

ESTABLISHED 1845
MUNN \& CO.,
Editors and Proprietors published weekli at
No. 361 BROADWAY, - . NEW YORK.
TERMS FOR THE ACIENTIFIC ADEIICAN

(Established 1s) \boldsymbol{o}^{6}

(Established 18ys)

NEW YORK, SATURDAY, MAY 8, 1897.

TABLE OF CONTENTS OF

Scientific American Supplement

For the Week Ending May 8, 1897.

a graceful act of international courtesy
We mentioned in our previous issue that the manuscript log of the Mayflower had been delivered to the United States through its representative, Ambassador Bayard, on an order given in the Consistory Court of London. In this issue we present our readers with a photographic reproduction of this priceless relic, which. in point of its unrivaled historic interest, may be said to stand quitealone.
The manuscript volume of the \log, at the time of the petition for its removal to the United States, formed part of the library of Fulham Palace, the residence of the Bishop of London, and among the precedents which were quoted on behalf of the petition was the case of the Library Company of Philadelphia. This company discovered that certain manuscript volumes presented to the library in 1799 formed part of the national archives of Great Britain, as was proved by the fact that they consisted of official correspondence which bore the sign manual of Janes I and of Elizabeth The volumes were at once restored to Great Britain and the Master of the Rolls, Lord Romilly, into whose official care they passed, acknowledged the great obligation under which the British nation had been placed, and expressed his conviction that such acts of courtesy and friendliness would tend to draw closer the ties connecting the two countries.
The return of the \log of the Mayflower to this country has been made with the same readiness and in the same friendly spirit which characterized the Philadelphia transfer, and, if anything, we are placed under an even greater debt of obligation than that which Lard Romilly acknowledged on behalf of England in the previous instance. Without depreciating in the least degree the generous spirit in which the Philadelphia transfer was made, it may be pointed out that the British archives which were voluntarily surrendered related to England alone, and had no historical interest to connect them with this country. The records of the Mayflower, on the other hand, have naturally a great intrinsic interest for the English people, as being thestoryof the struggles of early English colonists who had the full symupathy of the middle English classes, from which they came and of whose sterling qualities they were faithful exponents.
The fact that there was no opposition to the request of Ambassador Bayard, and that, after this valuable document had been over a century in their undisputed possession, it should be so freely surrendered at our first request, is anotherstriking evidence of the friendly feeling unselfishly entertained by the English people toward th is country.
free distribution of geeds by the government
There is a growing agitation against what is known as the free distribution of seed by the government.
The srstem is too well known to the majority of our The system is too well known to the majority of our readers to need any explanation; but for the benefit of city residents it may be said that the government has been in the habit of doling nut annually to Congressmen for distribution amiong their constituents with the expressed object of securiny reporis from the users as to the results obtained. Whatever theoretical advantage there may have been in the proposal, it has failed utterly to produce any practical results, and according to all reports the experiment has degene
rated into a positive farce. The United States Agricultural Department in its report on this subject says "While one purpose of the law was to secure re ports from the receivers as to the results of actual experiment, the reports actually received did not amount to one-hundredth of one per cent of the persons supplied. A careful review of the departmen reports, especially those of the chiefs of the seed di vision during the past decade in which over $\$ 1,000$, 000 was expended for free seed distribution, fails to re veal a single instance of benefit to agriculture attribu table to this distribution." In the face of this officia statement, one asks with no small amount of bewilder ment, why did the list agricultural bill, which re ${ }_{n} \mid$ cently passed both howses of Congress, contain an ble folly? If Congressmen can see any sound ethi cal or political reasons for a paternal distribution of seeds, why should they stop just here? Why not ap propriate another $\$ 150.000$ for spades, plows and fertilizers? As a matter of fact, the system is wrong in principle as well as a failure in practice, and it is to be hoped that this year will sen $+1 \%$ last of it.

the fastest vessel afloat.

It is a great triumh for the "rotary impact" form of steam engine that the first one of this type fitted to a steamship should have driven it at a speed far in excess of the world's record, yet this is what has re boat been achieved by the engines of thet lenth feet beam, and $441 / 2$ tons displacement, was built at Newcastle, England, specially for a marine trial of the Newcastle, England, specially for a marine trial of the
compound stean turbine designed by the Hon. Charles Parsons. The Parsons turbine utilizes the steam in
engine of this type which is at work in the electrio works, Cambridge, England, having achieved a consumption of 15.1 pounds of steam per indicated horse power per hour. The Turbinia was at first fitted with a single engine and screw, and in the trials the "cavi tation," or vacuum formed behind the propeller, was such that very disappointing results followed. The single turbine was removed and replaced by three separate turbines directly coupled to three screw shafts, the turbines being respectively the high pressure, in termediate and low pressure elements of a triple expansion engine. The results were truly remarkabie, a speed of $29 \cdot 6$ knots being realized. After further ex periment to determine the proper pitch for the screws, a series of trial runs were made on April 1 of this year when a mean speed of 31.01 knots an hour was realized. The particulars of the run were as follows:

hour 1586
Indicated borse power per ton of total machinery... $\ldots .$. . $82 \cdot 1$
Nine days later the Turbinia realized a speed of $323 / 4$ knots an hour, thus surpassing the world's record by about a knot and a half. This is equivalent to $373 / 4$ miles an hour, or equal to the average speed of many so-called express trains.

WAR MEASURES IN TIME OF PEACE.

The naval armor question seems to be getting into a state of hopeless entanglement, and the proposal of Senator Chandler that the government shall forcibly seize the plant of the Bethlehem Iron Company and proceed to make its own armor plate therewith simply makes "confusion worse confounded." The law by which the government would be enabled to take possession of these works for the manufacture of war material is intended to cover cases ot emergency in time of war; but it has never been construed to give the government the same right in a period of profound the government the same right in a period of profound that the bill is likely to receive very little, if any, support. Secretary Long's letter to Congress relative to the bids in answer to the department's advertisement of March 10 states that the department did not fee justified in accepting or rejecting the bid of the Illinois Steel Company, and points out that the government is liable to incur heavy expense due to the delay in f urnishing armor for the three battleships recently laid down, if some steps are not immediately taken to procure the needed supply. The secretary closes by recommending that authority be given the depart ment to make contracts at a price not exceeding $\$ 400$ per ton, "the rate recommended by my predecessor." This figure was arrived at as being a just price after the question had been carefully investigated by a board of experts, and under the circumstances it look as though the recommendation of Secretary Long was the easiest way out of the deadlock.

HIGH SPEED TELEGRAPHY.

By making use of the alternating current and special designs of receiver and transmitter, two well-known American specialists have succeeded in sending mes ages over a wire at the rate of twelve hundred words a minute, and they confidently assert that between three thousand and six thousand words a minute may be dispatched by the same system bet ween points that are a thousand miles apart. The new telegraphy mark a wonderful advance over existing methods. An ope rator using the Morse key sends only forty words a minute, and by the Wheatstone system about one hun dred and fifty words can be sent over a single wire in the same time
This epoch-marking invention, which, if it fulfills its early promise, will rank as one of the greatest of the century, is the result of the joint labors of Lieutenant G. O. Squier and Prof. A. C. Crehore, and it was first announced in a paper which was read at the New York meeting of the American Institute of Elec trical Engineers on April 20. The paper, with complet illustrations, is published in the current issue of the Supplement, and it will be found to be one of the most valuable contributions ever made to the literature upon this subject.
The new scheme, as we have said, uses an alternating in place of a constant current. In the latter, a break in the contact of two wire terminals causes the emission of a spark; but if an alternating current be broken at the zero line, that is just where the alternation takes place between a positive and negative wave, there will be no park. The Squier and Crenore device takes advantage of this feature and interrupts and restores the current at the zero points of oscillation. The operator adjust his instrument until the sparking disappears, at which point he knows that its action is synchronous with the requency of the current employed. Hence these gen tlemen have given their telegraph the name of syn hronopraph lf the Morse alphabet dots and dash is employed, a broak in the current lasting from the beginning of a positive wave to its end would signify a dot, and a break lasting from the beginning of a posi-
tive wave to the end of the following negative wave would signify a dash. The interruption must last just half a cycle or a whole cycle, a positive and a negative wave together constituting a cycle. The intervals beween dots and dashes must also, of course, be either tween dots and dashes must also, of
half cycles or multiples of a half cycle.
The transmitter in the experiments consisted of a narrow wheel with a flat metallic periphery, which was otated at a high rate of speed, which was such that it was an exact multiple of the length of one cycle. The current was transmitted to the wheel by two metallic brushes, which were arranged side by side in contact with the periphery of the wheel. It is evident that the current would ordinarily flow from one brush through the wheel to the other brush; but if a strip of insulating material were pasted on the wheel in the line of one brush, every time it came round and passed under that brush the current would be broken. A strip of paper was perforated with holes of various length corresponding to the Continental Code, which was used in the experiments, and it was carried over the wheel in much the same way as a belt is by a pulley. Just as long as the brushes were separated by the paper the current was intercepted, and whenever the brush reached a hole and touched the wheel the current was restored. The breaks and contacts were arranged so as to occur exactly at the zero point of the alternations, as explained above, so that no sparking occurred.
The receiver was the polarizing photo-chronograph which Messrs. Squier and Crehore designed for use in timing the flights of projectiles. This ingenious instrument was fully described in a paper contributed to the Scientific American Supplement by these gentlemen and published in the issue of January 2, to which our readers are referred for the full details and illustrations. The current in this instrument passes through a coil of wire which surrounds an instrument called an "analyzer." A ray of polarized light from an arc lamp passes through a series of lenses, and
when no current is flowing the analyzer is in such a position as to shut out the ray. When the current passes through the coil the plane of polarization is ro tated in such a way as to permit the light to pass again, and the very rapid flashes of light are recorded upon a photographic plate.
The paper of Messrs. Squier and Crehore closes with a suggestion as to the changes that will be effected by introducing a telegraph postal system. It is estimated, for instance, that it would require only two lines work ing on their system, if they were in continuous operation, to handle the entire postal business between New York and Chicago, which amounts to about 40,000 letters daily. By the present system it takes three days but by the aid of machine telegraphy working at the rate of 3,000 words a minute, a letter could be sent and a reply received on the same day.
Our readers will recognize in this proposal some of the features of the Delany system, and the inventors of the "synchronograph" have given very generous credit to this ingenious system in the course of the paper under discussion.

OUR SALTPETER CAVES IN TIME OF WAR.

Saltpeter, literally rock salt, chemically potassium nitrate, also known as niter, is remarkable for storing oxygen in a solid form. One volume of it has three thousand times as much oxygen as a like volume of atmospheric air. At a certain degree of heat this immense quantity of oxygen combines violently with carbon, thus forming carbonic acid gas, and also set ting free a quantity of nitrogen. Gunpowder contains
about 75 parts of niter to 15 of charcoal and 10 of sulphur. If ignited in vacuo, the powder quietly resolves itself into gas. But in the chamber of a gun, behind a ball, it explodes with energy and hurls the missile with deadly effect. For this reason saltpeter is essential to any nation engaged in warfare.
Edward Rawson was the first to attempt the manufacture of gunpowder in the New England colonies. In 1639 the General Court of Massachusetts granted him five hundred acres at Pequod, "so he go on with the business of powder, if the saltpeter come." By act of
June 14, 1642, all towns and families were ordered to promote the manufacture of saltpeter. But nothing was accomplished, and in 1648 the General Court voted to indemnify Rawson for his losses in the experiments
made. I am indebted to Mr. R. N. Toppan for this authentic information, not found in local histories. Rawson was deputy from Newbury, and secretary of the colony.

At the opening of the revolutionary war the military stores of New England were mainly kept at Quarry Hill, near Medford, Mass, where they had two hundred and fifty barrels of powder, which was seized
by the British on September 1, 1774. The act set the country aflame, and stirre the indignation of Burke. Pitt and Fox. After the news from Lexington and Concord, in 1775, the colonies were scoured for powder, and less than sixty-eight barrels were found. New York had but one hundred pounds. Lord Dunmore had seized the entire supply in Virginia, and when
troops, he only got its money value and not the powder. When Washington took command of the troops raised by the colonies he " made the alarming discovery that there was not more powder than sufficient to furnish each man with nine cartridges. By great address this dangerous deficiency was concealed from the enemy." (Holmes' Annals, vol. ii, p. 240.)
It is remarkable that no American history, so far as I know, tells us whence the robbed and impoverished colonies got their powder wherewith to wage the war of the revolution. A similar gap exists concerning the war of 1812, when an embargo cut us off from foreign supplies. We are told about almost everything else, but not where w

Among those who resisted the tyranny of Lord Dunmore in stealing the :umulunition of Virginia were two young men named Thomas Jefferson and James Madison. They were not ouly patriots and statesmen, but were also cave hunters. Almong the cares found by Jefferson wa. sone that he named for his friend, "Madison's Cave," locaterl in the rirottoes Ridge, in which also occur Weyer's Cave and the Cave of Fountains. Major Jed Hotchkiss, the veteran map maker and geologist, is my authority for sariur that Madison's Cave was mined for saltpeter during the three grea wars, of the revolution, of 1812 . and of the rebellionprobably the only cave on the continent of which that can be said. But Jefferson found miny other and
richer saltpeter caves, which he describes in his "Notes on Virginia," page 44. He says that one of the largest was on Rich Creek, a branch of the Kanawha, from which more than eleven thousand pounds of niter were obtained. Others were on the Cumberland River, and at least fifty were in the Greenbrier Valley, in one of which Jefferson found the typical megalonyx made famous by Cuvier. His account is all the more valuable because written while the war of the revolution was going on, and thus showing us whence the patriots obtained their means to carry it forward. To and a few pounds of saltpeter were made from excava tions under old stables, and by artificial processes, but the bulk of it undoubtedly came from the caves of Virginia.

Kentucky was originally set off from Augusta County, Virginia, as Kentucky County, in $1 \% \% 6$, and was made State in 1792. Among its early settlers were strolling chemists who knew of the caves in the Greenbrier Val ley and elsewhere, and hunted for similar ones in th newly organized State. They were richly rewarded Under ledges, in "rock houses" and "rock castles," they found solid masses of niter weighing from 100 to
1,600 pounds. Previous to 1800 there had beenf found 28 saltpeter caves in Kentucky, from which more than 100,000 pounds of saltpeter had been obtained. These facts led Dr. Samuel Brown, of Lexington, Ky., to make a journey of 1,000 miles on horseback, in 1806, in orde to lay them before the American Philosophical Society at Philadelphia. He closed his able paper, probably the first of its kind, with these words: "A concern for the glory and defense of our country should prompt such of our chemists as have talents and leisure to investigate this interesting subject. I suspect that we have much to learn with regard to this salt, se valuable in time of peace, so indispensable in time of war:" The time of war was nearer at hand than he may have thought, for it burst upon us in 1812, and we were cut off from foreign supplies. Dr. Brown had estimated pounds of saltpeter ; Scott's Cave, 200,000; Davis' Cave, 50,000 ; three others not named, 30,000 . Since then the Mammoth Cave has been discovered, and the Wyandot Cave and others in Indiana, and the niter fever almos rivaled the subsequent gold fever of 1849. We have the authority of Flint's Geography for the statement that, auring the war of 1812-15, the annual yield of manu factured saltpeter from Kentucky alone was 400,000 pounds, besides what was made in Incliana, Tennesse and elsewhere. Part of this was used at home; but most of it was carried by ox carts, or on pack mules across the Alleghanies to the seaboard to be used in making gunpowder.
The term "saltpeter eaves" is a misnomer only justi fied by the general usage. That which is found in these caves, and which is colloquially called "peter dirt," is soil impregnated with the nitrate of lime, whereas true saltpeter is the nitrate of potash.
Prof. W. 13. Rogrers holds that the "peter dirt" is erived rirectly from the overhanging rocks, which water trich Dr. Samuel Brown's observation that the erties as the liyuor pot by lixivian the save prop Dr. Brcwn says. "The nitric acid is formed within the caves and is condensed upon the rocks, the lime of which it dissolves."
The fact seems to have been generally overlooked that the strata of sandstone overlying the cavernous limestone is rich in niter. It was from this source that the first supplies of Kentucky saltpeter came. The mall fragments for the boilers, thus betting nite directly without the aid of lye. The reason it was given up was that the best sandrock was extremely
hard, because of the presence of aron, and it was practically easier and cheaper to treat the nitrous earth found in the caverns.
In order to give some idea of what was once a vital industry of our country, though now wholly abandoned, I shall briefly describe the work done at the Mam moth Cave, which may be taken as typical of the rest. This includes what was done at the Salts Cave and Dixon's Cave, belonging to the same estate. Dixon's Care was, at some prehistoric time, a part of the Mam moth Cave. As measured by me it is 1,500 feet long. from 60 to 80 fect wide, and about 100 feet high. The floor of this enormous hall is ridged by eighteen trans verse rocky piles some 40 feet high and as many thick, cut by passageways for convenience. And every block and fragment of those massive ridges was laid there by the old saltpeter miners. By this means they got at the peter dirt to be carried outside for further treatment.

The main works, however, were at the entrance to the Mammoth Cave. Cart roads were made through the more accessible arenues, and from the more distant places, even from rooms three miles under ground, the negro miners brought the dirt in sacks. Hardly a yard of the cave as then known was left undisturbed Audubon Avenue was particularly rich in nitrous arth. So was Bat Avenue, near the end of which i the Crevice Pit, the ugliest black hole mortal evet ooked into, and at whose bottom the men thought there must le a nitrous mine. The story has been ften told of the miner's lamp dropped into that black chasm, and the sprightly negro let down as an animated plummet, who brought back, not the missing :unlp. bint a marvelous story whose truth was con firmed thirty youss later by the discovery of the so called Eryptian Temple. The Gothic Avenue was also diligently worked. The shovel and pick were plied from room to room of the main cave, and out througl the windings of the Blue Spring Avenue. Abundant boriginal relics were found
The nitrous earth thus collected was put in hoppers with each a capacity of fifty bushels, and which are still to be seen in the rotunda and vicinity, a few hun are feet within the cave, where may also be seen the pumps and double set of woorlen pipes, one set to bring water from the casciule at the mouth of the cave and the other to convey to the surface the liquor obained by solution from the hoppers. The floors of the atter were peculiarly grooved to allow the saturated water to run into the basins, whence it was pumped out to the great iron boilers. When the lixiviated earth had been exhausted, it was cast aside and a new charge put into the hoppers. These piles of indurated arth extend for a long distance like miniature moun tain chains. The liquor, after sufficient boiling, was poured into another set of hoppers containing wood shles, whence, by filtration, a clear solution of the iitrate of potash was obtained. This was again boiled lown to the right condition for crystallization in troughs, whence, after twenty-four hours, the crystals ere taken and packed for transportation.
The proportion of ashes to be used to the nitrified liquor was a source of much perplexity. Too much would "kill" the saltpeter, and too little would leave it "in the grease;" and in either case the salts would have to be run through the hopper again. Ashes from oak are three times as rich in potash as those from pine; and only half as rich as those from elm or maple. Best of all were the ashes made by burning the dry wood in hollow trees, two bushels of which, according to Dr. Brown, were equal in strength to eighteen of oak ashes. It is stated that "the contract for the supply of the xed alkali alone for Mammoth Cave, for the year 1814, was $* 20,000$." That, if correct, gives us an idea of the extent to which saltpeter was manufactured here in the days when Gratz and Wilkins carried on the business exclusively for the Philadelphia market.
Many curious facts might be added as to the antiseptic and sanitary value of the atmosphere in Mammoth Cave, which is both chemically and optically pure, except as tainted by torches. None of the deep pits contain foul air. Indeed, the interior air is purer than that which is exterior, showing that its purity is not due to ventilation, but probably to the disengaging of free oxygen in the formation of the nitrate of lime, a heory advanced by Professor Silliman.
In time of peace it is cheaper to import saltpeter from Chile, India and elsewhere than to make it at home. But when the Southern Confederacy was cut off by the blockade of all its ports, it resorted to the caves of Virginia. Tennessee and Alabama, particularly to the great Nicojack Cave, near Chattanooga, for the means of making gunpowder, the process being substantially like what has already been described.
It is strange that these interesting materials of Amercan history seem to have compietely escaped the at. tention of our best historians. It is certainly of historic moment that, when the fate of the nation trembled in the balances, the mineral contents of our numerous caverns enabled a waning force to gather new strength, and to prolong war far beyond what would otherwise have been possible. We doubt if victory could have been won in the wer of the revolution, or in the war 1812, without the aid of the saltpeter caves of Virginia and Kentucky.

