser Juno recently were as follows : Steam in boilers, 142 pounds per square inch vacuum, port $27 \cdot 1$, starboard $26 \cdot 1$; revolutions, port $117 \cdot 9$, starboard 119 ; indicated horse power, 4,863 ; indicated horse power, 4,863; speed of 16.3 knots per hour. knotsper hour. The amount of coal used was 164 pounds per indicated horse power per hour. The Juno was taken into the Channel for a four hours' orced draught trial. The mean results mean results Steam in boilers, 149 pounds; in engines, 151 pounds; vacuum, starboard 26 inches, port 26.6 inches; revolutions, tarboard 1493 , port $149 \cdot 3$; indicated horse power, starboard 4,832, port 4,939 -total, 9,771; -total, 9,771 ; air pressure, 0.92 inch; speed, 20 knots, or half. The vessel returned to Devonport Harbor, where she will be equipped for sea.

The Rockefeller steamer Robert Fulton, 440 feet over all, is the largest steamer on the Great Lakes.

The following notes on acetylene are extracted from ecent technical journals :
A firm of Italian engineers has recently constructed some small cars which are propelled by motors driven by acetylene gas. The charge consists of acetylene gas dissolved in fifteen times its volume of air, and with this mixture it has been found unnecessary to use water for cooling the cylinders. The method of ig niting the charge has not, however, been made known. According to the Gaztechniker, the motors maintain a speed of 600 revolutions throughout a working period of fifteen hours. The weight is only about 20 lb . ; and 0.8 brake horse power is developed. The cost of working is said to be about 12 cents per hour.

At the ordinary monthly meeting of the Newcastle-on-Tyne and Northern Counties Photographic Association, Mr. John Watson read a paper on the use of acetylene for photographic purposes, which was admirably illustrated by a demonstration of the use of acetylene in the lantern. There was a good attendance of members and friends. In his very practical and interesting remarks, the lecturer considered this light very suitable for professional men, who, using a portrait lens, got a fully exposed plate at any time, no matter what the atmospheric conditions might be, with an exposure of about four seconds. He contended that in the very near future acetylene gas will be largely used for the purpose of lantern illumination. The light, which at the present time is largely used, is intensely white, in burning it has no smell, is abso lutely safe, and, if not as good as the limelight, is very nearly so, and when once lit up it requires no attention.

Some actual trials have been made on the Swiss rail way between Berne and Zurich of lighting by acety lene, with the following result: A kilogramme ($2 \cdot 2 \mathrm{lb}$.) of calcium carbide produces about 250 liters (9 cubic feet) of acetylene gas, the consumption of which is 0.7 liter (42 cubic inches) per candle power per hour, for flames varying between 20 and 30 candle power, being slightly greater for smaller lights. At the present price of $\$ 10$ per 10 kilogrammes of calcium carbide, cubic meter (35 cubic feet) of acetylene costs 40 cents, giving the same light as five times the volume of compressed oil gas

An acetylene gas motor, weighing 9 kilogrammes (20 pounds), giving out a brake power of 62 kilogrammes (448 foot pounds), and capable of working fifteen hours Tecnica Italiana, been designed by Sig. Pedrell, of Parma, who has fitted it to a bicycle.
The method by which M. Raoul Pictet purifies acetylene is given in a recent issue of the Gas World. It is based upon the failure of certain chemical reacIt is based upon the failure of certain chemical reac-
tions when the material is exposed to low temperatures. tions when the material is exposed to low temperatures
At $-50^{\circ} \mathrm{C}$. $\left(-58^{\circ} \mathrm{F}\right.$.) sulphuric acid does not act upon acetylene, but it does act upon the impurities usually found in that gas when made from calcium carbide and therefore the gas, as it is formed from the carbide, is passed through that acid, which retains the impuri ties. The purified acetylene is then more manageable and more easily liquefied, while its obnoxious odor, its liability to spontaneous ignition (through the presen
of phosphureted hydrogen), and its action upon of phosphureted hydrogen), and its action upon
metals are very largely got rid of, while the light prometals are very largely got rid of, wh
duced is intensely white and bright.

One kilogramme ($2 \cdot 2$ pounds) of calcium carbide should yield about 300 liters (10 cubic feet) of acetylene gas. A good burner, says l'Electro-chimie, specially designed for this gas, should give an illuminating power of nearly fifty standard candles, at a pressure of 40 millimeters ($1 \frac{1}{89}$ inch of water), with a consumption of 30 to 35 liters (about 1 cubic foot) of acetylene per hour; and some burners made by MM. Ducretet et Dejeune only consume, under the same conditions, from 11 to 12 liters (mean 0.38 cubic foot) per hour, while giving a
light of nearly twenty standard candles. Acetic acid retards the action of water on the calcium carbide, this effect being all the more marked in proportion to the quantity of acetic acid contained in the solution.
The specific gravity of acetylene, as compared with air, is 0.91 , and one liter $=1.6$ pints of liquid acetylene
at a temperature of $32^{\circ} \mathrm{F}$., weighs 450 grains $=1571$ ounces, and is evaporated into 375 times its volume at the ordinary pressure, 760 millimeters $=29$ inches. Like carbonic acid, when liquefied, acetylene passes into the state of snow if allowed to escape from the receiver in which it is liquefied; and this snow, on evaporating, lowers the temperature $182^{\circ} \mathrm{F}$. At the temperature of $68^{\circ} \mathrm{F}$., the pressure in the receivers containing liquefied acetylene is 42.8 atmospheres $=628$ pounds per square inch ; and it becomes 68 atmospheres $=1,000$ pounds per square inch at $986^{\circ} \mathrm{F}$. These
pressures are higher if the liquid, at these temperatures, fills the receiver. On account of these high pressures, and as this gas is endothermic, the cylinder containing liquid acetylene must be handled with great care, and the escape of acetylene at the closing cock of the re ceiver, or at the reducer of pressure, is difficult to avoid. For these reasons the use of liquid acetylene, says l'Electro-chimie, should be placed under strict control.

The Commercial Navies of the World.
The latest edition of the "Repertoire General de la Marine Marchande," published by the Bureau Veritas, contains the usual general summary of the steamships belonging to the different maritime nations, and meas uring 100 tons gross and upward, as also the accus tomed list of sailing vessels measuring 50 tons net and upward, and likewise a list of the smaller vessels which are classed in the Veritas Register. The follow ng table shows the number of steamers of over 100 tons, and the collective gross tonnage belonging to the sixteen principal maritime nations-that is, whose
aggregate gross siteam tonnage surpasses 100,000 tons.

	$\begin{gathered} \text { Steamers, } \\ 1896 . \end{gathered}$	Gross tons. 1896.
Great Britain and colonies.	...5,690	10,245,577
Germany.	831	1,360,472
France.	532	933,244
United States...........	477	761,707
Spain	365	519,315
Norway.	. 551	494,612
Italy.	22	344.523
Holland	204	320,794
Japan.	. 267	313,563
Russia	... 314	277,302
Anstria-Hungary.	... 156	254,269
Denmark	285	248,773
Sweden..................	.. 427	233,777
Greece. 107	144,975
Brazil.	.. 314	139,305
Belgium.	66	139,300

Besides the steam tonnage set forth in the above table, there are 2,667 small steamers (below 100 tons), measuring altogether 415,069 tons gross. The number of existing steamers whose measurement is ketween 5,000 and 6,000 tons is 131 ; between 6,000 and 8,000 tons, 59 ; those over 8,000 tons, 25 , and of these eight are of more than 10,000 tonnage, viz., the Campania Friedrich der Grosse, Georgic, Lucania, New York, Paris, St. Louis and St. Paul. The general total of the steamers of over 100 tons is given in the Repertoire as 11,155 , representing $17,089,596$ tons gross and 10,761 , 025 tons net. The sailing tonnage is divided among nations possessing sailing tonnage of over 100,000 tons.

	ships. 1896.	$\begin{aligned} & \text { Net tons. } \\ & 1896 . \end{aligned}$
Great Britain and colonies.	. .8,726	3,267,625
United States..	3,881	1,358,467
Norway................	2,801	1,176,174
Germany	.1,096	566,973
Italy..........	.1,692	472,002
Russia1,753	363,046
Sweden...................	..1,444	285,665
France.	.1,425	252,940
Greece.	.1,059	246,196
Tarkey.	.1,247	241,096
Spain.	.1,115	187,148
Denmark.	.. 795	149,843
Holland.	642	139,649

The remarkable experience of witnessing a meteor flashing across the firmament, watching it in its course and seeing the stone drop to earth within a few yards of where one is standing comes to but few people, yet such a happening occurred recently to a citizen of Albina, Oregon, says the Portland Telegraph. It was
hortly after $10: 30 \mathrm{p}$. m. that Mr. Hall started to go to his lod he was startled by a sudden illumination of the sky toward the east. Gazing aloft, he saw what at first he took to be a ball from a Roman candle fired from some pyrotechnic display incident to the many proces sions. As the flaming globe approached, however, it assumed such size that the Roman candle supposition was precluded. Nearing the earth, the oncoming bal of fire could be seen to be bringing with it a trail of bluish sparks, which left the main body with a peculia racking sound resembling the snapping of charcoal.
Barely missing the roof of a house, the visitant from the heavens took a long, swooping flight, as though repelled by the earth's surface, finally alighting in a bed of hardpan, burying itself to a depth of some five inches The distance from where Mr. Hall was standing to where the meteor alighted was so slight that he had a fair view of that portion of the meteor exposed. From this came a shower of sparks, much the same as though the component parts of the meteoric visitor contained a percentage of saltpeter.
Going over to the spot where the fragment of some heavenly body broken loose in space had alighted, he found the meteor still at a white heat. Having no means of handling it, he informed some people there of the phenomenon he had witnessed.
Hall and two other men then returned to the lot On the way an empty lard kettle was picked up, and reaching the spot an attempt was made to scoop the fragment of a disintegrated planet into this plebeian receptacle. The piece of the meteor, on being moved, meteor hunters away. After waiting some minutes for the stone to cool, the party again tried to get it into the kettle, but were again driven back by the odor of the gases. A third attempt was, however, successful, and he meteor was borne back to Turner's.
The piece is of an irregular shape, much resembling a lump of hard clay that had broken loose from a cut and rolled to the roadbed below.

Science Notes.
Dr. Nansen has ordered a yacht of about twenty tons burden and intends to continue his studies on the coast f Norway and Spitzbergen with it.
Mr. William Crookes, F.R.S., who has been experimenting with the alleged new element "lucium" has arrived at the conclusion that it is not an elemental substance at all, but simply impure yttrium.
A recently discovered mountain lake on the island of Fernando Po is situated at an altitude of 1,330 meters and is 1,170 meters long and 800 meters wide. High mountains surround the lake and a waterfall leap into it, but there is no visible outlet. - Prometheus.
A new lamp shade invented by A. Von Kozlowski, says the Gowerbe Zeitung, Vienna, is made hollow, to be filled with a suitable liquid, such as a very dilute solution of sulphate of copper with a slight addition of ammonia. This shade absorbs the heat and reflects th light, at the same time giving it an agreeable color.
According to the Comptes Rendus, there has been According to the Comptes Rendus, there has been
considerable interest in scientific balloon exploration considerable interest in scientific balloon exploration
recently in France. A number of captive balloons were sent up from different stations in the night between November 13 and 14, and at the same time free balloons ascended from other stations. The free balloon sent off from Paris rose to the height of 15,000 meters, and recorded a temperature of $-60^{\circ} \mathrm{C}$.
When the Cornell scientific party was in Greenland ast summer an extensive collection of botanical specimens was made, but as nearly all the species were new to the collectors, it was not known how valuable the col ection was. As it turns out, practically all are rare and valuable. As there are many duplicates, the Na tional Museum at Washington and the museums of various universities will be enriched as well as that a Cornell. There are in the collection specimens of ful grown forest trees less than three inches in height.
Prof. Wm. P. Blake, Director of the Arizona School of Mines, reports, says the Engineering and Mining Journal, the occurrence of wolframite, or tungstate of iron, at several localities in the southern part of Pima County. Ariz., specially in the Arivica mining district where it is associated with gold-bearing quartz. This ocwhere it is associated with gold-bearing quartz. This oc-
currence of an ore of tungsten in auriferous quartz veins currence of an ore of tungsten in auriferous quartz veins
is rare and unusual, but has been before noted by Prof. is rare and unusual, but has been before noted by Prof.
Blake at Murray, Idaho, where there is a vein of tungBlake at Murray, Idaho, where there is a vein of tung
state of lime, or the species scheelite, alongside of a gold state of lime, or the s
bearing quartz vein.
The coldest region on earth is the country around Werchojansk, in Siberia, says Prometheus, where the thermometer sometimes falls below 68° Centigrade be low zero (90° Fahrenheit below zero). The average temperature of January is 49° Fahrenheit below zero Notwithstanding this rough climate, more than 10,000 Notwithstanding this rough climate, more than 10,000
people inhabit that region. As the air is generally calm and dry in winter, the cold is not felt very much calm and dry in winter, the cold is not felt very much. hours are very great in summer ; in May, for instance the thermometer will sometimes rise to 85° Fahrenhei during the day and fall to freezing point at night. An apparatus for testing the durability of bicycle wheels described in Uhland's Wochenschrift consists of a frame receiving the bicycle wheel and weights corresponding to the average weight of a rider. The wheel to be tested rests with its tire on a large pulley rotated by machinery, and the pulley has on its im a series of projections of various width and height The wheel thus strikes the projections and is subjected to the same strain as when striking obstacles on the road. The test is continued for about twelve hours the pulley being rotated at such a rate of speed as to give the wheel a number of revolutions corresponding to a travel of about 170 miles.
Some months ago an article in the Home Journal urged the importance of some systematic effort to familiarize the public with the distinguishing characteristics of the different varieties of mushrooms. Now a society for the study of this subject has been organized in Philadelphia. It will meet every two weeks, and members will read papers on such topics as "Mushrooms That Have Helped Me." The organizers say that there are about two hundred and thirty-five edible kinds of mushrooms to be found around Philadelphia, and that tons of the delicious food go to waste, simply because people have a horror of what are known as toadstools, though the really poisonous varieties are few.
Cazal and Catrin (Annales de l'Institut Pasteur, ix, 12 ; Centralblatt für innere Medicin, December 12, 1896) have investigated from the bacteriological standpoint the question of how far books are capable of conveying disease. A book from a hospital circulating library was found to contain a number of saprophytes, and in addition a few pathogenic germs, staphylococci and the Bacillus subtilis. Even a new book, fresh from the publisher, was not sterile, but showed only harmless bacteria. The authors infected several books with known pathogenic species, and a few days later implanted bits of the leaves in culture media. The streptococcus, the pneumococcus, and the diphtheria bacillus were thus found to be communicable by books, but the typhoid organism and the tubercle bacillus. gave negative results.

Progress in American Tea Culture

by arorge ethelbert walsh.
The prospects of making tea an American product would be poor indeed if it were not for the energy and perseverance of Dr. Charles U. Shepard, who has spent a good part of his life in experimenting with tea plants on his Pinehurst farm in South Carolina, and whose annual crop of leaves creates a little sensationin that branch of the commercial world which deals in imported teas. The success of the Pinehurst tea gardens is made more important in view of the floods of cheap, inferior teas that have been imported into this country to the detriment of the trade since the tariff was reduced; for the sole aim of the owner of the Pinehurst farm is to produce a quality of tea that will command the highest prices in the market. In his own words, "Asiatic cheap labor, at six to eleven cents daily wages, precludes competition in the inferior sorts."
In 1892 the first crop of tea ever raised in this country was cured and sold in our own markets, but the total product did not exceed 150 pounds, as only the small and tender leaves were picked. Since then the crop has steadily increased, and the prices realized for the Pinehurst tea have exceeded $\$ 5$ per pound. The yield of the tea plants has proved as high as that of the best Indian gardens of the same age, and the rate of production at Pinehurst has averaged 250 to 500 pounds from every garden of 1,500 plants. This rate could be greatly increased if the large leaves were picked, but the small, young leaves are the only ones The oritable the manufacture of the high grade teas
The original tea plants of the Pinehurst farm were
planted in the old gardens near Summerville, South planted in the old gardens near Summerville, South
Carolina, before the war, and they were neglected for nearly twenty years thereafter, growing wild in clumps and thickets in spite of their uncongenial surroundings. Dr. Shepard obtained possession of the gardens, and while some of the plants were transferred to better ituations and soil, many were left standing in their original locations. From these early planted shrubs the present Pinehurst crop was raised. At the same time the owner obtained consignments of seed from our consuls in China. These have obtained a good age now, and the plants are vigorous growers. A great part of the deterioration of the tea plant in China has been the result of neglect, and consequently the shrubs from similar seeds planted at Pinehurst have produced finer foliage than those in China. This improvement in the Chinese tea plants through careful cultivation has been one of the most encouraging features of the work at the South Carolina garden.
But most of the crop heretofore gathered in this country has been of the Assam hybrid plants. The true Assam tree is a vigorous grower, with leaves seven or eight inches long and three inches broad, capable of producing twenty-five crops of young leaves in a season, but cold interferes with the proper development of this variety, and it cannot be profitably grown outside of a small part of British India. In its natural, unpruned state the plants frequently attain a height of thirty or more feet. Intermediate between this large tea plant and the small Chinese variety, there are many kinds that have resulted from hybridization. These hybrids represent good and bad teas, with all the possible modifications between the two extremes. In gardens where hybrid seeds are planted indiscriminately, both the broad and narrow leaves are found, and also inferior and extra fine tea leaves.
In experimenting with tea growing in this country, the question of varieties early occupied the attention of Dr. Shepard, and it required considerable study and comparison of data to ascertain just what results might be expected from the leading plants of China and Ceylon. A comparison of the records of the climate of Charleston, a short distance from Pinehurst, and those of other tea-growing countries over a period of ten years, showed that it was not an impossible thing to raise tea in parts of South Carolina. The mean yearly climate was about the same as that of the upper stations of Ceylon, but much warmer than in Japan. The winter season in Upper Ceylon, however, rarely brought ice, while at Pinehurst its appearance is nothing unusual. In Japan frost and ice are common. The rainfall in Ceylon is much greater than in either Pinehurst or Japan. From these observations, it is apparent that South Carolina has too little rainfall and too great extremes of climate to produce the finest tender varieties of Ceylon tea. Artificial irrigation partly supplies the first deficiency, and the protection of the tea gardens by windbreaks made of trees helps to offset the second disadvantage.
The tea fields of Japan, which more closely resemble those of South Carolina than any other, send us annually $50,000,000$ pounds of tea. The Ceylon and India tea growths are not so popular in this country, as the leaves are strong, and delicate and light infusions are preferred here. Carefully selected Indian and Ceylon seeds are exonce become established they are vigorous growers. The cost of eighty pounds of the seeds delivered in this country averages about $\$ 50$, but as only about one-fourth of them are good for anything when they arrive here, the
?ost is much greater than appears at first. Many of
the seeds sent here do not represent the varieties that are claimed for them, and this is another source of worry and disappointment. Of the many pounds of seed imported for the Pinehurst farm, only very few have yielded satisfactory results, and now more reliance is placed upon the cuttings for propagation than upon the imported seeds. The gardens are so w $\epsilon l l$ established that there is ample stock on hand for increasing the number of plants from cuttings.
During the few severe winters we have had, the tea plants at the Pinehurst farm have suffered more or less, but the number actually killed is not great enough to discourage any one embarking upon the enterprise The winter of 1892-93 was severe enough to kill a few of the tea plants, and to impair the vigor of others. The winter of 1894-95 was another severe test of the plants. The experiences so far seem to point to the conclusion that tea plants can be raised at a profit in South Caro lina either from seed or from cuttings, and that the Chinese and Japanese sorts are better adapted to the climate than the India or Ceylon teas, aithough many of the Assam hybrids develop into tolerably luxuriant plants. The crop must of necessity be of a high order, and to accomp lish this only the young leaves can be picked. The question of profit, however, is not settled when good plants and leaves have been produced. The cost of p coking and curing the leaves is much higher than ir China, Japan, India or Ceylon, and herein lies the real difference between the industry in this country and the Oriental lands. A high tariff on this country and the Oriental lands. A high tariff on
tea would prevent the importation of many of the intea would prevent the importation of many of the in-
ferior grades now brought into this country, and incidentally it might help tea growing in the South. But better than this would be the invention of machinery for reducing the cost of picking and curing. The substitution of machinery for manual labor would imme diately bring into existence a considerable industry in tea raising.
The industry at present is not attractive to the average farmer, for a tea garden of only a few hundred acres would involve the expenditure of considerable money, with no prospects of getting any profits back inside of five or six years. If a central curing factory could be established in the best tea growing dis. tricts, it might be possible to induce farmers to cultivate ten or twenty acres of tea plants as an investment for the future. Even with the present prices paid for labor in the South, the best quality of teas can be raised at a good profit, or at least, this has been the case for several years on the Pinehurst farm. The picking is the most expensive work, but, while long and tedious, it is not arduous labor, and women and chil dren can do it equally as satisfactory as men.

The Formation of Natural Bridges.*

Prominent among the rock formations which have attracted the attention of student and sightseer alike are the arches of solid stone spanning deep chasms and forming an unbroken union between massive cliffs on either side. Were they more common, they would be, perhaps, less noted; but so far, very few of them have been brought to public notice, and it is probable they are of rare occurrence. The opinion has been advanced by some geologists that natural bridges are the remains of former caverns. It frequently happens that the roof of an underground chamber approaches so near to weight of rock and soil above it ; consequently it gives way, forming a sink hole. If this process continues a sufficient length of time, the entire roof will fall in and the cavern become an open ravine. Sometimes, however, one portion of the roof may be so thick or so strong as to hold its position after all that part to either side of it has disappeared; and this fragment which remains constitutes what is known by the name of a "natural bridge." While this theory is simple tions, it is clearly erroneous when applied to others. Caverns are usually very tortuous, seldom preserving the same direction or level for any considerable distance, and there are very few whose shape is such that they could under any circumstances be converted into open ravines. Still, such do exist ; and the above theo ry is satisfactory concerning bridges found under such conditions. But there are at least three other varieties of these formations for which it cannot account; and for each of them a separate explanation is necessary.
As a type of the first class may be taken the most famous and perhaps the largest natural bridge in the world; namely, that in the Shenandoah Valley of Virginia which gives its name-Rockbridge-to the county in which it is found. In this instance, the strata ter minate at the river hills on one side, and rise to the surface of the ground beyond the bridge on the other Water sinking into the earth sought an outlet toward the James River by following the lines of separation between the strata; and dissolving the limestone through which it flowed, produced a tunnel or underground passage open at both ends. The upper strata were much less affected by this erosion than the lower for a smaller amount of water made its way into them,
besides which they were, from their position, com pressed and hardened and thus better enabled to resist the destructive process. When this passage became well defined the wear was almost entirely at the bottom and ends; the central portion suffering no further change except that resulting from atmospheric agen cies. No cave has ever been discovered whose ramifica tions bear the slightest resemblance to those produced by surface drainage, nor one in which the various branches from a central chamber lead, without excep tion, to the surface of the ground at different points. In Hardy County, West Virginia, a considerable stream known as Lost River, completely disappears within a few rods, the water sinking between the strata of a syncline and reappearing on the other side of the mountain in a number of great springs whose united waters form the Cacapon River. The rock is a hard, compact shale or slate; if it were limestone or othe mineral soluble in water, there would be at this point a tunnel two miles long. Probably in this manner wa formed the tunnel in Scott County, Virginia, through which a public road once ran, and which is now utilized by a railway company.
The tunnel and natural bridges of Carter County, Kentucky, which may serve as a type of the second class, had their beginning and development in a somewhat different manner, by reason of the difference in the geological conditions. Here the surface rock is a very hard carboniferous limestone, passing by a con tinually increasing admixture of quartz sand into a typical sandstone below. As soon as a depth is reached at which the sand becomes appreciable in amount false or cross bedding is very marked. Water passing through the upper layers dissolved more or less of the lime which acts as a cement for this sandy material and when an outlet was once made below, the disinte gration proceeded rapidly, until the nearly pure sand rock at the bottom was reached. In this way have been created two bridges, each surpassing in some respects that of Virginia, and a tunnel several hundred yards in length. Riffles and shallows, alternating with deep pools, are common in the streams of this region but there are no underlying strata, at least none a present within reach, through which other streams
may burrow. Four large caves in the vicinity have been thoroughly explored; and there is no point in any one of them where it would be possible for a bridge to form having any resemblance to those existing. The only similarity in the formation of the two phenomena is that both are results of underground drainage: and in none of them could the causes that have produced the one class have given rise to the other.
The third class which remains to be explained may be found in the massive, bedded limestone of the devo nian and subcarboniferous deposits, better known in various localities as the "mountain," "cliff," or "cav ern" limestone. Such stone, being formed under the ocean, must contain a large amount of water; when it is elevated above the sea level, this water drains away and the stone must shrink, just as green wood does when it is seasoned. In this way are formed seams, or "joints" as they are called, which extend for a con siderable distance downward, sometimes almost verti cal. Surface water finding its way into these gradually enlarges them, forming sink holes or "natural wells." Under ordinary circumstances, this water will continu to make its way downward, forming a cave, or it wil reappear at different places in the shape of springs If, however, there should be a stream or a deep ravine in the immediate vicinity, the water may reach this by following the lines of separation in or between the strata; and by constantly enlarging the passage thu made, it may form in time a ravine whose sides are united by the higher beds of the rocks through which it has bored its way. The famous "arched rock" at Mackinac Island may be taken as a type of bridge formed in this manner. Near the Kentucky cave above mentioned is a natural bridge formed somewhat in the manner as those last described; but the rock in which it occurs is a sandstone instead of a limestone Several yards back from the brink of a precipice is a vertical crevice in ground which is dry except immedi ately after a rainfall. Storm water, flowing into this and reaching the surface again near the foot of the bluff, has eroded the stone until it now presents an arch resembling that of Mackinac, but much larger in all its dimensions.

Counting Blood Corpuscles.

Dr. Judson Daland, of Philadelphia, has invented an instrument for counting blood corpuscles, according to the Physician and Surgeon. It works on the centrifu gal force principle, and accomplishes the measuremen by means of comparative bulks. A quantity of blood is placed in a finely graduated tube and the latter re volved at a speed of about 1,000 revolutions a minute The corpuscles divide by force of gravity, and form on the side of the tube in easily traceable divisions of red corpuscles, white corpuscles, and serum. The new method permits of larger, and consequently more re presentative quantitatives being used in experiment ing, besides doing away with actual microscopic count ing.-New York Medical Times.

MANUFACTURE OF PAPIER MACHE BUSTS

The illustrations accompanying this subject represent the manufacture of papier mache busts יnsed principally by clothiers, milliners, etc., for show purposes. The busts are generally fastened over the top of wire frames made the same shape and size of a man or child, over which suits of clothing are placed to show the quality and style of the material. The material used for these busts is composed of a mixture farpet paper or felt whiting glue linseed oil of carpet paper, or felt, whiting, glue, linseed oil, and shellac, the material being stirred and mixed together with water to about the consistency of dough, and then rolied into sheets and pressed into plaster of Paris moulds. The first operation in the manufacture of these busts is the making of a clay
model. A frame is first formed of pieces of wood

The plaster of Paris is then poured all over the section by means of a large spoon, to the thickness of an inch, and left to set for about five or ten minutes. After setting, the clay strip is taken off, the model turned over, the plaster of Paris joint of the front cast oiled, and the back then plastered over in the same manner as before. After the back section has set, the two parts are then removed from the clay model. Another cast is then made of the interior of the plaster cast, which forms a duplicate cast of the original clay model. The plaster duplicate, when set, is then taken out of the jacket and scraped and smoothed into a perfect working model. A cast of this model is then made in small sections, a strip as before being placed on the model, spacing off the section to be cast.
about three feet in length and two feet in width, and rolled out in sheets ranging from 12×15 inches in width to about 15×22 inches in length and about from three-sixteenths to one-fourth of an inch in thickness. The operator, when the sheet is rolled out, places it while wet into the mould. The material is then pressed into the form by hand, the operation taking about onehalf hour. After the papier mache is pressed into place, the overlapping edges are trimmed off with a knife and the moulds laid away on shelves to dry forabout fifteen ours. After drying the two mould sections are put together and the two papier mache joints fastened together by pressing a little of the wet material along the joints on the interior, after which the mould is left to dry again for twenty-four hours. When the joints are thoroughly dry the papier mache head is taken out and
 bust. The frame is supported in an upright position by means of a circular iron rod running up through the center, it being fastened securely to the top piece of the frame by means of iron nuts. The model maker then plasters the clay roughly over the framework to the depth of about an inch, and then with his tools forms out the features. The tools are made of sted and slightly spoon shaped at the ends. It requires about one week to form a life size model, about twenty pounds of clay being used for the operation. After drying for one day, it is then ready to have a cast taken from it. The cast is made of plaster of Paris in two sections, the front, or face, being formed first. A strip of clay about one inch in thickness is first placed all around the clay head, as a dividing line between the front and the back section.
made about the same size and shape of a head and clay strip is removed and placed again in position sandpapered and painted. The head is smoothed off for the adjoining section. This operation is contin- by rubbing over the surface No. 2 and No. 3 sandpaued in the same manner until the entire head is cast. per, after which the head is given a coat of bluish white Some of these heads are composed of abont twenty-five oil paint and then two coats of flesh color. The eyes, pieces, it requiring about two days to perform the operation. When the casting is completed over each half a plaster of Paris mantle or jacket is then cast over the sections, from about three-fourths to one inch in thickness, the operationftakingjabout $11 / 2$ hours. The plaster jacket is allowed to set for about ten minutes. The sections or parts are then taken out of the jacket and dried thoroughly for about twenty-four hours and then shellacked. They are then put in place again as before and are ready for the papier mache. The ingredients forming the papier mache are mixed with cold water into a pulpy mass like dough. A quantity of
the material when ready is placed on a marble slab
hair, lips, etc., are painted with tube colors. The sketches were taken from the plant of H. A. Buchholz, New York City.

The supreme court of Italy has recently decided that he original manufacturers of phenacetin are entitled to the exclusive use of the name "phenacetin," al hough said name is now in common use. The ground iven is that phenacetin, although not a purely fanci ul designation, is not the proper and official chemical name of the substance, and that the original manufac turers were the first to adopt the name phenacetin. La Propriété Industrielle.

THE RENO INCLINED ELEVATOR

The accompanying engraving shows the working of a new style of elevator which is being put to a practical test by the trustees of the Brooklyn Bridge. It is the invention of Mr. Jesse W. Reno, who, by way of introducing it to public and official notice, erected this same machine at Coney Island last September, where it carried over 75,000 people. The present test is being made at the New York end of the bridge, and, as will be seen from the engraving, the elevator is placed to the right of one of the stairways that lead to the station platform. The belt, or movable flooring, has an inclination of 25 degrees, the vertical lift being 7 feet, and it travels at the speed of 80 feet per minute.
Broadly stated, the device is an inclined belt conveyor, similar in its action to those which are used for raising baggage from a steamer's deck to the dock level. It consists of an endless belt, made up of transverse cast iron slats, which are 4 inches wide and 20 inches long, or sufficient to extend across the full width of the elevator. The top surface of the slats is provided with thin projecting parallel ribs, one inch in depth, which are spaced $11 / 4$ inches apart and extend across the full width of the slat. When the slats are linked together to form a continuous belt, these ribs form continuous parallel lines, and as they are dished on their upper edges, they present a good foothold for the passengers. The slats are linked together at their ends, where they are provided with small wheels which roll upon the top flanges of two parallel inclined I beams. The weight of the passengers is thus carried directly by these beams, which serve to keep the flooring in true level. At each end the belt passes over a pair of sprocket wheels, the upper of which is carried on a driving shaft which is operated through worm gearing by the four horse power electric motor shown below the elevator.
Perhaps the most novel and ingenious feature is the provision which is made for connecting the movable with the stationary flooring. This is accomplished by finishing off the stationary floor line with steel comb shaped landings, which will be seen in the engraving at the foot of the elevator. The teeth of the comb project forward and upward between the above-men tioned ribs on the slats just where the belt leaves the lower sprocket wheels. These ribs keep rising between the teeth of the comb and so tend to lift the foot of the passenger and carry him along. As a matter of fact, the passenger naturally takes a step over the comb onto the moving floor. At the top of the elevator the ribs disappear below the comb landing, leaving the foot resting upon the stationary floor. How cleanly this transfer is effected is shown by the fact that a bundle of waste thrown upon the elevator is carried up and deposited upon the top landing.

The present elevator is of single width and is pro vided with one hand rail, which consists of an endless chain, which is driven by a sprocket wheel on the main driving shaft, at the same speed as the moving floor. It passes over two sprockets placed at a suitable height at each end of the elevator. The chain slides on a flat bar carried on stanchions, and it is kept in place by projecting pins at each link, which slide beneath projecting flanges formed on each side of the bar. A strip of leather covers the chain, and upon this is placed a thick rubber covering, which is riveted to the which is riveted to the on each side of it, thus forming a good hand rail.
The capacity of an elevator 20 inches wide is 3,000 persons per hour; and every 20 inches additional width will accommodate another 3,000 . It is estimated that ten to twelve feet width would accomfeet 1 15,000 accommodate the 15,000 people per hour that cross the bridge in the busiest hours of travel.

Nobel's Gift to Science. A dispatch from Stockholm, dated January 2, states that under the
terms of his will the property left by Alfred Nobel, the Swedish engineer and chemist, for a fund for the advancement of science will be realized upon, and the interest on the money will be divided equally into five prizes, to be awarded annually. Three of the prizes will be for the greatest discovery in phys-
ics, the greatest discovery in chemistry, and the greatest discovery in physiology or medicine. The fourth prize will be for the most notable literary contribution on physiology or medicine, and the fifth for the great est achievement for the promotion of peace. The competition for these prizes will be open to the world. It is estima
$\$ 10,000,00$

A NEW OIL SEPARATOR.

A recently patented device for separating the oil from the water of the exhaust steam of an engine is shown in the accompanying illustration, as it may be used in connection with the heater or condenser ordinarily employed. The exhaust pipe from the engine is tapped

sEparating the oil and water of the EXHAOST.
into an external chamber of the heater, as shown at the right in the engraving, there being upper and lower openings into the heater from the chamber, and a pipe leading from the lower part of the chamber to the separator. The exhaust, striking the outer surface of the heater casing, will be somewhat condensed, and the water of condensation and the oil it contains will pass through the lower pipe to the separator. The latter consists of a flat bottomed tank, in the center of which rests a bottomless cone-shaped can, there being small notches in the lower edge of the wall of the can, afford ing passageways from its interior to the outside, and by means of an elbow pipe connection, the water of condensation is discharged at about the center of the can. A pipe in which is an upwardly projecting air vent
tom of the tank, and this pipe is connected near its upper end with an elbow pipe leading to a discharge connection. As may be readily seen, the oil in the water of condensation will naturally rise from the point of discharge within the cone-shaped can, more or less filling the top portion of the can, from which it may be drawn off by means of the faucet, while the water will pass downwardly and into the space surrounding the can, rising in the tank and in the pipe at one side unti it reaches the level of the discharge connection near the top, the pressure of water within the tank, outside of the can, being always sufficient to force out the oil when the oil delivery faucet is opened. The relativ height of the oil and water is always indicated by the gage, and the tank may be at any time emptied by means of a faucet near its bottom.

Vegetarianism-Its Effect Upon Nations.

In a recent communication to the Societe d'Ethnographie, in Paris, M. Verrier treated of vegetarianism from the point of view of its moral and intellectual effect upon the nations who, either from choice or necessity, are to be classed as abstainers from anima food. While fully recognizing the dangers of a too abundant meat diet, as well as the advantages of purely vegetable nourishment, the speaker neverthe less felt constrained to come to the conclusion tha nature intended man to be carnivorous. The physica constitution of the human race is so ordered that to insure the development of their higher qualities its members are of necessity compelled to become to a cer tain extent meat eaters. The attributes that make for dominion and progress are but imperfectly present dominion and progress are but imperfectly present
among the eschewers of animal food, and hence vegetarianism causes the downfall of dynasties and leads to the enslavement of peoples. If, continued M. Verrier the Hindoos, instead of following an absolutely vege table regimen, had made use of meat in a rational man ner, perhaps the British might not have found their subjugation such an easy matter. His argument was equally applicable to the Irish, who lived exclusively upon potatoes. As for the Japanese, with whom rice was formerly the staple food, the energetic nature of his people could not be cited in subversion of the rule aid down in his thesis. The reawakening of the con querors at Port Arthur and the Yalu River was coincident with the establishment of a trade in butcher' meat throughout their archipelago.-Lancet.

Danger from steel Buildinga.

The true danger to be apprehended in regard to the modern office buildings of mixed steel and masonry construction is from rust. No one knows exactly how the metal in such structures is going to behave, for the reason that such combinations have never before been exposed in the same manner to the action of the elements. We know that iron buried in the heart of thick stone walls, laid in lime mortar, has remained unchanged for seven or eight centuries, presuma bly through the alkalinity of the lime, which has been known for ages as a powerful preventive of rust Our high buildings are however, built with cement instead of lime, and not much is known in regard to the action of cement on iron. Chemically, cement is much less alkaline than lime, and as it is insoluble in water, what alkalinity it possesses can hardly have much chemical effect on the metal. Its insolubility however, makes walls built with it more impervious to water than those built with lime, and, if the steel struc ture is well grouted wit cement, as is customary there is reason to suppose that the metal, guarded from moisture by its im pervious sheath, which, if it does not contribute a kali, at least contains no acid, may last uninjured for a very long period. Such experience as is avail able confirms this view, and although architects will watch with great anxiety for any signs of deterior-
an the can to a faucet at the outsid of the tank, and the interior of this pipe is connected with a glass gage whose lower end is connected with the interior of the tank near the bottom. Secured within the tank at the opposite side is a vertical, openended pipe, whose lower end reaches nearly to the bot-
tion of metallic structures used in the new manner, as an indication which may assist in devising precautions against such action in future, they have certainly neither forgotten nor neglected anything that the present condition of knowledge affords in the way of information on the subject.-American Architect.

Fortunate Inventions.

many little things which have made PATENTEES RICH
It is noticeable, remarks a Washington correspondent, that most of the big fortunes earned through patents have been gained by small things, such as would not be considered important by the casual observer. A country lass was made independent for life by the simple idea which is represented by the pasteboard compartment tray for packing eggs. She had to put up a great many eggs for market, and the loss by breakage was a serious matter. So she hit upon th notion of providing a separate compartment for each egg. and, inasmuch as pasteboard was cheap and the trays could easily be returned with the boxes that contained them, the problem was solved. It is a fact that people in rural parts invent few things. It was a Maine farmer, however, who patented copper tips for shoes, and it is reckoned that they were worth abou half a million dollars to him. He had several boy who kicked out the toes of their shoes, and he found that copper tips made them last three times as long. Hence the idea
One of the most successful inventors of small things was Crandall. He patented several puzzles that made money, but "Pigs in Clover" was his great hit in this line. At one time he was engaged in the business of making croquet sets. the lawn game being then at the height of its popularity. He devised a method of constructing the boxes, so that the parts were held to gether by groove and tongue fastenings instead of nails One night he took home some of the waste pieces to his little girl, who was sick. She found such delight in playing with them and putting them together that he father conceived the idea of making similar blocks for the amusement of children. Such was the evolution of the well known Crandall building blocks.
Another very profitable toy was the invention of a bedridden boy. This was "Dancing Jim Crow," which for a long time was the rage. It is said to have yielded $\$ 75,000$ in the first year it came out. By a simple bit of mechanism a darky was made to dance on a box. The celebrated "Fifteen Puzzle" was never patented several inventors claimed to have originated it, and fortunes were gained by the sale of it. Most famous of
all patented toys was the "return ball." It was sold for a cent, with rubber string and brass finger ring yet the profit ran up to an enormous sum. The chameleon top and walking alligator brought fortunes to pat entees. The roller skate was another very profitable invention, though it did not begin to make money until the patent had nearly run out, when the craze came.
Hundreds of thousands of dollars have been made by Dennison out of his shipping tags. The idea consists simply in a little ring of cardboard that re-enforces the tying hole and prevents the string from tearing out. A lot of money has been earned by the little brass clip fas tening, patented a few years ago, by which sheets of paper are held together. Yet it is an exact copy of a contrivance in bronze that was used by the Romans a few modern inventions which are in reality merely reproductions of antique contrivances. One of thes is the safety pin, which was commonly employed by the women of ancient Rome to fasten their dresses. Among the most profitable patents have been various little devices having relation to women's costume, such as the perspiration proof shield of rubber, the idea of substituting the quills of chicken and turkey feather for whalebone in corsets, and the suspender garter The last was sold outright for $\$ 50,000$.
The ball and socket glove fastener is a Frenchman's idea, and it has made him rich. Another successful invention is the double ball clasp for pocketbooks and handbags. It is said that no sort of clasp can be popular unless it makes a noise when it catches. Only a few years ago a lucky man thought of putting a couple of little strips of cork on the nose pieces of eyeglasses to make them more comfortable. Nearly all eyeglasse nowadays have this improvement, and every pair pays a royalty to the inventor. The latest of the very profitable small inventions is the tin cap for beer bottles, which is taking the place of corks. It is cheaper than the cork, more convenient and keeps the beer better Metal lemon squeezers are undesirable, because the juice of the fruit acts upon the metal and makes a poi son. Not long ago somebody thought of making lemon squeezers of glass, and the idea was worth just $\$ 50,000$ to him.
Tin cans are now made so that they can be opened by simply striking the top with a smart blow. A soon as he learned of the invention, Armour, the Chicago packer, ordered 500,000 of the cans, and the invent or is already independently wealthy. The automatic inkstand, which keeps an equal supply of ink always ready for the pen, is said to have earned $\$ 200,000$. The buttons are no longer sewn on, but are applied with a metal fastener. This idea has been worth a big fortune. A new contrivance that promises to be very profitable is a whistle for bicycles, made on the prin
ciple of the siren fog whistle. There was $\$ 500,000$ in the
wooden shoe peg, but the inventor went insane just as wealth was pouring in upon him. Another gold
producing patent was the inverted glass bell placed producing patent was the inverted glass bell placed been earned by the rubber pencil tip, barbed wire fo fences, and a contrivance for shaving ice. A "hump" on a hook to keep it from slipping out of the eye ha made the proprietors of the contrivance millionaires.
One of the most valuable patents was the result of dream. An engineer named Springer had been trying o devise an automatic lock which would brake a car iage going down hill, so that the driver would no have to get out, but might lock the brake by pulling his horse in. He dreamed that he was driving down a steep hill and had just such a lock on his wagon. He noticed exactly how it was constructed, and on waking he got up and sketched the details of the mechanism He then went to bed again. Three days later he applied for a patent, which was granted. It yielded $\$ 75,000$ the first year. Of the heaps of patents issued very week by the United States Patent Office only very small percentage of them have any practical use fulness. But it is not alwavs possible to judge before thing has been tried. A few years ago a man though of inclosing trees in canvas and filling the canvas with deadly gases for the purpose of destroying insects. He was considered a lunatic, but this method is now prac ticed on a great scale and with much success in Califor nia.

One man has patented a scheme for utilizing sea weeds as food, shredding them very fine, drying them mixing them with sugar and cornstarch, and putting them up in tins. They are guaranteed to last indef nitely. Another inventor proposes to distill whisky rom seaweeds. Yet another has a process for makin flour from bananas, which are to be sliced, dried in ho air, and pulverized. This flour is nutritious and very cheap. Banana flour, by the way, is already manufac tured on quite a large scale in Central America. A process has been patented for making a kind of wine out of over-ripe bananas, pressed and fermented Sweet potato flour and desiccated mince pie are num bered among the original ideas on the files. An auto natic tack driver is a hammer that contains a reservoi f tacks, so that there is no danger of banging one' thumb. Devices for cosmetic purposes are a finge taperer, a contrivance to hold back the ears, a spring
to alter the lines of the mouth, a tongue cleaner and to alter the lines of the mouth, a tongue cleaner and
an antisnorer. A special novelty in false noses is at tached to a spectacle frame, and imitation gold fillings are added to false teeth by burnishing gold foil upo them in spots, so as to make them look more natural. Artificial hen's eggs are to be made in the laboratory the whites being a mixture of sulphur, carbon and bee at, and the yolks of beef blood, magnesia, etc., colored ith chrome yellow. The shells are to be shaped with blowpipe from a moist composition of lime and gyp um. Lockets of asbestos are intended to contain the addresses of people who travel on railways, for identifi cation in case of collision and fire. One inventor pro poses to stretch a cable the entire length of the Atlantic coast, some distance from the shore and anchored a intervals. Vessels dragging their anchors and in danger of being wrecked are expected to catch this cable and so save themselves. Another genius proposes that the government shall locate large rifled guns on dan erous parts of the coast, to be loaded with anchor nd chains. On being discharged, the anchor unfold and drops in the sea beyond the vessel, with the chain across her bows, so that the crew will only have to make the chain fast and ride out the storm in safety.
There is a process ror preserving oysters in a batte of plaster of Paris. A special sort of cannon is designed o shoot water. It is a fact, by the way, that taxider mists use water cartridges for shooting humming birds, in order not to injure the plumage. One inventor proposes to construct a system of skeleton towers, on the ops of which bombs loaded with liquefied carboni cid gas are to be exploded, the result being rapid evap ration and a chilling of the atmosphere. This is to be done when the weather is unendurably hot in summer For the benefit of country folks visiting cities is a de vice to prevent blowing out the gas. The breath tilts delicately balanced electrode and gives an alarm in the ffice of the hotel. There is a pneumatic sole for shoe to lessen the jar of walking, and a process has been patented for weaving textile fabrics from thread spu rom peat. A talking watch contains a miniatur phonograph and cries out the hour when the stem is ressed. The idea of punching pin holes in eggs to keep them fresh by supplying the contents with fres air has actually been patented. When the hens go to actuating a mechanism which shuts the doors of the beehives on the farm, thus keeping out the night fly ing moths whose larvæ attack the honey and young bees. A washable paper, from which writing in in may be removed after the lapse of any time, is made o ag pulp, glue and asbestos. The manufacture of has been forbidden in Germany, because it might help raud. Another patent is for making gold leaf so thin that four million sheets are required for an inch of that four million sheets are required for an inch of
thickness. This sort of gold leaf is deposited by elec-
tricity on sheets of copper and is quite transparent Not least interesting is a process for extracting spider silk by machinery from living spiders. The common field spiders of the Sea Islands of South Carolina ar preferred, a single one yielding 150 yards of the finest silk. Spider silk is superior in quality to that spun by the silkworm, but the difficulty hitherto has been to btain it in sufficient quantities for commercial use. Boston Journal of Commerce

The Progress of Engineering.
Mr. Wolfe Barry, C.B., gave, says the English Elec rical Review, some interesting statistics in his presi dential address to the Institution of Civil Engineers, of the progress made by engineering during the present reign. These statistics, as given in the following table indicate an extraordinary development in the agencie for distributing goods, and for the rapid transit of pas sengers, and a corresponding increase in the consump tion per head of staple products :

	1837.	1896.
Population of kingdom.	26,000,000	39,000,000
Miles of railways.	1,000	21,000
Capital of ra:lways.	£30,000,000	£1,000,000,000
Speed of express trains (miles).	43 (1847)	60
Passengers.	23,500,000 (1843)	1,000,000,000
Goods recsipts.	1,500,000 (1843)	44,000,000
Commercial navy o ${ }^{\circ}$ British empire (steamers) (tons).	70,000	6,500,000
Total (tyns)......	2,333,000	10,500,000
Tonnage of imports and exports	140,000,000	700,000,000
Coal mined (tons)..............	65,000,000	200,000,000
Coal per inhabitant (to-s).	$2 \cdot 34$	4.7
Pig iron made (tons)......	3,000,000	7,500,000
Pig iron per inhabitant (ton)...	0.1	$0 \cdot 2$
Submarine cables (miles).......		162,000
Death rate in London .	$24 \cdot 4$	$19 \cdot 5$

The remarkable decrease in the death rate of London is no doubt partly due to improved sanitation, but probably also, in part, due to greater facilities for introducing fresh blood afforded by the improved means of transit. It is appalling to think where we hall be, at this rate of progress, in another sixty years The check is likely to come, in the first place, from the exhaustion of our coal supply, which, as Dr. Hopkin on has recently pointed out, may be earlier than is usually supposed. Already the P. and O. steamers coal at Colombo with Australian coal ; a small rise in the price of English coal would bring Australian coal to Aden, from which the steps are few to the home Aden, fr
markets.

The Properties of Uranium Glass.
Glass containing uranium, to my mind the most beautiful of all glasses, was brought into prominen notice in the scientific world by the experiments of Stokes on fluorescence. Viewed by any light free from ultra violet light, uranium glass is almost or quite colorless, although some commercial samples contain ing silver or copper possess and show a tint under hese circumstances, but, viewed by daylight or the lectric are the magnificent green fluorescence or phos phorescence is seen. To the eye a room illuminated by ncandescent gas light and one illuminated by the elec ric arc light are much the same, but a piece of uranium glass, which will not glow in the former, glow brightly in the latter; the incandescent gas light being very poor in ultra violet light, while the arc light is notably rich in ultra violet. Faraday, in lecturing at the Royal Institution in 1859 (Proceedings, ix, p. 160), made a curious mistake as to the fluorescence of uranium glass and similarly fluorescent bodies. He says : "This glow does not extend to all parts of the bodies, but is imited to the parts where the ravs first enter the sub stances." As a matter of fact, the glow is produced in uranium glass all along the path of a pencil of light which enters, provided that light is ultra violet, or con tains ultra violet,and if a pencil of such light is projected into a uranium glass lens or prism, the path of the pencil isclearly visible by the glow, and appears like a thick green smoke in a clear medium, affording splendid scope for opticaldemonstration at the lecture table. Uranium glass, which,like some of the vases now sold in the shops, is colored yellow or green, does not show this phenome non like a pure uranium glass, but so minute is the amount of ultra violet light required to excite the fluor escence of uranium glass that even yellow samples will show the path of a pencil of sunlight as projected by a ens.-T. Bolas, in Amateur Photographer.

Examining the Heart by the Aid of the

The London Electrical Reviewstates that inasmuch as it has now become an accepted fact that the outlines of the heart, and to some extent its movement, can be seen with the aid of the Roentgen rays and fluoroscope, the former method of measuring the size of the heart by means of percussion is unsatisfactory, owing to the numerov.s personal factors which enter, and conse quently the new method is welcomed. The method adopted by the writer is to place a piece of white paper on the back of a screen and trace the outlines of the heart on it with a metallic pen introduced between the screen and the chest, the point of the pen being readily seen, the outlines thus being traced without difficulty.

CHANGES OF SPEED FOR BICYCLES,

In studying the rational gears for bicycles, we have reached the conclusion that for a cyclist of given strength the ideal gear would be that which, being modified according to the nature of the ground and its declivities, would cause the cyclist to work under con stant conditions of angular velocity of the pedals, of pressure upon the pedals and of muscle. The progres made in the mechanics of the cycle will doubt less furnish a solution of this interesting problem ere long, but, in the interim, we may content ourselves with an intermediate solution that takes advantage of the elasticity of the human machine, from the standpoint of the three factors considered, viz., speed, pressure and strength, and simplify the problem by reducing the gears that a machine ought to present to two only, viz., a high one for smooth roads, even ground and feeble gradients, and a low one for steep hills and dangerous descents.
We propose in this article to examine the principal solutions of the problem in so far as they have received a material practical sanction, and as we have been per:nitted to see them or experiment with them. A word in the first place as to fruitless tentatives and incomplete solutions. At the Salon du Cycle of 1895 there figured two changes of speed with "shifting chain." The axis of the wheels and that of the pedals each carried two gear wheels over which a rather complicated mechanism caused the single chain to pass alternately, according as it single chain to pass alternately, according as it
was desired to obtain a high or a low speed. was desired to obtain a high or a low speed.
In order to cause the chain to pass from one train of gearings to the other, it was necessary to tauten the chain by jointing the axis of the pedals or by using a movable tightener. The system has not become popular, and the inventors have given up improving upon the first models constructed upon thi principle.
A solution was afterward sought in the use of a double transmission with two pairs of gearings and two chains, only one of which operated at a time.
The Pegasus System.-The Pegasus bicycle, th essential parts of the change of speed of which ar shown in Fig. 1, is founded upon this principle.

Fig. 2.-the d and r system of change of speed.

The U and R System. -This system, thus designated by the American Importing Company, consists essen on the axis of the hind wheel and with which mesh four small toothed wheels, H, whose axles are mounted upon the hub, M. Upon the fixed axis, G, slides pinion D through the intermodium of the rack , actuated by the wheel, B, and axis, A. This pinion

Fig. 1.-THE PEGASUS SYSTEM OF DOUBLE CHAIN CHANGE OF SPEED
is capable of occupying three distinct positions, accord ing as it is thrust wholly to the right (as shown in Fig 2), boward the left or placed in an intermediate posi ion.
The position represented in the figure corresponds to the reduction of speed. In this position the pinion, D, is rendered immovable in space, since its teeth mesh with those of the clutch, F. which is fastened to the fixed axis, G. The wheel, K, actuated by the chain acts thus upon the hub, H, only through the intermedium of the wheels, H, engaging with the fixed pinion, d. The result is that at each entire revolution of the wheel, \mathbf{K}, the hub, \mathbf{M}, describes less than one revolution. If, for example, the wheel, K, is provided with 60 teeth and the pinion, D, with but 20 , when K will have made one revolution, that is to say, will have moved forward by 60 teeth, the hub, M, will have moved forward but by $60-20=40$ teeth, say by twothirds of the revolution. The ratio of the number of the respective teeth of the pinion, D, and the wheel, K, therefore regulates the reduction of the speed, which may, in principle, be of any degree. In practice, it varies between 25 and 35 per cent.
In the second position, the pinion, D, is pushed wholly to the left. It has left the clutch, F, and has come into gear with the piece, E , which is concentric with the axis and toothed internally. But the clutch, F, the wheels, H, and the hub are interdependent. Therefore, when the pinion, D, is pushed toward the left, the entire mechanism is blocked; that is to say, the wheel, K, the wheels, H, the
this apparatus, the axis of the pedals carries in the piece, E, and the pinion, D, revolve tocenter a hexagonal part, C , upon which slides a double grooved pulley, B, provided with teeth upon its two extreme lateral surfaces. This pulley is actuated through a lever, A, at the will of the cyclist, who moving it to the right or left of its mean position moving it to the right or left of its mean position,
causes its teeth to engage with those at the sides of the causes its teeth to engage with those at the sides of the
hubs that carry along the wheels, E. These teeth, D, cause one or the other of the wheels, E, to gear with the axis of the pedals, according as the pulley, B, is moved to one side or the other. When one of the wheels is in gear the other is loose, and vice versa. In properly selecting the sprockets that are actuated by the two wheels, E, respectively, one has at his disposal two very unequal gears that are easily modified by simply changing the sprockets that the two wheels actuate. The change may be quickly effected, during a run, through the simple maneuver of a lever and without the cyclist getting off the machine. The use of two chains and two pairs of gear wheels is an inconvenience that is counterbalanced by the fact that, if one of the chains happens to break, it is possible to finish the journey by utilizing the second chain and throwing the corresponding wheel into gear. Mr. E. Fontaine has found here a simple and elegant solution of the problem, but the arrangement gives the machine a somewhat heavy aspect.
The systems that we are about to describe are based upon the principle of epicycloidal wheels. They are generally applied to the hub of the hind wheel, whose proportions and weight they increase to but an insignificant degree
ether at the same angular velocity. Thus, in this position, there is no longer anything but an ordinary transmission. In order to pass abruptly from one position to the other, the extremities of the pinion, D, are rounded off, as are also the entrances of the toothed pieces, \mathbf{E} and \mathbf{F}. The piece, C , that carries along the pinion, D, does not enter the latter, but, for the entire length of the pinion, is reduced to the diameter of the fixed axis, G. The pinion is therefore loose upon the latter, which is fixed with respect to the frame when it is not held by the clutch, F.
In the intermediate position, in which the pinion, D, is not in gear with either E or F, all the parts of the mechanism become independent. The wheel, K, is capable of revolving while the hub is immovable, or inversely. It is necessary to avoid leaving the mechanism in this intermediate position, unless the machine is descending a long and gentle slope, and is provided with a brake that permits of a quick and certain stoppage before an obstacle that is unexpectedly met with.
The Cohendet System.-The Cohendet system is based upon a principle analogous to the one just described, but the mechanism is of a simpler and more compact form, and this permits of arranging it at will either

fig. 3.-THE COHENDET SYSTEM OF CHANGE OF SPEED.
r six. From this one "stage" alone, however, he has secured for the Cornell Museum specimens of every species previously known (about 100) and fifty more, hitherto unknown, which are consequently in no other museum than that at Cornell. Similar results may be expected from the remaining "stages," and great advancement of scientific knowledge in this field.

RECENTLI PATENTED INVENTIONS. Engineering.
Movable Dam.-Benjamin F. Thomas, ouiea, Ky. A dam which may be raised and lowered at will, by means of a chain connected with a suitable
motor, is provided by this invention. It is formed of A shaped trestles, placed side iy side on a suitable foundation across the stream, and hinged to journal boxes in the foundation, the upetream posts of the trestles forming he barrier, and when down lying one with another o he founaation, forming no obscruction to navigation. lowering machinery on the abutments at the side, and there is a footpath at the top above the proposed pool paseage of surplus water.

Electrical.

Voltage Regulator for Dynamos. -Thomas M. Pusey, Kennet, Pa. To automatically con even current through a circuit leading from the dynamo to the lamps or other devices, this inventor provides simple mechanism comprising a rheostat in a shant cir cuit wherein is a helix operating a balanced beam and serving as a contact closer, there being a rheostat ope-
rating motor with electrically operated brake for its armature, and connections between the armature and as desired by weights placed ine be
Telephone Switch Box. - Wallac A. Houts, Parker, South Dakota, and Lare G. Nilson,
Sioux City, Iowa. This invention whereby, on hanging up the receiver, the parte will be automatically returied to a normal position, or one in which the call of the particular box will be automatically placed in circuit, the construction being such that an number of stations connected with a central office ma be automatically connected to any one of the others. In he casing is an escapement wheel adapted to make an reak a disk with telephone call numbers, there being pring connection between the wheels, and means fo automatically releasing the locking device.

Mining, Etc.

Concentrating and Grading Ores. -William H. Coward, London, England. An apparatue is provided by this invention for concentrating, grading and classifyling crushed ore, especially adapted for use
with a roller grinding mill. The apparatus has a casing with openings in the opposite sides and a series of aligned tapernng shells rigidly connected with intervening spaces, the shells being adapted to have a current of air passed through them, and to engage particles of ore
carried in the carrent, causing the particles to dro carried in the carrent, causing the particles to drop
through the spaces between the shells. The bottom of through the spaces between the shells. The bottom of the casing is hopper-shaped and fitted with sliding doors
at which the contents of each compartment may be withat which the contents of each
drawn.
Coal Jig Gates. - Theodore E. Smith
Coal Jig Gates.- Theodore E. Smith
Shamokin, Pa. To automatically operate the gates of Shamokin, Pa. To automatically operate the gates of
coal jigs, for the discharge of slate or impurities accumulating at the bottom of the jig, this inventor has de and a continuously reciprocating lever locked together by a bolt and latch in such way that they will be held locked together for a greater or less time according to
the resistance offtered by the material. The suspended nd vertically reciprocated jig has perforations in it bottom for the passage of water used to clean the coal, tc., the gate, according to this improvement, being an omatically opened when there has been sufficient accutomatically opened when there has been su
mulation to place tension on its movement.

Mechanical.

Combination Tap and Die.-Stephen E. Pranke, Buchanan, Va. This is a tool adapted to quickly and simultaneously cut external and internal being readily changed for work of smaller or larger diameters. A collet having a central opening at its rear end is shaped to fit a holder adapted to carry a tap, the ront end of the collet having a bore into which extends the tap, and the collet rotating with the tap holder and carrying thread cutting chasers. The heels of the chasers abut against a collar screwing on the rear end or the collet, and when the chasers are adjust
Nut Lock. - William C. Nones, Louisville, Ky. For locking nats on axles, screw bolts, etc plate having a slot to receive the bolt ond a met plate having a slot to receive the bolt and a flange is so arranged as to close the slot and prevent the plate rom becoming accidentally detached from the bolt and not. A square-headed screw skein bolt is threaded in the opposite direction of the thread in the nut to be
locked, and has parallel grooves in opposite sides of fis locked, and has parallel grooves in opposite sid
head, to be used in combination with the plate.
Making Scraped Brass - Edward G. Smith, New York City. To efficiently scrape brass an dapt it to be driven into rollers to form the type for in which two feed disks coact with revoluble cutters in which two feed disks cosct with revoluble cutters
separated from each other, and whose cutting teeth have their oppositely arranged cutting edges beveled. Two auttestable guide blocks run beneath the Yeed disks and catters and extend beyond them,

Sheet Feeder.-George B. Wurtz, Shreveport, La. To feed sheets of paper of like or different sizes rapidly and certainly to printing presses, paper folders, etc., this inventor has devised a mechan-
ism comprising a suction bar and means to exhaust the ism comprising a suction bar and means to exhaust the
air from it, the bar being mounted on an endless carrier which moves to and from a platform or table on which are the sheets to be fed. The suction bar has a facing or
cubhion of rubber or other elastic material, and aper
tures at suitable pointe, and the air is exhausted from it
as it comes in contact with a sheet to be fed, the vacnum as it comes in contact with a sheet to be fed, the vacnum
being broken when the bar reaches the point at which being broken when the bar reaches the
the sheet is to be delivered to the grippers.
Printer's Page Stick. - Alaric G. Alrich, Lawrence, Kansas. To facilitate the making a of books, pamphlets, etc., the boly of this device is marks on both sides corresponding to pica lines or other tandard type measure, the rule having at its outer end an integral projecting portion or ixxed jaw, aud there marks are openings and there is an opening in the mova ble jaw, which mas be readily adjusted by means of in at any desired line mark on the rule, according to henumber of lines to form a page, the device being
ap to the same size. A clamping device with tham piece holds the movable jaw on the body of the stick.

Agricultural

Corn Harvester.-Orison C. Miller Harveyville, Kansas. This is a machine designed to the stalks of corn being held within the machine prio rom which it the cut corn falling against a suppor operators. The machine has a dumplng platform on Which the shocks of corn may be readily set up and se he field. Two men are preferably employed to operate the machine.

Miscellaneous.

Bicycle Holder.-Lewis K. Miller Clarksburg, Mo. This is a light and compact device to way of the rider, but so that it may be ready for use all times on dismounting. The holder is attached to the lower diagonal and horizontal upper bar of the bicycle, and comprises a slotted sleeve in which slides a stem aving at its lower end oppositely extending feet or legs. pin on the stem projects through the slot in the the feet of the holder are swang ont to engage the ground on each side when the holder is lowered, and when it is raised the feet are swung in line with the rame so as not to project at the sides.
Typewriting Machine. - Lawrence . Urbanus, Chicago, ill. This is designed to be a superior typewriter having the revoluble type wheel on
which the type heads are mounted and means by which hey may be moved to effect the impression, a simple and efficient feed mechanism being provided to move the is so arranged that changes maybe made from upper to ower case and in the line and letter spaces, with er facility and nicety, and a variable spacing mechanism is provided, so that absolntely exact printing may be done The machine is designed to be operated at high spee and do the best work, the keys merely throwing the typ nto position for printing, the actual work of which done by a rotating disk or cylinder, whereby all the let
ters are similarly and nicely printed.
Hose Coupling.- Joseph S. Black burn, Salem, Ohio. This patent is for an improvemen on formerly patented inventions of the same inventor, or prevent the buckling or bulging of the elastic sleeve and female sections of the coupler, and also simplifying the construction of the jaws of the coupling and providing a better seat for the wrench adapted to open the jaws. In coupling the two sections are simply forced cogether, when the inner joining gleeve presents a solid
wall throughout its entire length, and when the sections are united th
each other.
Vehicle Seat Canopy Cover. lvanes G. Henery, Malta, O. According to this im provement, the seat is so made that a top or cover may
be folded into it when not in use, means being provided for detachably connecting the sections of the canopy or op and holding its members one upon the other. The eide braces are pivotally connected and provided with a device limiting their spread, and ribs are removably connected with the braces, while the seat comprises a skeleton base covered by the seating section, there being in the base a with the base and being adapted to be stored therein.
Moist Colors. - August Sartorius, New York City. Colors for use in water color and manner, in described proportions, with chief ingredients, cilage, salicylic acid, glycerine and mirbane oil, the colors not containing any substances that require the application of heat for amalgamation. They may be readily applied in a uniform manner, dry quickly and yet permit of blending or the application of one color on
top of another be.ore fully dry. The proportion of color and mixing medium varies according to the nature
of the color.
Notr.-Copies of any of the above patents will be end name of the patentee, title of invention, and date this paper.

NEW BOOKS AND PUBLICATIONS
Rodar Notes on Pottery. By W. P. by the author. Profusely illustrated by the author. \mathbf{P}. $\mathbf{~ P r i c e ~}$.
The anthor, without aiming to present a complete trea tise, gives a large variety of most interesting facts regardment of the manufacture of fine ware. The notes on early English pottery and on Stafforshire work are especially nteresting, but the author brieft, and in an eclectic ashion, goes over the whole field, so far as may be done Corical American earthenware, and another to ware made

Tables For Iron analysis. By John A. Allen. First edition, first thousand. London: Chapman \&
This excellent compendium of tables will be accept le to a vast number of chemista, relieving them of the garithms in converting their results into the requisite per centages. It gives very fall and elaborate tables for converting the weights of precip chtes or compounds as weighed or titrated in the course of analyses into the proper form for report. Thus we find no less than eight tables for converting CO_{2} into C , unefulin the delerexample of the system applied by the author to all the prominent constituents of commercial After this come tables in a more concise shape for effecting re quisite conversion of data. Although the book is stated to be for iron chemiots, it will be a most useful companion or many others who work in the general field of inoranic analysis.
Leitfaden fur Eisenhutten-Labora TORIEN. Von A. Ledebun. Vierte
Neu Bearbeitete Auflage. Braun schweig: Druck und Verlag von Friedrich Vieweg und Sohn. 1895 Pp. 11
We have already noted the contents of the tables for iron analysis. The present monograph treats of methods
of analysis to be adopted, and for those conversant with German would form an excellent companion to the pre ceding work. It is very beaatifully and clearly engraved the illustrations being in the well known German style of wood cutting, which seems to lend itself peculiarly
a Text Book of Plane Surveying By William G. Raymond, C.E.
New York.
American Book Company.
Chicago
Pp. 484. American
Price $\$ 3$.
We feel that this book deserves considerahle praise for
its trestment of the subject of plane surveying. It is well its treatment of the subject of plane surveying. It is well ap on recent practice, and as a special example of its cited, to the adjustment of to the use of the level may be cited, to the adjustment of which nearly eight pagesare
devoted. In its pages may also be found treated plane table work, and the use of the slide rule, plan Full and numerous examples of work in the way both of also given.
Catalogue of the Public Documents OF THE FIFTY-THIRD CoNGRESS
And of all departments of the gov rnment of the United States for the perior froul March 4, 1893, to June ndex" provided for by the act approved January 12. 1895.) Prepared under the supervision of the superintendent of documents, Goverument Printing Office. Washington: Gov-
ernment
Printing Office. 1896. Pp. 638

To those in Conts of the many repors, wared by the con government, and what work is being done in ita acien tific departments, this index will be of great value. It presents in consecutive index form the topics of the
public departments; the indexing running consecutively from beginniug to end, there being, very sensibly, no
subdivisions attempted, beyond the data and the list of government offlcers to whom the indexes are to be cred

Mechanical Drawing. By Charles F.
Jackson. Philadelphia: J. B. Lip Jackson. Philadelphia: J. B. Lip-
pincott Company. Pp. 63, 20 plates. Pincott Com

A work for the use of students in archilectural as we as mechanical drawing is here presented by a teacher
many years' experience. The subject of projections pully treated, difficult terms are svoided as far as posit ble, and the explanations are carefully and concisely Bloc
ock and Interlocking
By W IGNALS.
E. Elliott. motive Engineering. Pp. 277.
This is a repablication in book form of a series of ineresting articles originally published serially, written by a having had practical acquaintance with the subject Milwaukee, and St. Paul Railway. What signals are for what they do, and how they do it, will all be found answered in these pares, including telegraph systeme,
manual systems, and automatic electric systems, towith methods of operation and rules.

Dictionary of the Coal Tar Colors.
By George H. Hurst. F.C S. Lon. By George H. Hurst. F.C.S. Lon-
don : Heywood 212. Price $\$ 3.25$

That it should require a large book to simply describe and classify the different colors made from what was a waste product twenty years ago, and these colors now
the most important in the employ of the textile colorist is one of the most striking of the many illustrations of our progress in applied chemistry. This book has reached its second edition. It gives the chemical composition of the different colors, formula, method of making, and date of introduction, with the propertics and ases of the
colors. It gives also a list of the leading foreign coal tar color makers.

Commencing with January, 1897, the Street Railway Review will issue a special foreign edition, which in size and quality of matter, illustrations and general attractiveness will be fully equal to their present home edition. As usaal, the Review will be the will be spared to make it deserve the same recognition abroad which it has earned at home.

The charge for insertion under this head is One Dollar a

each insertion; about eioht words to a line. as early as Thursday morning to appear in the follow-

Marine Iron Works. Chicago. Catalogue free
U. S." Metal Polish. Indianapolis. Samples free Yankee Notions. Waterbury Button Co., Waterb'y, Ct Well Drill Prospecting Mach'y. Loomis Co., Tiffin, o. For bridge erecting engines. J. S. Mundy, Newark, N.J. Handle \& Spoke Mchy. Ober Lathe Co., Chagrin Holls, Wanted to purchase, a patent on a small salable Screw machines, milling machines, and drill presses.
he Garvin Mach. Co., Spring \& Varick Sts., New York. Concrete Houses - cheaper than brick, superior to
stone. " Ransome," 757 Monadnock Block, Chicago. Machinery manufacturers, attention! Concrete and
mortar mixing mills. Exclusive rights for sale. "Ran. mortar mixing mills. Exclusive rights for sale. "RanThe celebrated "Hornsby-Akroyd" Patent Safety Oil chine Company. Foot of East 138th Street, New York. The best book for electricians and beginners in elecBy mail, 84. Munn \& Co., publishers, 361 Broadway, N. Y. EAT Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co., 361 Broadway W York, Free on application

HINTS to CORRESPONDENTS.
Names and Address mast accompany all letters
or no attention will be paid thereto. This is for our

Bu

 Sclenitilic Anuriciran supplements referred
to may be had at the office. Price 10 cents each. Ho oks referred to promptly supplied on receipt of
(7082) R. W. L. asks for directions for aking an electromagnet for working telegraph sounder What number insulated wire should be metalic circuit). mach? How many cells of gravity batteries will it take to work it? A. For cores use two bundles of iron wire two inches long and about $1 / 3$ inch in diameter. Wind with No. $20-24$ wire to an inch or more in thickness. As engths of wire into a bur of iron, or simply bispend yoke. Two Ils of gravity battery should work it.
(7083) J. W. asks : 1. Is electric lighting with batteries succeseful? A. No; except with storage
batteries. 2. What kind of cells and how many would it batteries. 2. What kind cells and how many would it dake to run four 16 candle power lamps four hours per 3. Which would be the cheaper light-four 16 candle power lamps from batteries or coal oil lamps to light a room 24×36 feet? Oil at 35 cents per gallon. A. The
coal oillamp is about the cheapest of the ordinary illucoal oillamp is about the cheapest of the ordinary illu-
(7084) M. S. K. says : A few days ago I had occasion to make some standard resistance coils. I had more resistance when coiled on a wooden spool than it had before it was so coiled. Will you please give me an explanation throngh the columns of the Scirntific dition of wire changes its resistance. If it hardens it, the resistance generally may be assumed to increase, and
(7085) F. S. G. says: Please tell me what kind of glass is best for Leyden jars and whether A. A good quality of hard glass is the best for Leyden A. A good quality of hard glass is the best for Leyden To charge, glass is so inferior as to be quite worthless. and the outer coating with the other terminal. Take care of shocks. Induction coil experiments are described
(7086) T. W. B. says : I wish to make a 30 ohm telegraph sounder ; will you please inform me, in your paper, of how many feet of what kind of wire will
give the most satisfactory results? A. Use No. 28 to No

0 wir

Approximate length, No $28 ~$ " 300 feet ". No. 30. . .200

(7087) J. B. M. asks: What is the redanche of \mathfrak{r} gallon gravity Bunsen, Fuller, and Leohm, for the gravity 4 ohms, for the others $1 / 4$ ohm, all subject to large variations. 2. How long a spark is re-
quired to makea good \mathbf{X} ray? A. Two inches is a good
(7088) J. D. asks (1) for a solution to keep photograph proofs from fading. A. Dip the proof in a
solution of hyposulphite of soda 20 grains, dissolved in 5 solution of hyposulphite of soda 20 grains, dissolved in 5
ounces of water for ten minutes. then wash in changing ounces of water for ten minutes. then wash in changing
water for two hours. 2. Also mention where I can get nnmounted photographs of actresses. A. For pictures of

INDEX OF INVENTIONS For which Letters Patent of the United States were Granted DECEMBER 29, 1896,

AND EACH BEARING THAT DATE.

wollin. Se. .ing niamp.......................
Cleaner. Se
See Flue cleaner. Grain and seed Cill ienerer ibgcole toe eille:

 Coton press, MI Swenson....
Coupling see Car counling.
Crusher. See Hose
Ore crusher.

 | 3,977 |
| :---: | :---: |
| 1,960 |

Insula
Insul.
Jack.
Jar fa
Jat Jar
Kerb
Kne
Knit
Kn

> | c. |
| :--- |
| co | Grartside...............ers, metalic, w. $\dddot{\mathbf{N}}$. braner and support therefor, Hiniour e Davia

\section*{${ }^{\frac{1}{2}}$}

ar

$$
2068
$$

573,980
574,18
577,860
57$574,1,24$
573,991
57 574,196
573,966

5	
Hen	

Ha

Phovertisements.
Inside Page, each insertion.-75 cents a line Hipher ror some sese classes of of Advertisements, Special and

WOOD of IIITHIL WORKERS

 SEND FOR CATALOGUES-
B-Wood-working Machinery. SERECA FALLS MFG. COMPANTY.
69j Water St., Scneca Falls, N. Y. AMERICAN PATENTS. - AN INTEResting and valuable table shn wink the number of patents
kranted for the rarious subjects noon which petitions
have oeen fled from the bexinning down to December

STEAMOR CRUSHING ORES Cheapest to install and
operate. Capacity guar-
anteed. Catalogs sent. GATES IRON WORKS,

(10)Hub Thrust Bearinos they kill friction,
they save oll, THEY SAVE OIL,
THEY CANOT HEAT y Will Run at Any Speed,
They Will Carry Any Load,
They Are Durable. The Ball Bearing Co.
2 Watson St., Boston, Mas
Patented.
Write for Prices.
Bicycle Machinery
DROP PRESS, Automatic Lifter for Forging. 1200 Pounds Hammer The Waterbury Farrel Foundry and Bank St., Wachine Company,

Water Emery Tool Grinder
 plestin constru
no opration. Operaton fend catalogue and prices.
W. F. JNO. BARNS CO TRANSITS AND LEVELING INSTRUMENTS. PLUMBERS' IRON LEVEL With Double all piping. Price \$2.25. Size 12 inch. For book on the level all piping. Price 82.25 . Size 12 inch. For book on the lev
C. F. RICHARDSON \& SON,
 "My Well and what came out of it." "Your Well and what will come out of it.
Pohlé Air Lift Pump

diTHE BILLINGS HAND VISE The Best Vise for Linemen. Drop Forged from Bar Steel.
erchangeable Parts. Interchangeable Parts. Parallel Jaw
Hardened by Special Process. Hardened by special
THE BILLINGS $\&$ SP. THE BILLINGS \& SPENCER CO.
Drawer 3. Drawer 3. Drawer 3. Hartiord, Conn.

The HARTFORD, No. 2

An Automatic Switch for ribbon movement, feeding both ways Automatic Lever Locks
Alignment that is positively permanent
Compared with the Harfford, no other machine is up-to-date We solicit cash trade and can give such customers A GAIN 0 50% over what is offered by competing houses in our line

PHYSICAL AND SCHOOL APPARATUS

Drop e Forging
In all its branches done to order. Senc us samples to figure on. Our work is equal to the
best done in this country. We wake a specialty best done in this conntry. We wake a
of very intricate work. BAGSALL-LOUD BLOCK
CO.,
Commercial Street,
$-\quad-\quad$ BOSton

The Bartley Direct Running Saw Mill

PIPE : THREADING

Sciennicic Book Calalogue RECENTLY PUBLISHED. Our New Catalogue contaning over 100 pakes, includ-
ing works on more than ffty different subjects. Will
 361 brondwas, New York
The Van Norman • Universal Bench Lathe.

\qquad

Drawing Instruments Engineers' Supplies
BLESS YOU, SIR: THESE BLADES WILL CUT!

MECHANICAL ${ }^{\text {D }}$ SURVEYING

Krueger's Automatic Self-Register-

 ing Lumber Measure| |
| :---: |
| | |
| | |
| | |
| | |
| | |

finama

ESTAB1,ISHED 1845.
The Most Popular Scientific Paper in the World
Only $\$ 3.00$ a Year, Including Postage.
This wideir circulated and splendidly illustrated paper is published meekls. Every number contains six-
reen pages of useful information and a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Fliectricity.Teleegraphy, Photography, Arcchi-
tecture, Agriculture, Horticulture, Natural History, tecture, Agriculture, Horticulture, Natural History,
etc. Complete list of Pavents each week. Torms of Silbseription.- One copy of the ScIEN-
TIFIC AMERICAN will be sent for one year - 52 numberspostage prepaid, to any subscriber in the United States,
Canada, or Mexico, on receipt of Three Dollars by he publishers; six months, 81.50 ; three months, 81.00 .
(Inhs.- Special rates for several names, and to Postmasters. Write for particulars.
The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefully placed inside Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed, of envelopes, securely sealed, and enrrectly addressed,
seldom goes astray, but is at the sender's risk. Address

Sixutitic Ganexican Supplement This is a separate and distinct publication from The
SCiENTIFIC America:, but is uniform therewith in size, every number containing sixteen large pages full
of engravings, many of wnich are taken from foretgn papers anc accompanied witir translated descriptions. The Scientific, american Supplement is published weekly, and includes a very wide range of contents. It
preserts the most recent papers by eminent writers in preserts the most recent papers Sy eminent writers
all the principal departments of Science and the Useful Arte, embracing Biology, Geology, Mineralogy, Natural History, Geography Archæology, Astronomy, ChemisSteam and Railway Eneineeri cg , Mining, Ship Building, Marine Engineering, Photography, Technology. Manufacturing Industries, Sanitary Engineering, Aøriculture, Horticulture, Domestic Economy, Biography. Medicine, obtainables in no other prublication.
The most t mportant Engineering Works, Mechanisms, and Manufactures at home and abroad are illustrated
and described in the SUPPLEMENT. and described in the SUPPLEMENT
Price for the SUPPL
Canada, and Mexico. 85.00 a year; or one copy of the SCIENTIFIC AMERICAN and one copy of the SOPPLEment, both mailed for one year to one address for $\$ 7.00$.
Single copies, 10 cents. Add ress and remit by postal Single copies, 10 cents. Ado ress and remit by postal
order, express monemorder, or check,
MUNN \& CO., $\mathbf{3 6 1}$ Broadivay, New Yorks
gifuidiurg Edition.
The Scientific american Building Edition Thiry-two large quarto pakes, forming a large and
splendid Maeazine of Architecture richly splendid Maeazine of Architecture. richly adorned with
elegant plates and jther fine engravings; ;illustrating the most interesting exampies or modern Architectural Construction and allied subjects.
A special feature is the presentation in each number of a variety ot the latest and best plans for private resi-
dences. city and country, including those of very moderate cost as well as the more expensive. Drawings in perspective and in coior are given, together with Floor
Plans. Descriptions, Locations. Plans. Descriptions, Locations, Estimated Cost, etc.
The elegance and cheapness of this magnificent work The elegance and cheapness of this magnifcent work
bave won for it the tarvest circulation of any
Architectural publication in the world. Sold by all

Expoxt Edition
of the Scientific American, with which is incorporated "La America Cientifica e indostrial,"
or Spanish edition of the Scientific american is published monthly, and is uniform in size and typography with the Scientific amerioan. Every number con tains about 50 pages, profusely illustrated. It is the fines lates throughout Cubs, the West Indies, Mexico, Cen tral and South America, Spain and Spanish possessions -wherever the Spanish language is spoken. The Scl號 out the world. $\$ 3.00$ a year, postpaid, to any part of the world. Single copies, 25 cents.
界 Manufacturers and others who desire to secure oreign trade may bave large and handscmely displayed moderate cost. Rates upon application.

MUNN \& CO., Publisher

STUDY A HOME ELECTRICITY, MECHANICAL

DRAWING, MECHANICS, OR DRAWING, MECHANICS, OR | grape |
| :---: |
| cataloge | STEAM ENGINEERING.

INSTIG47 FR HOME SHidi OF ENGINEERING,
$46-47$ Blackstone Building, CLEVELAND, OHIO HAWKINS' NEW CATECHISM OF ELECTRICITY

PEPPER IN SEASON

A.W. PABER

 GEND, NTTAT, PENCLIL CASES RU SILLER AND IN 78 Reade Street, . - . New de Street, New York, N.
N. Y. Camera Exchange.
 DIXON'S Amencan Graphite Mention scientiritc Auericons

 SUNART'S "VENI, VIDI VICI," UNART MAGAZINE SUNART FOLDINGS SUNART FOLDNGS
Send for Illustrated Cata-
logue-2 cent stamp. ROCHESTER, N. ACETYLENE GAS AND CARBIDE OF

Experimental Science
By GEO. M. HOPKINS.
17th Edition Revised and Enlarged.

840 pages. 882 fine cuts. substantially and
beautifully bound. Price in cloth, by mail, beautifully bound. Price in cloth, by mail, $\$ 4$. Half morocco, $\$ \mathbf{5}$.
This splendid work is up to the times. It gives young and old something worthy of thought. It has influenced thousands of men in the choice of a career. It will give anyone, young or old. information that will enable him to comprehend the great improvements of the day. It furnishes sug.
gestions for hours of instructive recreation. gestions for hours of instructive recreation. Send for illustrated circular and

MUNN \& CO., Publishers, Office of the

SCIENTIFIC AMERICAN,
361 BROADWAY, $=$ NEW YORK.

Chere's no? about it!

If the First Typewriter had "(Jritten in Sigbt" No One Woold hive Bughta "Bilid" Mactine Che "Daugberty Uisible"
has it Most of Any.
Send for a Machine on Trial-Prove what we say
THE DAUGHERTY TYPEWRITER CO.,
Perfect Dewspaper File.

20 Thoussand
paintedtionses

PATTON'S HOUSE PAINTING MODEL shows
just how your house would look if painted any one of 20,000 artistic combinations of colurs. Designed and made only for the manufacturers
of PATTON'S Pure Liquid PAINTS. May be of PATTON'S Pure Liquid PAINTS. May be
had free of our agents, or sent postpaid upon receipt of 10 cts. "How to Increase the Size receipt or House With Paint'" mailed free.
of Your
ZUatchmaking a Crade for Young Men and duomen Parsons' Institute for ZJatchmakers, Engravers and Opticians in Dew Quarters. 111 Bradley Ave., PEORIA, ILLINOIS

How to Build a Home

Those intending to bulld will find the very best practical sug
gestions and examples of Modern Architecture in the handsomes gestions and examples of Modern Arch
Architectural Magazine ever published
"The Scientific American Building Edition.
\qquad handsome engravings made direct from photopgataphs of bumidingngs,
together with interior views, tioor plans, description, cost, location, owners' and architects' names and addresses. The illustratione
include seashore, southern, colonial and city residences, churches, schools, public buildings, stables. carriage houses. etc.
of any kind, have in this handsome work an almost endless series of

$$
\begin{aligned}
& \text { make selections, thus saving time and money. } \\
& \text { ptions } \$ 2.50 \text { a Year. Single Copies } 2
\end{aligned}
$$

For sale at all news. standa orress MUNN \& CO., Publishers, 361 Broadway, New York

$\{$ GOEDDNONTN

$\$ 5$ HAND BONE, SHELL AND CORN MILLSfor Poaltrymen. WILSON BROS., Esston,

 C. Hodgk mad \& Sons. No stoppizg.

ICE-BOATS-THEIR CONSTRUCTION and Management. With work ing dra wings, details, an
directions in full. Four engravings, showing mode
 regulations for the formation of ice-boat clubs. the
ink and

KRAFTUBERTRAGUNGSWERKE RHEINFELDE
Society for the Utilization of the Wate

VELOX
PAPER AReolitition phol
 GLOSSY or MATT. No dou or rang meather to nterefer mith four work.

N DYOYNAMO AND MOTOR CASTINGS and ELECTRICAL SUPPLIES TELEPHONES STEAM AND CAS ENCINE CATASNS
SENO STAMP For Catalocs PaLMER BROS., Mianus, conn ELECTRO MOTOR SIMPLE HOW TO

 $\$ 5000$ We orer cass for simplo ideas. patented

 EXPERIMENTAL MACHINE \& MODEL

TANK LUGS
DEAFNESS \& HEAD NOISES CURED: X Ray Apparatus

We manufacture the "Pathlight" and "scorcher" snug little plant and every facility for stamping. nickel plating, and tnishing small metal bicycle novelties in
first-class style. For estimates, address The Place \&
Terry Mfg. Co.. 247 Centre Street, New York.

AARIBORUNDUMVE

Twelfth Edition Now Ready.
THE SCIENTIFIC AMERICAN CYCLOPEDIA OF Receipts, Notes and Queries 12,500 RECEIPTS. 708 PAGES Price, $\$ 5.00$ in Cloth $\boldsymbol{\$ 6 . 0 0}$ in Sheep $\mathbf{\$ 6 . 5 0}$ in Hal Morocco, Postpaid

all parts of the
vorld; the information given being of the highest
value aranzed and condensed in concise form, Value, arran zed and condensed in concise form,
convenient for ready use. Almost every inquiry that can be thought of relating to formurqe used
in the various manufacturing industries, will here Thoud who are engaged in almost any branch
Th industry will find in this book much that is of practical value in their respective call-
ings. Those who are in search of independent
business or employment, relating to the home business or employment, relating to the
manufacture of salable articles, will find
hundreds of most excellent suggestions.

Send for descriptive circular
MUNN \& CO., Publishers 36i Broadway, New York.

みวvertisements.

OIRDINARY RATES.

Inside Page, ench insertion--75 cents a line
Bnck Page, each insertion--. 81.00 a line EF For some each clases of siverthoments, Spedal and
Hito r rates are r quired. The above are charkes per agate line-about eight
words per line. This noticeshows the width of theline,

 milLERS FALLS CO., 93 Reade Stroet, Now York.

ACCOUNTANTS Who use the Comptometer
have no trouble with their
trial have no trouble with verer
trial balance. Has it ever oc
curred to you that by getting curred to you that by getting
one you might save iots of
time, avoid mistakes and mot time, avoid mistakes and
ruin your nerves?
Write for Pamph/ce. FELT \& TARAANT MFC CO.
ER-EE ILUMOIS ST. CHHOMO.

Nickel Silver

Watches

We are casing all sizes of movements in this new metal. It takes a better finish and is more enduring than sterling.
It supersedas the old nickel plate, and enables one to have a perfect timepiece at small cost.
Our Solid Gold and Filled Cases, as well as Sterling Silver and Enameled patterns,are in greater variety this season than ever.
New specialties have been added
Our '97 Model
Trump Cyclometer,
the 10,000 mile wheel recorder are anf sfown in our new catalogues, which will be sent to all.
The Waterbury Watch Co. WATERBURY, CONN.

```
    AMERICAN SCREW CO.
New Gold-Forged Wood Screw
Now semator sample.
```



```
Na,
```


The

American

Bell Telephone

Company,
125 Milk Street,
Boston, Mass.
This Company owns Letters-Patent No. 463,569, granted to Emile Berlisper November 17, 1891, for a combined Telegraph and Telephone, covering all forms of Microphone Transmitters or contact Telephones.

To Those INTENOMG Building

To insure a perfect and permanent finish on all natural interior woodwork the the WHEELER PATENT WOOD FILLER is essential. It leaves the wood pores transparent. AN OUTSIDE PAINT that outlasts lead and oil paints, is BREINIG'S LITHOGEN SILICATE PAINT, especially adapted for buildings exposed to salt air.
 THE BRIDGEDORT WOOD FINISHING CO., New Milford, Conn
THE BRIDGEPOR
Chicago, ais E Lake Street
Boston, Conn

C
Tested and True.

The Rabient Running Wheel in the World.
THE BLACK MFG. CO., ERIE, PA. half a century of cycles. -an

PHOTOGRAPHIC SIMPLICITY
in the Pocket Kodak.
EASTMAN KODAR $C O$.
Free!
Free!

PRIE8TMAN SAFETY OIL ENGINE

 THAERELE GASOLINE ENGINE

Do Your Own Translating
Evanir to Speair spanistr, Frenieli, or German in Three Months.
"Rosenthal Method," Spend thirty minnutes a a day at home for three months and you can write
peak either of the forelgn languages fluently. Study it
FREPORE GOING TO MUROPE OR TAKING AN EXTENDED TOUR,

 WEBTTY GAS ENG Tor fitiol ies ila ditacont tor ank

 WEBSTERM'F'G COMO.

Manke Vnont Engine Ca.. Jersey Cits. N. J
 8850 and up. Er Sond for Catalogue.

121 E. Fayettoist., Bnitimiore, Md., U. S. A

 WEEER GAB ANO GASOLINE ENGIME CO...
$\frac{1}{3}$ and $\frac{1}{2}$ H. P. Gas or Gasoline Engines.

Waltham

Watches

are always
guaranteed to be free from any defect in material or construction. The makers particularly recommend the movements engraved with either of the trade marks "RIVERSIDE" or "ROTAL." Made in various sizes for ladies and gentlemen. and for sale by all retåil jewelers.

A Perfect Typewriter Does A Perfect Typewriter D "The Beactiful Work of the
Yoat" is Unequaled.

Yost Writing Machine Co.
Chambers Street, $\quad 40$ Holborn Viaduct, New York.

London, Eng.

Cbe Scientific American
publications for 1897.
The pricees of the diferent publications in the United
States, Canada, and Mexico are as follows: RATES BY MAIL
Sclentifc American (weekly), one year, - - ss.00
 Kiport Ededtion of the Sclentific American (month-
I) In Spanish and Enflish, Bullding Reitition of the Sclentifc American
(monthly),

COMBINED RATES
In the United States, Canada, and Merico. Sclentific American and Supplement;
Sclentific American and Building Editio

terms to foreign Countries. The yearly subseription prices of Sclentific American
publications to foreign countries are as follow:

Building Edition of the Sclentifc Amer- \mathbf{l} (can (monthly),
fixport Ealition of the
\#xport Edition of the Sclentifc Amer-
ican (monthy) in Spanish and EnR-
lish,
Combined Rates to Foreign Countries.
Sciontific American and Supplement,
selintic - $8.50 \quad 11411$
Sclentinc American and Bullding Edi- 8.50
tolon
Sol
Sclentific A merican, , 8 , entific American
Bupplement, and Building Edition, $-11.00 \quad 252$
ET Proportionate Rates
The above rates Include postage, which we pay. Re-
mit by postal or express money order, or draft to order of
MUNN \& CO., 361 Broadway, New York.

PRINTINTG INKE

