
a Weekly journal of practical information, art, science, mechanics, cilemistry, and manufactures.

	NEW YORK, MARCH 13, 1897.	

THE CASCADES OF THE COLUMBIA RIVER.

THE CASCADE LOCKS, FROM THE UPPER GATES.

THE UPPER GATES OF THE CASCADE LOCKS.

THE LOWER GATES OF THE CASCADE LOCKS.

GENERAL VIEW OF THE CASCADES AND LOCKS OF THE COLUMBIA RIVER, OREGON.-[See page 16\%.]

Scientifir smmian.

ESTABLISHED 1845

MUNN \& CO.,
Editors and Proprietors.

published weekly at
No. 361 BROADWAY,
NEW YORK.

TERMS FOR THE SCIENTIFIC AMERICAN.

 The Scientific American Su

NEW YORK, SATURDAY, MARCH 13, 1897.

TABLE OF CONTENTS OF
Scientific American Supplement No. 1106.

For the Week Ending March 13, 1897.

AGRICULTURE.-Hoar Erost as a Fertilizer.-The assimilation of

 M,

GOOD ROADS IN RELATION TO FARM VALUES

The value of a farm is determined to a large exten by its accessibility. Given similar conditions of soil, climate and demand for produce, and the land that is favored with the best transportation facilities, whether by rail, road or river, will bring the best price per acre when put upon the market. The homestead claim of the pioneer, set far back in the virgin forest, has a value that is measurable by the daily necessitie of the owner and his family. A farm which is located within a few miles of a railroad or a thriving city where the conditions are normal, that is to say, where the rates are reasonable and the market not over supplied, will have a value directly proportional to the condition of the wagon roads by which it is approached.
In view of these self-evident but too easily forgotten facts, the growing agitation in favor of building better roads has a deeper significance and will have a more widespread effect than is generally supposed: for, as soon as the people begin to realize that the question is an economic one that vitally affects our national prosperity, we may look for a thorough reform in the present methods of road building, so far, at least, as a arge number of the States are concerned.
At the same time it must be borne in mind that the construction of good roads in this country is a very different task from that presented in the more thickly peopled countries of Europe. The vast extent of the country and the comparative sparseness of the population render it unnecessary and indeed impossible to cover the United States with a network of such magnificent roads as are found, for instance, in France, England or Germany. The same conditions which obliged the engineer to build our pioneer railroads on lines of the strictest economy have governed the construction of our country roads. It may be safely said, however, that both railroads and wagon roads were built with the expectation that they would be subsequently revised and improved in their location and construction. This revision has already taken place or is now being carried out on the railroads, and the improvements are being made as fast as the increase in the traffic will justify it; but it must be confessed that the phenomenal increase in the wealth of the country has not been followed by any proportionate improve ment in the condition of our country roads. After making all due allowances for the vast extent of the United States, the large size of the farms and the great distances to be traversed, it must be admitted that our highways, taking the average throughout the country, are a distinct reproach to the otherwise highly devel oped civilization of the United States.
This statement is made with the knowledge that some of the States have already begun the work of reform in good earnest, and can show as the result of it a system of first-class roads that is extending every year ; but of several of the States it must be admitted that they are
building and repairing roads to-day according to the primitive methods which were adopted by the original settlers half a century ago-methods which were neces sary and adequate then, but are wasteful and inefficient to-day.
When the level prairie lands of the West were settled and devoted to wheat raising, the roads were frequently laid out with a width of eighty feet, and the process of road making consisted in merely plowing up the soil on each side and scraping it to the center to form raised roadbed. This provided a cheap road, sufficient
for the light and infrequent traffic of pioneer days ; but with the settling of the country and the increase in the number and weight of vehicles, these roads have proved to be altogether inadequate, especially in the alluvial soils which are common in the wheat raising districts alluded to. The fall and winter rains and the narrow tires of the heavily loaded wheat wagons quickly turn the so-called road into a mere mud track, with the immediate result that the hauling capacity of the teams is reduced one-half, and the cost of transport and the value of the season's crop are proportionately affected.
Now it is a question well worth consideration whether one mile of good, durable macadam road is not worth considerably more in such a district than five miles of plow and scraper road that will go to pieces under one winter's travel. There is food for thought in the fact that the cost of a few years of thistemporary work would have supplied such districts as these in question with permanent highways, whose cost of maintenance would be certainly no greater and possibly less than that of the present dirt roads. The mere turning over of the soil is an expedient of doubtful utility at the best, and it is a question whether it would not be good economy practically wasted in patching a given stretch of road in producing permanent results on a smaller section of it.
A thoroughly well built macadam road will cost, on an average, about $\$ 5,000$ per mile, this estimate being subject, of course, to considerable variation, according to local conditions, such as are due to the nature of the country and the cost of labor and material. In the

States the expediency of building all the main roads and many of the by-roads with a macadam or telford surface admits of no debate, and its effect in raising the price of farm lands or cheapening the cost of farm products, or both, would be certain and immediate.
Scarcely less important than the question of surface is that of the grades; for it is evident that the existence of but one steep hill between a farm and the railroad may reduce by one-half (no matter how excellent may be the surface of the road) the loads that can be hauled The location of many of our present roads was determined over a century ago, when economy of first cost was a strict necessity, and, consequently, all heavy excavation and embankment were avoided. They were frequently built with excessive grades, which remain to this day a hindrance to traffic and a constant check upon the development of the districts affected.
No discussion of the cause of good roads can fail to nake reference to the powerful stimulus which it has received from the development and popularity of the bicycle. Good roads are the necessary concomitant of a perfected "wheel," and the fascinating pastime is making zealous converts to the cause of better roads who would give it but little thought as a mere economic question. There is a danger, however, lest effort from this quarter should be directed merely to the construction of bicycle side paths, to the neglect of the nore serious problem of building permanent highways. The profit of the farmer and the pleasure of the wheelman can both be subserved by building once and forever first-class macadamized roads, and the union of such powerful interests would materially hasten their ultimate construction.

AN INTERESTING POINT IN LOCOMOTIVE HISTORY. A curious instance of the facility with which a serious error may find its way into the historical records of mechanical engineering is found in the celebrated Nasmyth sketch of Stephenson's locomotive, the Rocket. This engine is in some respects the most famous historical steam engine in the world, and great care has been exercised during the last twenty-five years in gathering up all possible information regarding the details of its design, and giving an exact reproduction of the engine as it appeared on the day of the famous Rainhill trials in 1829. These illustrations are familiar to the majority of our readers, and although they may vary in slight details, they all show the familiar features, such as the inclined cylinders, the lofty mokestack issuing directly from the front end of the boiler, the sloping fire box, and the rude tender, consisting of a cask of water carried on a four wheeled truck.
On July 26, 1884, Mr. James Nasmyth, who is famous as the inventor of the steam hammer. wrote a letter to The Engineer, inclosing a pencil sketch which he said he had made of the Rocket over fifty years before, as it stood on the rails in the year 1830, or one year subsequent to the Rainhill trials. Mr. Nasmyth was a good freehand draughtsman, and the sketch had evidently been made with considerable attention to detail. This fact made all the more remarkable and puzzling the astonishing change which the Rocket appeared to have undergone in a brief twelve months. The smokestack had been cut down and now projected from the top of a smokebox ; the wooden driving wheels had been replaced by others of cast iron; the cylinders had been brought down to a nearly horizontal position; the sloping fire box had been entirely remodeled, and the crude tender had given place to one of a very neat and greatly superior design.
As may well be imagined, the publication of this sketch brought forth a mass of correspondence, which went to show that, between the Rainhill trial in 1829 and the opening of the Liverpool and Manchester Railway in 1830, seven other engines were constructed by the Stephensons, and that when Nasmyth went down to see the much-talked-of locomotive, he probably came upon one of these later and improved machines, and was told that that was the Rocket. The sketch was made by Nasmyth in good faith and labeled Rocket, whereas in reality it represented an improved Rocket, and probably the Phoenix, the first of the seven new locomotives above mentioned.
In order to assist its readers in clearing up the difficulty, The Engineer published a reproduction of the Nasmyth drawing and labeled it the Rocket, 1830. Subsequently, it would appear, The Engineer's engraving came to the notice of some imaginative artist, who proceeded to make a highly fanciful picture, placing in the background a typical wayside inn with the soon-to-be-superseded stage coach standing at the main entrance. The picture was published in the form of a colored plate by the Leadenhall Press, of London, and some party, thinking, doubtless, that the date 1830 was an error, changed it to 1829 . The fiction was now complete.
The reproduction of this plate in the issue of the Scientific American Supplement of January 30, 1897, has called forth an explanatory letter from a correspondent, in which the origin of the Leadenhall Press engraving is explained. The letter, together with illustrations of the actual Rocket of 1829 and the sup.
posed Rocket of Nasmyth's sketch, will be found in the current issue of the Supplemeit
The incident carries a special interest at the present time, when the advisability of gathering up and piecing together the all too scanty scraps of locomotive history is being strongly urged on both sides of the Atlantic.

A NEW PROCESS OF PRODUCING PHOTOGRAPHS IN

 COLORS.In a paper read before the Society of Arts, February 24, 1897, by Sir Henry Trueman Wood, secretary of the society, on "The Production of Color by Photographic Methods," he describes the recent process invented by Dr. Adrien Michel Dansac and Mons. V. Chassagne and called "Chassagne's color process," as follows :
'The process, so far as we know it, is as follows : A negative is taken on an ordinary gelatine plate. which has been prepared by treatment with a solution, the ingredients of which are unknown. The negative thus obtained shows no trace of color, and appears in all respects like any other photographic negative. From it a print is taken on ordinary albumenized silver paper, which has been treated with the before mentioned solution; or if a transparency is desired, on a gelatine plate prepared in the same manner as that which was used for the negative. This print shows no trace of color either by reflected or transmitted light. The print when dry is washed over with the solution, and is afterward treated successively with three colored so-lutions-blue, green, and red-the operation being conducted in a bright light. As the solutions are applied the print gradually takes up its appropriate colors, the intermediate tints being, it is supposed, produced by a mixture or combination of the three primaries. That a yellow color should be produced by a combination of what are presumably green and red pigments is not in accordance with expectation, for though red light and green light when superimposed produce yellow, we do not get yellow by mixing red and green coloring matters. Probably the yellow is produced by the application of a yellow dye mixed in the green solution, and not by a combination of colors.
"It is to be noted that the process is not one for the direct reproduction of natural colors. It is rather one for treating a photographic print in such a way that it enables it, one might say, to automatically paint itself, to take up in the proper parts the colors which are required, rejecting them in the parts where they are not required. How this is effected is at present a mystery, and perhaps with the limited amount of information available it is not worth while speculating uponit. How a monochrome negative can confer on a monochrome print this power of selective absorption has yet to be explained. I can offer no suggestion on the subject. I am informed that a negative of special character is required to produce the colored positives, and that is all I know about it
"The results certainly are produced, and there seems no reason to doubt the good faith of those who state they were produced in the manner described. Of course when we are thus asked to accept facts without before, very explanation of them, we require, as I said Examination and experiment, so far as they have yet gone, have thrown no doubt on the statements made, and the inventor, I wish to say most distinctly, has offered every facility for inspection so long as the secret of his materials is respected. Sufficient time has not elapsed for crucial tests to be made, but we may reasonably expect that the process will stand those tests as well as it has those to which it has been submitted.
' I have myself seen the colors applied in the way I have described, and the promised results produced. Mr. Herbert Jackson and myself took negatives on Mons. Chassagne's plates of various test objects. Mr. Jackson was afterward kind enough to make some positives from these plates, and neither negative nor positive was touched. or I think seen, by Mons. Chassagne, until we placed them in his hands that they might receive their final treatment. On the application of the coloring solutions, we saw that the proper colors were produced.
"Photographically the results we obtained were very poor; the prints were extremely thin and unsatisfactory, as was not to be wondered at, since the nega thes were taken on a dull, foggy day. Nevertheles they showed a great deal more than traces of the
proper colors. A blue china vase, with a piece of red proper colors. A blue china vase, with a piece of red
ribbon tied round it, and containing a bunch of ribbon tied round it, and containing a bunch of
flowers, was reproduced with perfect accuracy, though the image was thin and faint. An Indian brass pot showed not only the yellow color of the brass, but also distinctly metallic luster. Altogether I can only say that the results of these experiments, so far as they went, satisfied myself, and I think the others who saw them, that the results were produced in the manner described. Were it not for the novelty of the process, and the difficulty of accounting for its results, it would be accepted without hesitation. Whatever hesi tation exists is, after all, but a testimony to its importance.

I have been taken to task by some of my friends for accepting results so remarkable without evidence more
substantial. I can only say that I think any of you who saw the process carried out would have arrived at the conclusions at which I arrived. All evidence is a more probable that the colors were produced in th manner stated than that the prints were first painted by hand, then bleached and then the colors restored under my eyes by the application of some mordant ; or that the operator, who seemed to be sluicing and dab bing his color all over the print, was really painting it on in the proper places. I can think of no other alter native. Still I freely admit I shall myself like further proof. I look forward shortly to being supplied with the materials, and I shall not be absolutely happy until I have myself produced something which-however inferior it may be to the very beautiful examples we have here to-night-shall yet show the colors of an original subject taken by myself
"In a secret process such as this it does not seem worth while to speculate. Because it is a waste of time guessing how results are produced that we may expect to have fully described to us in a short time."

PROF. CROOKES ON THOUGHT TRANSFERENCE

No man of science has contributed anything to the ecent discussion of scientific subjects which will appeal more plausibly and more entertainingly to the public imagination than has Prof. William Crookes, F.R.S., in his recent presidential address delivered to the Society for Psychical Research. Prof. Crookes occupies so distinguished a position in the scientific world that he is entitled to the most serious consideration, even though the mind, filled with preconceived theories, seems to reject his arguments. His logic is strong and he makes an excellent point in devoting great attention to clearing away the "scientific superstitions" which may act as stumbling blocks to possible coadjutors who might otherwise trust themselves on the new and illimitable road which the ciety is endeavoring to open.
Psychical science was, he said, the embryo of something that might in time dominate the whole world of thought. Human ignorance beset research in this direction with many difficulties, but conscious ignorance was a healthful stimulant if it led to the conviction that one could not possibly lay down beforehand what did not exist in the universe or what was not going on in the world. One of the greatest thorns in the path of the society was the fact that very many people started with certain presuppositions depending upon a too hasty assumption that we knew more about the universe than really was known.
Addressing those who not only took too terrestrial a view, but who even denied the possibility of an unseen world existing at all, Prof. Crookes said he would like to point out to them the difference in the apparent laws of the universe which would follow upon a mere variation in size of the observer of them. Following this idea out, he imagined, first, a homunculus of microscopic size. Prof. Crookes puts his imaginary homunculus on a cabbage leaf and speculates as to what would be the Liliputian philosopher's conception of the shape of the world, the laws of nature, and the scheme of the universe. The motes dancing in the sunshine would be to him "cumbrous objects like portmanteaus flying through the air." He would be terrified by the tiniest insects. Next the professor gives as an example a human being of enormous magnitude, showing by familiar illustrations how the supposed laws of matter and of the universe would appear to such beings to be quite different from those now accepted. Was it not possible, he asked, that we also, by the mere virtue of our size and weight, might fall into misinterpretations of phenomena; and that our boasted knowledge might be simply conditioned by accidental environment, and therefore liable to a large and hitherto unsuspected element of subject ivity?

Having cleared the way by means of ingenious specu lations for his invasion from the domain of physics into the region usually regarded as that of metaphysics, Prof. Crookes discloses his wave law theory. It is an extension of the well known natural law under which sound is conveyed by vibrations of the atmosphere and light by the vibrations of the thinner ether. He presents an interesting calc
rapidity of these vibrations.
Was it inconceivable, he said (after making an elaborate calculation as to the vibrations which pro duce sound and light), that intense thought, concentrated by one person upon another with whom he wa in close sympathy should induce a telepathic chain along which brain waves should go straight to their goal without loss of energy due to distance? Such a speculation was, he admitted, new and strange to science; it was at present strictly provisional, but he was bold enough to make it, and the time might com when it could be submitted to experimental tests.

ANy dealer in calcium carbide would do well to advertise the article in the columns of this paper Letters of inquiry for it come to this office every Letters of inquiry for it come to this off
day, and some days several are received.

RECENT PATENT AND TRADE MARK DECISIONS. Adams v. Kinzer \& Jones Manufacturing Company
(U. S. C. C. A., 3d), 76 Fed., 800

Moulds for Casting Tubular Articles. - The Adams patent, No. 465,771, for moulds for casting tubular articles, consisting in the use of a runner extending through the sand into which the metal is poured so that t wells up into the mould from below, does not cover a device such as is shown in Fig. 3 of that patent, which is designed for a pattern that is straight or tapers toward the lower end and can wholly be drawn from the upper end
Edison Electric Light Company v. Kaelber (U. S. C. C., N. Y.), 76 Fed., 804.

Suit for Infringement Against an Agent.-In this case Kaelber was sued in New York as the agent of the Western Electric Company, a non-resident corporation, upon the theory that a contract for the installation of an electric plant within the jurisdiction had been awarded to the Western Electric Company, which, if performed according to the specification, would involve infringement. Kaelber in his answer upon oath denied infringement, and there was no proof that the plant had been installed. All that was proved was the statement of a witness that the contract was awarded to the Western Electric Company, through its agent, Mr. Kaelber. The court held that there was not sufficient proof of infringement, as the experts on either side were equally positive in asserting and denying that the performance would involve infringement, and also that there was not sufficient proof that Kaelber was connected with such infringement.
Dodge v. Post (U. S. C. C., Ohio), 76 Fed., 807.
Separable Pulleys.-The Dodge and Phillion patent, No. 260,462 , for a separable pulley, in which the meeting ends of the rim are in contact and the meeting faces of the spoke bar and hub are slightly separated, so that they may be compressed by clamp bolts upon the shaft, has been held valid and infringed.
Evidence of Prior Use. -The defense of prior use must be established beyond a reasonable doubt, the proof must be as explicit and convincing as that required to convict a person of crime, and a fair doubt of the reliability of the testimony or an inherent improbability in the story told is sufficient to dispose of the deense.
What Amounts to Invention. - In determining whether an alleged improvement is an invention, a fact tending to show invention is that the device, when first presented to those skilled in the art, was pronounced inoperative and its adoption was refused until the inventor overcomes such distrust and disfavor by actual test and use. In addition to this, the fact that the device went into general use and the demand for it steadily increased until they were manufactured in very large numbers is evidence tending to show the presence of invention.
Mast, Foos \& Company v. Iowa Windmill and Pump Company (U. S. C. C. A., 8th), 76 Fed., 816.
Pumps.-The Bean reissue patent, No. 8,631, is void for laches in applying for the reissue, which enlarged the claims so that they included a subsequent construction.
Delay in Applying for a Reissue Patent.-A delay of nearly three years in applying for a reissue enlarg ing the claims of a patent renders such reissue void, where in the meantime a new device has come into use not covered by the original claims but which is brought within the claims of the reissue.
Baldwin v. Kresl (U. S. C. C. A., 7th), 76 Fed., 823.
Cigar Moulds.-The Miller \& Peters patent, No. 258, 940 , is void for want of invention, in view of the prior art and as being for a mere change of degree without change of function.
Pleading of Defense of Want of Invention.-The de fense of want of invention, including the right to show the prior state of the art, need not be set up in the an wer, as it is always open for the defendant
Rowlett v. Anderson (U. S. C. C., Ind.), 76 Fed., 827.
Lawn Mowers.-The Rowlett patent, No. 383,829, for ratchet mechanism in lawn mowers, has been construed as to claims $2,3,4,5$, and 8 and limited to the specific combination claimed or its fair equivalent
Extensive Use as Evidence of Invention.-The fact that a machine or device has met with general favor and acceptance by the trade is not of persuasive force in favor of a broad construction, when, in view of the prior art, there is no doubt about the limitations that must be placed upon the claims.

LUTHER HENRY TUCKER.

The agriculturists throughout the country will regret the death of Mr. Luther H. Tucker, senior editor and proprietor of the Cultivator and Country Gentleman of Albany, N. Y., on February 23. For many years he conducted this eminently popular paper devoied to the interests of farmers and stock breeders.
Mr. Tucker was born at Rochester, N. Y., in 1834, and graduated at Yale College. At an early age he adopted journalism as his profession, and pursued it to the end of his life.

A TWIN HOUSE.

We present an engraving of a most excellent design or a pair of houses, built of stone and mortar, and embracing a new idea in twin houses. The buildings have been recently erected for the Overbrook Farms Company, at Overbrook, Pa. The design is treated in the English Gothic style of architecture. It has many unique features, and the most striking and novel one is the verge boards at gables, which are very handsomely cut and executed. The brick wall rising up through roof and between the buildings is a dividing line, and according to the ordinance of Philadelphia. The first story is built of Chestnut Hill granite of a bluish gray color; the second story is plastered. The gables are beamed, forming panels which are filled in with similar plaster work. The roof is shingled and finished natural.
Dimensions: The front is 100 feet, including both houses, and the depth 35 feet, exclusive of piazzas. Height of ceilings : Cellar, 7 feet; first story, 9 feet 6 inches; second, 9 feet; third, 8 feet 6 inches. Both houses are trimmed alike, so a description of one will suffice for the other. The plan is most excellent, and the apartments are so arranged as to be provided the apartments are so arranged as to be provided with light and ventilation at both ends of the room. The vestibule is paneled in oak and provided with
a tiled mosaic floor. Hall is trimmed with oak, and a tiled mosaic floor. Hall is trimmed with oak, and
is furnished with a paneled wainscoting and ceiling beams. It contains a nook, separated by a spindle transom and archway, and provided with a paneled seat and an open fireplace built of brick and furnished with a tiled hearth and a mantel made from special design.
The staircase is a very handsome one, and is fitted up with caryed newel posts, balusters and rail ; it is lighted effectively by stained glass window on firsi landing. Parlor is treated in white and gold, and is furnished with a fireplace with tiled hearth and facings, and a mantel to correspond with the trim. Dining room is trimmed with oak. It has a paneled wainscot and seat. Kitchen is isolated from the other apartments by the butler's pantry and rear hall, which is a good feature. This kitchen is trimmed and wainscoted with yellow pine, and is fitted up complete with the best modern conveniences. The second floor is trimmed with sycamore, and it contains four bedrooms, closets, and bathroom, the latter tiled and furnished with the usual fixtures and exposed plumbing. Third floor contains two bedrooms and trunk room. Cemented cellar contains laundry and other necessary apartments. The house is electric wired for call and light, and is heated by the central plant. Cost $\$ 15,000$. Mr. W. L. Price, 731 Walnut Street, Philadelphia, Pa., was the architect. Our engraving was made directly from a photograph of the building, taken specially for the Scientific American Building Edition.

A BICYCLE SKIRT PROTECTOR.

A bicycle attachment to prevent mud from being thrown by the rear wheel on the rider, and to protect the skirts of a lady, preventing their being blown about by the wind or being caught in the chain or wheel, is shown in the accompanying illustration, and has been patented in the United States and Eng-

McNAUGHTON'S BICYCLE ATTACHMENT.
land by John G. McNaughton, of Salisbury, N. C. It consists principally of a mud guard, preferably made in the form of an eagle bending overthe rear wheel, with his head pointing rearward and his wings extending outwardly on each side. It is rigidly mounted on the frame, and the wings are hinged and provided with springs to keep them distended, while allowing them to fold inwardly should the bicycle fall on its side. Just back of the crank axle are bearings in which are hinged legs, preferably made of a continuous U -shaped bar, the legs simulating to some extent those of an eagle, and having at their extremities claws grasping bearing blocks to contact with the ground and hold the bicycle upright when still, while also adapted to serve as brakes when it is desired to stop the machine. Rigidly attached to the middle portion of the bar forming the legs is an elbow connected to a slide rod, and the latter is connected to a hand lever fulcrumed in convenient reach of the rider, whereby the legs may be thrown down to serve as a brake, or as supports when the rider dismounts.

A Curious Electrical Accident.

The power house at Thirteenth and Mount Vernon Streets, Philadelphia, from which the Union Traction Company operated a half dozen of its lines of trolley cars, was destroyed by fire on the evening of March 3 .
About 6 o'clock some of the employes were swinging a big crane around, and the iron chain hanging from the arm struck a generator. The blow smashed the generator and a violent explosion followed. The breaking of the generator blew out every circuit and wrecked all the dynamos which were running
Following the explosion, fire started and gutted the building and destroyed the eight dynamos or rendered them useless. The dynamos were the property of the Westinghouse Electric Company, as the traction company said that they were not working properly, and had therefore never accepted them, and the Westinghouse Company were running them at their own expense, pending some decision in the matter. The loss is about $\$ 500,000$, principally on the valuable machinery in the building. The power house was a large brick structure, covering a third oî the block, and contained eight dynamos and other valuable machinery.

Soldiers' Beds.

The soldier's bed varles notably in the different European armies. According to Dr. Viry, the following are the principal varieties, in which, perhaps, we may see the reflection of national characteristics, says the Medical Record. In England the bed is hard; the soldier lies on a thin mattress that rests on canvas stretched over a frame. In Spain the soldier has only a straw bed, but he is allowed besides this a pillow, two sheets, two blankets, and a covered quilt, sometimes even a cover for the feet. It is almost sybaritic. In Germany and Austria he has a simple straw bed with one or two covers, neither sheet nor mattress. In Russia, until recently, the soldier slept with his clothes on, on a camp bed; but now ordinary beds begin to be used-the result of contact with more civilized countries. After this, it cannot be doubted that the French soldier's bed is the best of all, with its wooden or iron bedstead. a straw bed, a wool mattress, sheets, a brown woolen coverlet, and an extra quilt for cold weather Thus the bed of the French soldier is the softest of all soldiers' beds, as that of the French peasant is acknowledged also to be the best of all European countries.

A Preparatory Antarctic expedition will start fron Melbourne during the summer and will pass the winter on Victoria Land. The main expedition, with two ships, will set out after the return of the first expedition and will proceed southward along the meridian of Kerguelen Islands. One of the ships is to remain there while the other will attempt to reach the magnetic pole and the south pole.-Der Stein der Weisen.

A DOUBLE DWELLING HOUSE AT OVERBROOK FARMS, PA

A FOLDING BICYCLE.

The bicycle, as ordinarily constructed, has only one real fault, which is that it is a clumsy machine to transport. It is difficult to ship an uncrated bicycle by rail or water without its running some risk of
injured. The folding bicycle largely obviates injured. The folding bicycle largely obviates this difficulty and also permits of the wheel be ng stored in houses with great convenience but the folding bicycle has another and often nore vaiuable use. In France, where the bicy more vaiuable use. In France, whe they le has been made considerable use of in military maneuvers, the folding bicycle has been used with great success. The construc tion of the ordinary bicycle, valuable as it is in transporting soldiers, becomes, as soon as he dismounts, a hindrance to his motions and a burden which cannot be carried with ease, but must be trundled along.
Under such circumstances it is difficult to see how a soldier can handle a gun. If he lays his bicycle upon the ground, it runs a great risk of being injured and would offer an im pediment to the free movement of the troops, and, if surprised by the enemy, it may cost him the loss of it ; like a rider without a horse, he would be very liable to be captured. Mili tary bicycles often have to be transported very long distances through woods and swamps and hoisted over hedges and walls. The difficulty appears to have been solved by causing a ma chine to be constructed which can be carried by man when man cannot be carried by the machine. Various devices have been made to permit this folding. We illustrate an Ameri can invention of this class, the wheel in our engraving being made by the Dwyer Folding Bicycle Company, of Danbury, Conn. We il lustrated the folding military bicycle of Capt Gérard in our Supplement, No. 1044. This bicycle has been put to actual use in military maneuvers and has been found very satisfac tory. The Dwyer machine is arranged so that both diamond and drop frame wheels can be built capable of folding.
In the diamond frame wheel the joint is ar ranged in the middle of the frame, and in the drop frame wheels a similar plan is employed. The wheel is manipulated as follows: Stand on the left side with the left hand on the handle bar (to keep the front wheel from falling around) and the right hand on rear brace. Then press bolts forward and into recesses in locking tube, and with right hand lay rear wheel around against the front. If an ordinary handle bar is used, set the handle bar and saddle so that the handle bar will go under or over the horn of the saddle. Special handle bars make the folding more compact. The military wheels are especially ingenious and do not The military wheels are especially ingenious and do not
differ much in appearance from the ordinary drop differ much in ap
frame wheel. It is the work of an instant to fold the bicycle. The soldier can then have free use of his hands to as sist him in climb ing or handling his gun while the wheel is hung ove his shoulder. The folding bicycle proves especially valuable to those who wish to make excursions on boats and cars 'The wheel can be tolded up and placed in the cab in of a very small vacht. The fold ing bicycle is es pecially conven ient when it is desired to take it into the house and the wheel i reduced to sc small a compass that it can be readily packed in a trunk or box. The wheel has as much strength as the ordinary bicycle and it weighs only twenty-five pounds.

THE Chilean
governiment telegraph lines com prise 7,500 miles

AN ELECTRIC HANSOM.
During the past year we have received hundreds of letters regarding horseless carriages. These letters have come from all over the civilized world. The corre-

THE DWYER FOLDING BICYCLE.

whether the automobile vehicle was in reality a practi cal means of transportation or where such vehicles could be purchased.
'The number of American built motor carriages which have been offered for sale has been small, and the few manufacturers who have pretended to do any business have been somewhat reluctant to put carriages upon market. In this respect they have been wise, and ther result in doing good torseless carrithe the those who have not some acquaintance with machinery

THE NEW ELECTRIC HANSOM CABS IN USE IN NEW YORK CITY
or those who may not be favorably disposed toward the new vehicle. The three races which have been held in America have had the effect of awakening public interest in the subject, if they have subserved no other pase. If the manufacturers had greater capiat their commana, the perfecting of their machines would have proceeded at a more rapid rate, but the results would probably not have been more satisfactory. We are glad to be able to chronicle the fact that for the first time in America the horseless vehicle has now entered into competition with the public cab in the city of New York.
The Electric Carriage and Wagon Company, which has offices at 66 Broadway and a depot where cabs may be hired at 140 West Thirty ninth Street, has now several electric hansom cabs which will be hired at the legal rate of the public cabs. In a short time twelve of hese vehicles will be at the disposal of the public and an electric brougham will probably be added. It will be little wonder if the public does not take favorably to these handsome vehicles, which seem the perfection of the carriage maker's art
Unlike the ordinary hansom cab, they are mounted on four wheels. To an ordinary cab body a battery box is attached, forming an extension in the rear. Upon this is situated the seat for the driver. The weight of the carriage is about 2,500 pounds, the weight of the batteries alone being from 800 to 900 pounds The diameter of the large wheels is 43 inches while the diameter of the small wheels is 3 inches. The wheels run on ball bearings that have tangent wire spokes, steel rims and thick pneumatic tires. Each of the front wheels i connected wfth a motor of the Lundell type, of nominal $1 \frac{1}{2}$ horse power. Each motor is in closed in an iron case and drives each whee independently. The pinion from the armatur shaft meshes with the internal gears of the wheels. The internal gears permit of turning corners with ease. The storage batteries which re used are supplied by the Electric Stor age Battery Company, of Philadelphia, Pa They are chloride accumulators of 70 ampere hour capacity. It is arranged so that automatic connection is made when the batteries are run into the battery con tainer, by means of contact plates, and fuses are pro vided as a safeguard. The controller is situated at the left side of the driver's seat, so that it is easily manipu lated with the left hand. There are three speeds for ward and one speed backward. The first notch of the controller gives a speed of five miles per hour; the second notch eirht to ten miles; the third, thirteen to fifteen miles. Fifteen miles may be regarded as about the maximu with the hansoms. These speeds ar obtained by var ous groupings of the batteries and motors in serie and parallel.
Directly in front of the driver is a lever which con trols the steering mechanism, which is extremely inge nious. The steer ing is accomplish ed by turning th rear wheels paral lel with each othe from a point di rectly over the tread of the wheel The wheels ar connected by rod to a vertical leve of a convenien height to be ope rated from the front seat of the carriage. In real ty the steerin mechanism looks like an enormous hollow hub which turns freely, hori zontally, upon the vertical rod which supports the body of $t h e$ carriag The steering me chanism enables the carriage to be turned completely around in a very short space.
A powerful roll-
er brake adds to the safety with which the carriage can be driven, but one of the things that is remarked by persons who ride for the first time in the horseless carriage is the ease with which it may be stopped. In this respect it compares very favorably with any horse vehicle. From the driver's seat the doors of the horse vehicle. From the driver's seat the doors of the
cab are also opened and shut and the electric light is cab are also opened and shut and the electric light is
turned on or off. An electric bell under the footboard turned on or off. An electric bell under the footboard
gives warning of the approach of the almost noiseless vehicle, and when used with discretion will add very much to the safety of the carriage.
Each of the carriage lamps has an incandescent lamp, and there is also an incandescent lamp in the cab, so that the passenger can sit and read if he desires. A speaking tube runs from the interior of the cab to the driver's seat, where the mouthpiece is secured by a holder, connection being made with a flexible tube. The attention of the driver of the carriage is attracted The attention of the driver of the carriage is attracted
by a whistle which is actuated by a rubber bulb in the by a whistle which is actuated by a rubber bulb in the
inside of the cab. This bulb forms the mouthpiece of inside of the cab. This bulb forms the mouthpiece of
the speaking tube, a plug being removed when conversation is to be held with the driver.
The motion of the cab is pleasant in the extreme. There is no vibration such as is often found in carriages driven by one of the petroleum products. The ease with which the electric carriage can be started and stopped, the absence of vibration and disagreeable odors, are points in its favor. The batteries afford power sufficient to propel the carriage from 18 to 25 miles on the level, depending upon the state of the road. With a private plant the batteries may be charged at an expense of from ten to twelve cents. The cost is increased where the electricity must be purchased. It is estimated that the carriage can be run at an expense of about a cent per mile. Riding in a hansom cab of this kind is pleasurable in the extreme. There is nothing whatever to interrupt the view of the passenger.
The carriage proper was built by the Charles Caffery Company, of Camden, N. J., and the motors were built by the Interior Conduit and Insulation Company, New York City. The carriage was invented by Messrs. Morris \& Salom, of Philadelphia, Pa. It will be remembered that their "Electrobat" obtained the gold medal at the Chicago Times-Herald race in 1895 upon the following points, to quote from the report of the judges: "Safety, ease of control, absence of noise, vibration, heat, odor, cleanliness and general excellence of design and workmanship." We illustrated the "Electrobat" in the Scientific American for November 16, 1895. At the Providence race the Electrobat made five miles in 11 minutes 27 seconds, average $2 \cdot 17$, or at the rate of $26 \cdot 2$ miles per hour.
The officers of the Electric Carriage and Wagon ComThe officers of the Electric Carriage and Wagon Com-
pany are Isaac L. Rice, president; W. W. Gibbs, vicepany are Isaac L. Rice, president; W. W. Gibbs, vice-
president ; and the superintendent of the new depot for horseless cabs is Edwin A. Adams.

Electricity from carbon without Heat.
In a paper read before the New York Electrical Society Mr. Willard E. Case gave some interesting information and experiments on "Electricity from Carbon Without Heat," a subject which he has been studying for some years. The lecturer described the devices thus far employed to oxidize carbon without heat in the electric battery.
The lecturer had his apparatus with him and performed experiments before the audience. He used a cell of his own invention. Plates of tin and platinum formed the electrodes, and the carbon being oxidized ky contact with chemicals, electricity was produced, as was shown by attaching the wire from the cell to a motor. A thermometer applied at various stages showed that no heat was generated; hence, practically, the entire energy of the chemical charge was converted into electricity. Having concluded this experiment, Mr . Case brought out the possibility of the discovery of
a method of obtaining electricity from carbon without heat, by following plans analogous to the method employed by nature in the human system. He drew at ployed by nature in the human system. He drew
tention to the processes going on in animal organism by which the carbon is oxidized by the instrumentality of the hæmoglobin of the blood, which acts as an oxygen conveyor.
The point Mr. Case specially dwelt upon was that work in the direction of rendering the experiment of practical value lay in the suitable preparation of the carbon for the oxidizing material to act upon.
The hæmoglobin cell was a fine example of what many scientists have, for a long time, insisted upon namely, that the closer the processes of nature can be
approximated, the nearer and quicker they will come to approximated, th
attain their end.

We learn that the Barnes Cycle Company's large works, at Syracuse, New York, were destroyed by fire on the 4th instant, but, with commendable energy, temporary quarters were immediately obtained suffi-
cient to enable the company to continue the business cient to enable the company to continue the business
regularly during the rebuilding of the works. The feature of the Barnes cycle is the frame connection and solid cranks and axle forged in one piece.

An explosion of gas which leaked from the two six inch mains which cross the Boston Subway for the trolley cars at the corner of Tremont and Boylston Streets occurred on March 4, killing six people and injuring nearly fifty, some of whom are liable to die. The explosion sounded like the boom of a cannon, and it was followed by smoke and flames which shot up from the intersection of two of the busiest thoroughfares in the city. The explosion occurred just as three cars were close at the intersection of the streets. One car was almost exactly over the center of the excavation when the explosion came.
The whole of the woodwork which is used as a bridge over the deep cutting at this place, was lifted into the air, carrying the car with it and taking along the two horses of a second car. Instantly the air was filled with débris.
The first car, in which most of those that were killed were riding, no sooner fell back on the tracks than it broke into flames. A fire alarm was turned in, and soon a large rescue force was at the scene. Ambulances were also summoned, and one hundred and fifty police were required to keep back the crowd of people. The damage to the buildings in the neighborhood was quite considerable, many windows being broken. The exact cause of the gas explosion is unknown, but it was thought by some that it was started by a spark from the wheels of the electric car in contact with the ra
The mayor of Boston has ordered an investigation.

Tempering a Spring.

It is not every smith who knows how properly to tempar a spring. It-is not a hard job to some smiths, but other smiths, professional and amateur, claim that it is. In getting ready to temper a spring, one should begin with the forging itself, for if that be not well done, no amount of" know how" can make a successful temper ing. The forging should be done with low heats and light blows, and the steel should nct be hammered while cold, with heavy blows at least. Avoid making hammer marks in the steel when forging, for, although such
marks may be worked out, they do not add to the strength or long life of the spring. A good many failures of seemingly perfect springs could doubtless be traced to this little point in the forging. After the spring has been hammered to size, spend a little extra time in lightly hammering the steel when it is
nearly cold-but don't strike hard. The light hammering will told-but don't strike hard. The lght hammer The outside surface or "skin" seems better adapted The outside surface or "skin" seems better adapted
to spring work where the surface is hammered up, instead of being filed or ground. After the hammering is done, polish the spring with a bit of emery paper. It is best not to put it on an ereery wheel, for then the skin above mentioned would be destroyed Sometimes, however, it is necessary to partly shape the spring by grinding; but let this be done at an early stage of the job, so that the outside skin may
be restored as much as possible. When ready for the hardening, there are two ways of doing the heat ing-either by holding the spring over a clean fire with a small pair of tongs, keeping the spring high up so that it will heat slowly, or by first heating a heavy piece of iron red hot, and then placing the spring on that until the steel is heated.
When the spring is fully and uniformly heated to a light red, plunge into cool, but not ice-cold, water.
The amount of twist that is got in the spring by this operation depends on the manner in which the spring is put into the water. If it be put in so that a flat side touches first, the sudden cooling of that side will cause the spring to be pulled out of shape, and held there by the subsequent cooling of the rest of the spring. If put into the water endwise, or straight, there will be but little distortion of the spring.
After hardening, polish the steel with a bit After hardening, polish the steel with a bit of
emery cloth until the metal is bright emery cloth until the metal is bright, clean and white, then put a few drops of oil on a bit of paper, light it, and hold under the spring until every
portion of its surface is covered with a thick coating of smoke. Next heat the spring slowly, holding it high up over the forge fire until the smoke is all burned off ; but it should all go alike. Don't let one part of the spring get so hot that the smoke is all burned off while another part is thickly coated. That means a spring of uneven temper, that will break in short order. When the smoke has been
carefully burned off, lay the spring on the ashes of the forge to cool slowly, and in a few minutes it will be ready for work.-Scientific Machinist.
Dr. Lewis Hallock, for many years the leading homeopathic physician in this city, died at his residence, No. 34 East Thirty-ninth Street, on March 3. time of his last illness a few weeks ago, he was in active practice, and but few of his young associates in the profession were more prompt in answering the calls of his patients, or nimble in ascending the stairs to a sick room. Dr. Hallock was a man possessing
rare qualities, and he will be sadly missed by many of rare qualities, and he will be
the older families in this city.

Dr. Nansen is to receive the degree of doctor of cience from Cambridge University this month.
The Prefecture de Police, in Paris, is reported to be in negotiation with reference to the conversion of the existing horse-drawn prison vans into motor vehicles.
The mountainous country south of Oaxaca, Mexico, has been greatly disturbed recently by severe earthquake shocks, and the people in some of the smal villages were so alarmed that they left their homes and went to Oaxaca. The shocks caused considerable damage to property.
Nansen asserts that scurvy can easily be avoided in Arctic expeditions by the use of properly preserved meat and fish, supporting the theory of Prof. Torup, of Christiania, that the disease is due to poisoning from bad meat. Scurvy was not so long ago the usual attendant of all long sea voyages.

The conditions of the heavy motor car competition which is to be held in the neighborhood of Paris, early in July, under the auspices of the Automobile Club de France, have now been announced. The com petition is open to all nationalities, and for each vehicle entered an entrance fee of 200 fr . must be paid. Medals and diplomas will be granted to the vehicles which, in the opinion of the judges, best fulfill the conditions of the competition.
Superintendent Knoll, at the Hudson Street Hospital, New York City, recently completed an X ray photo graph clearly outlining the brachial artery in the right arm of an adult. This is said to be the first time such a feat has been accomplished. The patient, who was sixty years old, had been suffering from an affection of the arm. The physicians were unable to tell exactly what was the matter. The photograph clearly shows deposits of lime salts in the blood, which has hardened the artery. The treatment of the case was governed accordingly.
A four year old infant prodigy was exhibited recently before the Berlin Anthropological Society. He is the son of a butcher, and at two years of age learned to read without assistance. He knows the dates of the birth and death of all the German emperors and many other noted persons, and their birthplaces, the chief cities of the world, and all great battles. He can read anything in print and can talk intelligently about it, but finds it hard to learn to write and draw, dislikes music, and hates pianofortes. The boy is physically well developed, though not robust.
An interesting report on Mount Kosciusko, the highest mountain in Australia, has been prepared by the Rev. Milne Curran, who is working as a roving geolo gist under the New South Wales government. Mr. Cur ran has, after a careful examination, come to the con clusion that the "glacial epoch in Australia," in post tertiary times, as theorized by Dr. Lindenfeld, has no foundation, as he can find no tangible evidence of gla ciers in the present valleys round the mountain. There is no evidence whatever, according to Mr. Curran, of extensive glaciation on the Kosciusko plateau.
"Recently," writes Dr. G. H. Stover to the Medical Record, from Eaton, Col., " having occasion to apply an ice bag to a limited area of the face, and not being near a supply house, I had the patient's husband make a bag from a section of an old inner tube of a bicycle tire. One end was sealed with a bicycle cement and after the cracked ice was put in, the other end was folded over and encircled by a cord. This plan could be used in making ice bags for the face, mastoid, larynx, spine, groin, or in fact for any part where the application of ice to a limited area is desired. Again is 'the bicycle in therapeutics' in evidence."
That petroleum can be produced, or at least imitated, by proper treatment of linseed oil, has been announced by Prof. Sadtler, says the Popular Science News t was shown that by subjecting this oil to destruct ve distillation, under pressure, various products iden tical with certain petroleum hydrocarbons can be pro duced. This fact is of great significance and import ance. It bears directly upon and affords proof of one of two theories regarding the origin of petroleum. These theories are : one, that petroleum is of animal origin, the other that it is of vegetable origin. Possibly, perhaps probably, both are true. Without discussing the theory of animal origin, Prof. Sadtler's cussing the theory of animal origin
results would seem to prove the other.

Prof. Schmiedeberg, of Strasburg, lately made a very interesting experiment," says the National Druggist, "which not only conclusively demonstrates the existence of an iron hunger in animals, but also indi cates disastrous results in the event of the craving re maining unsatisfied. A strong, frolicsome dog, that had suffered the loss of a small quantity of blood only, was fed for a period on pure milk, and little by little became so weak that all evidence of spirit vanished and, refusing further nourishment, became so thin and weak that his limbs refused to support his body. Just as he seemed on the point of death, a gramme of ferratin was added to his daily allowance of milk; when instead of refusing, as heretofore. he devoured it raven ously, and in the space of two weeks recovered his normal health and strength.'

cascade locks.
 by mow. к. bishop

On November 5 of last year occurred the ceremonies which formally opened for business the Cascade locks on the Columbia River-a proceeding of great moment to the Pacific Northwest and one which will make a reality of the long dream of an "open river to the sea." Few in other parts of the country appreciate the magnitude of these locks, rivaling those at sault Ste. Marie in size, and affecting a territory about double the area of the State of New York. The value of opening the river was appreciated in Congress at an early day, and work on the locks was commenced twenty years ago, a small appropriation having been made for the purpose, but progress was very slow till 1892, half of the work being executed since that time.
Their completion at this date is due in a large measure to the efforts of Major Thomas H. Handbury, who succeeded, in 1888, Captain Powell, in charge of all the government improvements on the Columbia River. He called attention to the meager appropriations which had been made-the annual average for the twelve years the work had then been in progress having been only $\$ 95,000$ -and stated that, at this rate, twenty-four years would be required before the locks could be opened to commerce. A board of engineers was convened to discuss the details of construction, and it indorsed all Major Hand bury's plans. Former designs were used, with the ex ception of some modifications as experience had proved to be necessary, chief among these being the substitution of a dry stone wall for timber cribbing along the sides of the canal and of steel gates in place of those
of wood. In 1890 a revised estimate of the work was submitted. The appropriations up to that time had been $\$ 1,880,000$, and Major Handbury calculated that $\$ 1,745,000$ more would be required, and experience proved this figure to be practically correct. An appropriation of $\$ 226$, 800 was made in 1892 , with a pro November of that year Messes. J. \ddagger. and L. N Da November of that year Messre J. G. and
secured the contract and at onde began work.
The location of the Cascade locks is one to gladden the heart of any lover of the beauties of nature, as it is in the midst of the magnificent scenery for which the Columbia is famous. The great river breaks through the Cascade Mountains at this point. As one gazes at the rugged mountain peaks with their mantle of perpetual green on all sides of him, and downward to the mighty rushing waters at his feet, boiling and eddying in a way that recalls the rapids at Niagara, it forms a picture that will linger long in his memory.
When the finishing touches have been put upon the locks, in the way of beautifying the premises, the view will be improved, not marred, by man's handiwork, as there are no factories or other unsightly buildings to form a blemish on the scene.
The only other obstructions on the Columbia are the Dalles Rapids and the Celido Falls. These are to be overcome by a boat railway, twelve miles in length, the right of way for which has already been condemned, years, the country beyond will not long be deprived of any advantages to be derived from the locks. The Dalles, the present limit of navigation, is 200 miles Dalles, the present limit of navigation, is 200 miles
from the sea, but with the completion of the portage from the sea, but with the completion of the portage
road an uninterrupted trip may be made by boat, from the Pacific, up the Columbia and the tributary Snake River for a distance of 500 miles, or, continuing up the Columbia, through Washington to the head of navigation in British Columbia, a point over 600 miles from the sea.
The Cascade locks constitute a work of which the country as well as those engaged in their construction may well be proud, and by many they are considered the largest in the world. A claim for this distinction is also made for the Soo locks, whose gates are 40
feet high, with a span of 100 feet. The span and height of the large gates at the Cascades are 56 feet and 90 feet respectively, thus being higher and narrower than those at the Soo, the claim of greater size being based on the fact that the area is considerably in excess of that of the rival gates. A factor which required careful consideration in designing these locks was the great between high and low water being 55 feet. At the Soo and many other locks the water varies only a few feet and many other locks the water varies only a few feet
in height. This condition made it necessary to conin height. This condition made it necessary to con-
struct a series of three sets of gates, increasing in height from the lower entrance to the huge upper guard gate, only two sets being used at one time. When the river is low, the upper guard gates remain open continually and the lower sets are operated, and vice versa, when the water rises sufficiently to drown the lower gates, they are swung open and the work is done by means of the others.
The upper approach is formed by a fine wall of masonry extending from the guard gate in a long sweep
of 1,200 feet. The bank back of it is riprapped in a substantial manner.

The center of interest is the great gates. Designed after long study, and, though so large, executed with all the nicety of clock making. these creations of steel,
accuracy, are truly fine specimens of what engineer-
ing skill can accomplish in this line. The steel is ing skill can accomplish in this line. The steel is the Maryland Iron Works, at Sparrow's Point, Md. to whom the contractors give abundant measure of praise for the
Like most
circle-a form gates, these form a perfect are of a circle-a form not practical for those of wooden construction, as strength would have to be sacrificed
to obtain the shape. The total weirht is to obtain the shape. The total weight is supported at all times by a pivot and anchor, exactly on the principle of the hinges of an old-fashioned garden
gate. The pintle or pivot at the bottom, on which the gate swings, is of forged steel, hemispherical in shape, and is 9 inches in diameter. The upper hinge is made by a heavy collar forging, from which radiate six bolts, each $41 / 2$ inches in diameter and 22 feet long. These are embedded in the massive nasonry for their whole length, and each terminates in an iron casting 2 feet square. It was necessar to make each of these bolts of sufficient strength o support the whole strain of the gate, for, as it opens or shuts, the pull is transferred from one radius to another, each in turn for a small part of the journey receiving the full weight.
Many gates are so constructed that, when the water presses upon a fraction of the area, the strain is distributed over the whole, but those of the Cascade locks differ from this, each girder taking the strain separately. Of course, with this system, the connect ing surfaces, being so long, may not be absolutely straight, but the pressure is so distributed that any slight depression of one surface is met by a correspond ing elevation on the opposite, and no leakage occurs.
Many people suppose that the gates, when shut, rest solidly upon the bed of the chamber, but, far from that being the case, there is an open space directly be Anding the contact which prev is made in a different way. Extending along the bottom of the inner surface of the gates there is a depression which, when the gates close, flts against a series of castings bolted into he conorete of the floor. In these castings is em bedded a long strip of heavy rubber. It is not calcu lated to have the pressure of the water on the gates
transmitted in any great degree to this rubber, but it transmitted in any great degree to this rubber, but it
forms a connection between the two surfaces which is well nigh watertight. In many locks timber takes the place of this rubber surface. As the gates swing together, the surfaces connecting the two are steel bars extending the whole 90 feet of their height, and they meet with an accuracy that is amazing to anyone not accustomed to the exactness of engineering work. The different sets of gates are identical in design, though hey vary greatly in size.
The masonry on all sides forms a striking illustration of what man can accomplish, stone fitting stone with perfect accuracy, and the whole built on lines in which not even an instrument can detect an error. Such work is very costly and has consumed the major part of the money spent on the locks. All the stone used spot or brought by scows from a point a few miles up the river. It is a basaltic lava, pleasing in appearance, and forming a building material eminently fitted for the purpose. It is estimated that $2,400,000$ cubic feet of stone have been laid in this work.
The contract was not taken to complete the plant or a certain sum, but it was specified that the contractors were to be paid by the number of cubic yards of excavation, by the cubic feet of stone laid and pounds of iron used.
The lock chamber is 475 feet long by 90 feet wideufficiently large to accommodate several river boats at nce. The bed is of concrete.
The main culvert which conducts the water to fill the hamber extends the whole length of the latter, being built in the wall, and is about 10 feet square-a passage of sufficiently ample dimensions to accommodate
a team with a load of hay, and one which carries a tremendous quantity of water. Eleven filling culverts empty the contents of the main culvert into the chamber, each 3×5 feet in size. On the opposite side, the main culvert opens directly into the chamber, as the wall will not be completed till a future appropriation, though the present condition does not interfere with the operation of the locks. The total lift is 24 feet and about half an hour is required to put a boat through the locks. The gates can be opened and closed in one minute.
One of the most interesting things about the locks is the gates, controls the valves and does all the work. In the mountains, 500 feet above, is a reservoir with a 10 inch pipe conducting the water to the engines This affords a pressure of 217 pounds to the square inch and effectually does away with a battery of boilers and with steam engines. Placed in pits in the masonry, the hydraulic engines occupy little space and perform the work in a perfectly satisfactory manner.
There is an engine to each wing of each gate. The cylinder of the engines operating the large gates has a

13 foot stroke, and, with its diameter of 18 inches, affords a steady pull on the cables of about 55,000 pounds. The gates are opened and shut by a system of cables similar to that of an elevator, the principle being that a short stroke of the piston produces a long pull. The ratio in this case is one to four. The cables are 11/4 inches in diameter and are attached to the lower part of the gates. Those on the inside cross, as each engine opens its own gate and closes the opposite. Thus, for opens its own gate and closes the opposite. Thus, for
example, the south engine opens the south gate and example, the south engine opens the south gate and
closes the north gate. The piston rod extends from closes the north gate. The piston rod extends from
both ends of the cylinder and carries on each extremboth ends of the cylinder and carries on each extrem
ity a pair of wire rope sheaves. The reason for this arrangement of double piston rods and crossheads is simple. As the piston advances, the forward movenent of the sheaves causes a pull on one side of a gate and the same motion of the rear sheaves of the opposite engine slacks off the cable on the other side of the ame gate.
The valve which controls the admission of the water to each culvert has its exact counterpart in principle in the damper of an ordinary stove pipe, although it is so huge in size. It is supported by a 10 inch shaft and weighs 8 tons. The power to move it is derived from a separate hydraulic engine, with a 15 inch cylinder and 6 foot stroke, and is applied by means of a bell crank lever and long connecting rod. On each side are large hydraulic capstans designed to assist in moving vessels while in the canal.
Great credit is due to the engineers and contractors who have completed the Cascade locks for the high grade of work done and the harmonious way in which all have labored together. Major Handbury carries off the lion's share of the honor of having designed the improved plans, as well as having greatly accelerated the progress of the work. After his removal to the East, Major Post was put in charge and the completion was under the direction of Capt. Fiske. Lieutenant Harry Taylor, of the army, was the engineer detailed for the duty of seeing that the specifications were carried out to the letter. Messrs. J. G. and I. N. Day, the contractors, have executed the work with all possible celerity, having 900 men engaged for some time. A delay of several months was caused by the excessive high water of 1894 , which also necessitated a heavy additional expense in guarding the work from great damage.
Like those at the Soo, these locks are operated by the government free of charge, under the direction of an army officer detailed for the service. Each vessel using the locks must fill in a blank furnished by the government, stating its tonnage, amount of freight, and number of passengers carried.
The amount of business which will be done by the locks is an interesting subject for the statistician, and, though many are the estimates advanced, there is as yet too much of the element of speculation about it to make a reliable report. The freight annually handled at one point on the upper river may be considered a valuable factor in making this calculation. The total incoming and outgoing freight at the Dalles, last year, was $53,450,000$ pounds, besides 1,000 car loads of cattle and 10,000 sheep. With cheaper rates, adjacent counties will ship from here, and, considering that this is but one point on a river navigable for several hundred miles, we see that the total of the freight of this country is very large. Doubtless the railroads will stiil handle a large part of the business, but water transportation is always a most salutary regulator of freight rates, and everything consumed or produced in an area of probably 100,000 square miles will be affected by these locks, which open the great Columbia River to commerce. In particular will the vast quantity of wheat raised in Eastern Oregon and Washington feel the improved rates of transportation to the coast, whence it seeks a market in Europe. The people of the "Inland Empire" may well congratulate themselves on the completion of the Cascade locks.

A Mycological Club.

A mycological club has been formed in New York City. The object of this club is to bring together all those who are in any way interested in edible fungi, to study edible mushrooms and toadstools and those noxious and poisonous kinds that may be mistaken for them, and to disseminate all information concerning them, and to arouse a wider appreciation of a cheap food supply too often neglected in this country.
England has long considered mycology a profitable study and supports a number of flourishing societies. The Boston society was started in 1895, and its rapid growth encouraged the promoters of the New York society to start a like movement in New York. The members of the new society will make excursions in the parks of the city and the suburban districts, search ing for different varieties of fungi. The specimens collected will be exhibited to the public and lecture will be given on them, some of the members explaining how to distinguish the poisonous from the edible variety. Lastly, it will show how to prepare them for the table. The society has at present rooms at 841 Fifth Avenue, New York City.

THE INTERNAL SLAVE TRADE OF AFRICA. In a recent lecture before the American Geographical Society, Mr. Heli Chatelain made some very startling statements regarding the extent and horrors of the slave trade in Africa. The lecturer's long residence in the Dark Continent, his intimate knowledge of the country, its people, customs and languages, entitle him to speak with authority. He is ex-United States ' 'ommercial Agent at Loanda, West Africa; corresponding member of various geographical societies, and has made a name for himself also as the author of several native grammars and the translator of two of the Gospels into the native language of Angola.
The lecture, of which a digest is herewith presented, was copiously illustrated by stereopticon views. A few of these, which had been taken from life by himself and other travelers, are reproduced in the present article, and illustrate the nameless horrors of slavery
Let no one suppose that the slave trade in Africa is a thing of the past. In this great continent, 5,000 miles long by 4,800 miles wide, which the European powers have recently partitioned among themselves, it still reigns supreme. "'The open sore of the world, as Livingstone termed the internal and truly infernal slave trade of Africa, is still running as offensively as ever. Among 200,000,000 Africans, $50,000,000$ are slaves. Only a few years ago the explorer, Cameron, estimated at $2,000,000$ the number of victims claimed every year
by the slave trade. "If I shut my eyes," said he, "I by the slave trade. "If I shut my eyes," said he, "I
see the villages burning, I hear the shouts and mus-

THE INTERNAL SLAVE TRADE OF AFRICA-YOUNG GIRL SLAVES IN A TRADER'S YARD AT LOANDA.

ketry of the murderers and the cries of their victims." If the estimate of the British and Foreign Anti-Slavery Society is correct (and it seems to be rather below the reality), 500,000 lives are at the present time sacrificed every year for the maintenance of African home slavery.
In the islands of Zanzibar and Pemba alone, which are entirely governed by Great Britain, 260.000 are held in bondage. For each slave that reaches the coast, eight or nine are said to perish on the way down and in the interior ; so that the supply of 7,000 slaves annually smuggled into Zanzibar, and of $11,000 \mathrm{smug}$ gled into Arabia, represents the murdering of some 60,000 in the regions whence the slaves are drawn.
From Zanzibar the slaves can legally be transferred to Pemba, whence it is easy to ship them to Arabia and Persia. Over 1,500 dhows are engaged in this business. From this example of slavery in two small islands one may form an idea of the enormity of the evil over the whole face of the Dark Continent.
The lecturer said that it is a lamentable illusion to suppose that all the slave traders are Arabs. The Moslems in Africa are for the most part arch slavers, it is true, and their subjugation will mean a severe check to the slave trade. but it will not mean its final extinction. Slave trade has its source in slavery. The supply is created by the demand. Slavery is an essential element of African society. The parents sell their children; debtors and criminals are sold into slavery instead of being locked up in jail; girls are frequently sold to polygamists even before they are born; slaves are the regular currency over immense areas of the interior; they are the beasts of burden that bring the ivory, rubber and wax to the coast and take the European manufactures back to the interior ; they are, too often, the porters of the caravans which European travelers lead into unexplored regions. The extinction of the slave trade implies a complete reconstruction on
a Christian basis of the whole social order. It requires the co-operation of the political power, of missionary effort, and of special anti-slavery societies. It is a fact that in Morocco slave-trading operations are being carried on under the protection of the Ameri. can flag. Last July the British and Foreign AntiSlavery Society called the attention of our povern. ment to the fact government to the fact that Moroccan Jews, who, by the laws of Morocco, are not allowed to hold slaves, piace themselves under the protection of the American flag in order to practice this business. slave dealing and slave holding are legal under Mohammedan rule, and public sales of slaves take

the internal slave trade of africa-slave gangs of four in chains.
public sales of slaves take
place to-day, even in Tangier, almost within sight of land. "is done in dhows from the Arabian coast, which Gibraltar. In Sus and Terdant small children are sold come over to the coral reefs of the western side, ostenand find ready purchasers, not only among the Moors, but equally among the Jews. In Tripoli the same sibly for pearl fishing. The many little harbors formed in the coral reefs offer every assistance to the Arab dhows, and the practice will continue until the reconquest of the Soudan is accomplished."
In the Eastern Soudan the Khalifa has a large number of "seribas" or armed stations, whence his men start on their raiding expeditions for the capture of slaves.
In Zanzibar and Pemba the plantation labor, the hard work in the harbors, the warehouses and the streets and the porterage of expeditions to interior Africa are all performed by slaves. Almost all these slaves are, as confessed by the British government, illegally held, because smuggled into the islands in spite of formal treaties. In Zanzibar women prisoners can be seen every day chained together in gangs of about seven and working under the supervision of a policeman armed with a lash. None of the facts brought out by the commissioner of the British AntiSlavery Society has been denied by the English government. The reason given for inaction is the fear that a hasty reform would cause an Arab uprising. Lord Salisbury has, however, promised to abolish the legal status of slavery before the end of this year.
Fortunately the power of the East African Arabs is fairly broken. Tipoo Tib enjoys the fruits of his rapines at Zanzibar and has probably forever bid adieu to Kongo and Tanganyika. Rumaliza, whose name signifies "he who destroys utterly," after fighting unsuccessfully with the Belgians on the other side, and with the Germans on this side of Lake Tanganyika, escaped to Zanzibar. Nearly all the chiefs who have survived the recent campaigns carried on against them by the Congo State, by Germany, and by the British of Nyassa Land, are in subjection, and the only slave trading in Nyassa Land is that which is carried on by the native tribes among themselves, of whom the Angoni are the worst offenders. "The Angoni," says a missionary in Nyassa Land, "possess from 100,000 to 150,000 slaves. The sole possession of these poor creatures is a strip of goat or cat skin around their loins. They are kept in subjection by two species of terrorism.

THE INTERNAL SLAVE TRADE OF AFRICA-LUEBO AT THE HEAD OF STEAM NAVIGATION ON THE KASSAI RIVER

First is the spear, second is the poison ordeal, which is On January 19, 1892, the President of the United President Gilman of Johns Hopkins University, Senator administered to the friends of a fugitive slave, some- States ratified a general act between the United States times to fifty persons at a time. In one village, the of America and the other powers for the suppression of ther day, eleven persons lay dead from this cause," | Slavery is legally abolished in all Portuguese colonies, | the African slave trade. The ratification was deposited |
| :---: | :--- |
| | with the King of the Belgians on February 2, 1892; the | of America and the other powers for the suppression of John T Morgan, Miss Frances E Willard, Mr, Botor T. Washington, representing the colored South ; and mong the representing the colored South; and yet the inhabitants of the islands of Sao Thome and act was proclaimed on April 2, 1892, and on the same H. P Faune, David H. Greer, David J. Burrell and W. Principe are to all purposes plantation slaves. Of the $\left|\begin{array}{ll|l}\text { day it took effect. It is known as the Brussels act of } 1892\end{array}\right| \begin{aligned} & \text { H. Pames is the treasurer. The plan of work outlined and }\end{aligned}$ Brass tribes in the

Lower Niger district Sir John Kirk, Great Britain's special commissioner off cially reports cially reports mixed race recruited largely by the purchase of slaves from the pagan cannibal tribes, chiefly the Ibo people, and by domestic slaves born in their families, the status of the child depending on that of t he mother. Slaves are gener ally obtained when young, and cost on the average from $\$ 50$ to $\$ 100$ each. Higher up the Niger is the home of the the home of the most enterprising most enterprising Hausa people $15,000,000$ strong all of whose country is in cluded in the

the internal slave trade of africa-plantation slaves and slave quarters on the island of sao thomé matured by Mr . Chatelain contemplates the acquisition of grants of land sufficiently large to give scope for o give scope for village or town of moderate size. From this terri tory, the chief culses of Africa, namely, slavery, polygamy, witch craft, rum and im moral white men, are to be rigorusly excluded. In this free land he location of which the league has chosen upon the high table land between An gola and Lake Nyassa, liberated slaves are to be settled and edu cated. The work of each station is o be divided into agricultural, in dustrial, educa tional and medi cal departments under the direc tion of competent
Royal Niger Company, and is under the guardianship Political power alone, however, would prove unable specialists. Such a settlement can be started for $\$ 10,000$
of the Foreign Office in Downing Street." The best to eradicate the evil. It needs the co-operation of phil- and, after being fully equipped, can be maintained at a authority on Hausa Land. Rev. C. H. Robinson, states that "there are usually about 500 slaves on sale in the Kano inarket. Every town of any size possesses its slave market. The provinces of Bantshi and Adamawa contribute no less than 4,000 slaves per annum to the Sultan of Sokoto. This system," says the same authority, " brings upon the country nearly all the evils of perpetual civil war. As many as 1,000 slaves were anthropic societies, due to private initiative, which will supplement force by persuasion, and follow it up by education along agricultural and industrial as well as intellectual and moral lines. For this purpose most Protestant and Catholic nations of Europe have organized societies, raised money, and commenced effective work in Africa. America, which by its spirit and traditions ought to take the lead, has hitherto done pracbrought into the town during my stay in Kano on a tically nothing in this great work. single occasion,
 one slave raiding expedi tion." They are used as cur rency and their total numbe in Hausa Land alone is estimated at 5,000 ,000.

On July 21, 1894, at Sierra Leone, the same writer entered in his diary the fol lowing note o a conversation with the acting governor "The account he gave of the slave trade at the back of the colony were most discour aging. Unti quite recently slave raiding had been going on within four days' march of Freetown Farther inland Farther inland he had passed for seven day at a time th burnt villages and country which had been desolated THE INTERNAL SLAVE TRADE OF AFRICA-COCOA PLANTATION ON THE ISLAND OF SAO THOMÉ imenting on their own ac count, with count, with adopting some adopting some convenient de vice for carry ing wheels on the outside of cars, says the Stree Railway Re view. This seems to be especially de sired in thos sired in those cities wher there are long steephill with the rid ing territory at the top or bottom. W illustrated some month since the scheme o hooks on the outsicle of the cars at Butte Montana There the city is away up on the top of the mountain and the good wheel road down in the valley. In San Francisco the order is reversed, with the choice by the slave hunter." The above are only a few The organization of what is known as a Philafrican riding streets on the high plateau, to reach which the facts culled from the many which could be cited to prove that slavery and the slave trade exist to-day in almost every town and village inhabited by African natives.

Liberators' League was completed at the close of last November. Its board of directors includes many names of rational reputation, among which may be mentioned the Hon. Charles P. Daly, Fred. R. Coudert, device to take care of the bicycles. Here's a chance for some ambitious inventor.

(Sorrespondence

Machine Wanted.

To the Editor of the Scientific American
As you are doubtless aware, there is a large export o ginger from Jamaica, amounting in 1896 to over $£ 50,000$, and the trade is capable of considerable expansion. The cleaning and preparing of the ginger for the market, as now performed by hand, is a slow, primitive tedious and wasteful process. After the roots are dug they are washed and the outer skin removed by means of a small, sharp knife resembling the blade of a pen knife. As you will see by the specimen of green ginger (sent by sample post), the roots are very irregularly shaped and the present system involves the loss of a large percentage of the root which is broken off or cut away in removing the skin. The market value of ginger is much enhanced by its having undergone the process of peel ing, and better prices are obtained for the larger speci mens. An expert can peel by hand about 1 cwt. of un cured ginger in the course of a working day, for which he is paid 60 cents. My object in writing is to invite the attention of your readers who may consider the matter of sufficient importance to warrant the adaptation or invention of some machine for peeling the gin ger more economically, expeditiously and effectively than at present. If such a machine were brought for ward, I feel sure it would be well received, not only here but in other ginger-producing countries

Jamaica Agricultural Society
Kingston, Jamaica, W. I.

Discovery of Aboriginal Remains near Springfield

 Mass.BY
An interesting discovery of Indian remains has just been made at Springfield, Mass., by the exploration of the cemetery connected with an aboriginal village and fort. Two or three years ago the village site was thoroughly explored according to scientific methods, it probably being the first work of the kind ever at tempted in the Connecticut Valley.
In these explorations the entire field is first blocked rut with stakes and strings to facilitate drawing plans of the excavations. A trench is then dug along the first block, and keeping a vertical wall in advance, the block is sliced down, inch by inch. As each block is completed, ground plans are made indicating the location of every article found. In no case are excavations made from the surface. The moment this is done all is confusion and the sequence of materials is lost. The method is expensive in proportion, but only such methods give full results. Unless this work is done thoroughly it is of no value whatever, as isolated objects without record of source or association are of no scientific importance, however interesting they may be as curiosities.
The palisaded fort of the Agawanis stood on Long Hill, on a jutting bluff which gives a view for miles and miles in either direction along the valley. The ground is of a peculiar formation, being cut through with deep gullies, between which narrow headlands lie, and on one of these headlands was the village and fort. According to tradition, this fort was occupied by the Indians of Agawan as late as October 5, 1675 . On
the evening of that date, having burned the little town the evening of that date, having burned the little to
of Springfield, they left the valley, never to return.

Springfield, they left the valley, never to return.
As the ground had received much natural deposit the two hundred years since its occupancy, the first work was to remove about a foot of soil from the surface, exposing the original surface to view. Here the ground was found to be laid out in regular blocks about eight feet square. Within each square a camp fire had been built at some remote period, the gray wood ashes being packed into pits some eight feet in circumference and two or three feet deep. So hard were the ashes in some of these pits that it was im possible to dig into them, and often the entire contents had to be removed before being broken up. Within these hard masses were found the remains of many a feast. Bears' jaws with every tooth perfect, deer tion, the Indians believing that unless the bones from the meat were preserved and burned, all the game would leave the country. The supposition is that the location of each one of these ash pits marks the site of a wigwam, inside of which a fire was built, the smoke passing out through the roof. The site of ten rows
lodges and two large council houses was uncovered.
odges and two large council houses was uncovered.
The existence of so large a village would lead one suspect the near presence of a spring of water, and, after much searching, the village water supply was located. It seems that years ago a bank caved in, covering the mouth of the spring, which caused the foot of the hill. By digging away the bank the opening was uncovered and the water again gushed out as it did in the old Indian days. From the spring out as it did in the old Indian days. From the spring a patch, screened by a close hedge, followed the brook
to the fish weirs and canal landing by the river side.
the fish weirs and canal landing by the river side.
Near one of these houses or wigwam sites the first
skeleton was found. It was the custom to bury the dead near the house, after preparing the warm body by tying it in a contracted position, with the knees drawn up to the chin, and the neck, thighs and legs flexed. When cold and stiff it was put into the tempo rary grave in the village. Once a year all of these bodies were exhumed and with great religious ceremony given a final resting place in the permanent burying ground
The explorers expected to find the permanent ceme-
ory on the next bluff south of the fort, and much tery on the next bluff south of the fort, and much
fruitless searching was made at the time the village was explored. But not until last month was it found and on the second bluff south. Here, about eighteen inches below the surface, the whole ground was covered with charcoal from the old watch fires, which were kept burning to warm the departed spirit on its journey to the happy hunting grounds. As the bluff was cut away, thirteen skeletons were found embedded in the dry sand, like raisins in the slicing away of a cake. Each was headed to the south, the region where their rod was supposed to dwell, facing expectantly to the east, from which direction the Indian messiah was to appear. The bodies were lying on the right shoulder the right hand was under the cheek ; the left lay across the breast, and the knees of each were drawn up under south to north, the bones grew older and more frail, until finally it was only possible to detect in the clear sand the discoloration produced by the mould of the crumbled skeleton. The charcoal, quite firm at first, grew gradually more soft, until it was only possible to grew gradually more soft, until it was only po
see a line of black beneath the surface mould.
see a line of black beneath the surface mould.
Of the thirteen perfect skulls, three were of abnorma growth, having an extra bone, the epactal in the back This is somewhat common in animals, but rare in human beings, and is therefore of much interest to evolutionists, as showing the low order of the race, Several are those of very aged persons, for there are but four or five teeth, and the jaw bones are worn per ectly smooth where the others once were. Nearly al show the great development of the lower, back par of the skull where the animal instincts are delineated Contrary to expectation, no relics were found in the graves. A few flint chips and a rough stone ax were lying near the su:face, and in the charcoal were
a clay cup and two metal spoons. These, with a few a clay cup and two metal spoons. These, with a few New York, were the only articles found in the cemetery.

Casting Copper Pure

The current issue of the Electrical Review contains he announcement of a discovery in the art of casting copper. Copper is ordinarily cast by the use of alloys. It is stated that the new metal, which is known as M. B copper, is cast pure. Foundrymen have heretofore onsidered this an impossibility
It is also stated that the new metal possesses an additional tensile strength of $33 \frac{1}{3}$ per cent, and that much higher percentage of elasticity has been develop ed, and that the new metal has a conductivity of 95 pe cent as compared with the best rolled copper. This will cause distinct changes in the building of dynamos, notors, railway and telegraphic apparatus, because the new copper is believed to carry the same amount of current with one-third the amount of metal. Wir made of it will have a greater strength and conduct vity than the ordinary copper wire.
Mr. Edison says he accounts for the evident change in the atomic structure of the metal by the theory that the shape of the crystals has been altered, so tha their lines are parallel, and that the molecules are thus brought closer together and into more intimate con tact with each other. It is understood that Mr. Edison is interested in the development of this metal, and that Menlo Park works

Electro Capillary Light.

In a contribution to Wiedemann's Annalen, No. 12, abstracted in the London Electrician, Herr O. Schutt, of Jena, describes a new electric discharge phenomenon, which he terms electro capillary light. When the dis charge of an induction coil is sent through a narrow capillary tube of about 0.05 mm . in diameter, provided with aluminum or copper electrodes and filled with air under ordinary pressures, an intense luminosity of the tread of air is obtained-a luminosity which is intrin sically far superior to that of the are, and would form an exceedingly powerful source of light if it could be made continuous. The narrow capillaries deteriorated apidly, roughening inside, and were blown into a serie of spherical enlargements. Wider tubes gave less light, but were much more permanent. At the same time the bright lines in the continuous spectrum in the original light became more prominent. At pressures above one atmosphere the phenomena were nearly the same but the sparks passed with greater difficulty. At low pressures the light became less intense, the continuous spectrum faded, and the bright lines shone out more distinctly. The kind of glass is immaterial. It is stated that the tubes may be made 20 centimeters lon

about merrimac ship building.

by horace c. hovey.

The origin and decline of the art of ship building should interest others besides seafaring men. I use the word "art" advisedly. A veteran ship carpenter put the case thus to me one day. If a man paints on canvas, he is an artist; if he makes verses, he is a poet; if he contrives machinery, he is an inventor f he builds meeting houses, he is an architect; but if he builds ships, he is only a mechanic. Yet the naster ship builder must be artist, poet, inventor and architect combined. He must know the trees of the forest, in order to select timber for keels, ribs, knees, masts and other parts of his ships. He must choose materials that can endure soaking in salt water, rubbing against wharves, and the concussion of billows; reject what will not bear Arctic cold or tropical heat; and use what will not be split or shaken when pierced by bolts or wrenched by storms. He must be as familiar with natural laws and experi nental results as most inventors; must have a good taste concerning form and color as an artist and exercise his imagination as much as an averag poet, in order to shape the graceful outlines, bound ing curves, and due proportions of his vessel from truck to keelson, so as to compel the admiration of lovers of the beautiful, without sacrificing strength or utility. I have not used his exact words, but these were his ideas.
The first ship of the English navy was built by command of Henry VII, at a cost of $£ 14,000$, and wa named the Great Harry. An official inventory made at the death of Henry VIII shows that the gross
measurement of the English fleets, in A. D. 1547, was neasurement of the English fleets, in A. D. 1547 , wa
but 12,455 tons, and that the average size of the vessels in the navy was less than 240 tons each.
'The first vessel built in New England was the Virginia, of only thirty tons burden, launched by the colonists at the mouth of the Kennebec River in Maine, A. D. 1607, thirteen years before the arrival of the Mayflower at Plymouth, Mass. Ten years before the coming of the Mayflower, Lord Delaware saw in he roads at Point Comfort, Va., four vessels, the Virginia, the Discovery, the Deliverance, and the Patience. Small as was the Virginia, it was
tanch enough to make several successful voyage stanch enough to make several successful voyages across th
Six shipwrights were sent over to New England, in 1629, by the Massachusetts Bay Company, the chief of whom was Robert Moulton. Their first vessel, mainly built of locust, owned by Governor Winthrop, and hamed by him The Blessing of the Bay, was launched July 4, 1631, at Medford, on the Mystic River. Ship building was begun at Salem, in 1635, by Richard Hol lingsworth, with aid and encouragement from the Rev Hugh Peters; at Gloucester, in 1643, by William Stev ens; at Ipswich, in 1668, probably by Daniel Hovey, whose wharf was built that year, and which may still be seen at low tide; and at what is now Newburyport, in 1680 , by the recorded vote of the old town of Newbury, granting land for that purpose to Benjamin Rolfe and others, at a point near what was then known as "Watts, His Cellar." Possibly Duncan Stewart built vessels before this at Thorlay's Bridge, on the Parker River. Ship building was also carried on along the Merrimac at Bradford, Haverhill, Amesbury, Salisbury and other localities. From Massachusetts Archives, Vol. VII (unprinted), "there were 130 vessels built on the Merrimac River from the year 1681 to 1714 , of which over 100 were built at Newbury." The first in this list is the Samuel and David, of 100 tons. A number of them were built for London owners. A rude old painting may be seen in the public library of Newburyport, of a ship on the stocks at Moggridge's yard with Indians and negro slaves at work.
Among famous shipwrights of Newburyport may be mentioned Ralph Cross, and his sons, who built many vessels, including the frigates Hancock, Boston and Protector. Ralph Cross, Jr., was made a brigadier
general during the revolutionary war. In 1775, Col. Benedict Arnold embarked a regiment of 1,100 men on ten vessels, and sailed from the Merrimac on an expedition against Quebec. In August of that same year the first privateer fitted out within the limits of the thirteen colonies sailed from Newburyport. !It was owned by Mr. Nathaniel Tracy of that place, whose ships, as it appears from a memorial to Congress, "captured 120 vessels that were sold for $3,950,000$ specie dollars, and with these prizes were taken 2,225 prisoners of war." The history of our privateering has never been fully written up, but this shows what was done by a single patriotic merchant and shipowner. How much more was done we have no means of definitely knowing. But the melancholy side of the record is that, besides those that went forth and returned again, 22 vessels, with crews numbering 1,000 men, sailed and never returned. For many years after the war every vessel leaving American ports was required to be fully equipped with guns, even though sailing on a peaceful errand. Hence, in mentioning the launching of ships designed for the East India trade, etc., it was customary aiways to state
often carried costly cargoes and had to be protected. The first blow given to American commerce was the act of Congress (1805) forbidding armed vessels to leave the United States without a special permit, under penalty of forfeiture. The "Embargo Act" of 1807 was the next heavy blow, but prosperity returned on its repeal in 1809. The Wasp, launched from Merrill's shipyard, in 1814, captured thirteen English merchant vessels in seven months, when she was sunk by a British frigate. The first ship that sailed from the United frigate. The first ship that sailed from the Unted
States after peace was declared between the United States after peace was declared between the United
States and Great Britain, in 1815, was the Indus, of Newburyport.
It is interesting to note the steps of progress from the tiny Virginia, of 30 tons, built in 1607, up to the mighty warships and merchantmen, of from 500 to 1,500 tons and upward, The steamers Ontario and Erie, built by George W. Jackman, Jr., were of about 3,000 tons burden each. But the largest merchant ship ever launched on these waters was the Daniel I. Tenney, registering 1,687 ters was the Daniel I. Tenney, registering 1,687
tons, built by the late John Currier, Jr. Among tons, built by the late John Currier, Jr. Among
other large ships built here were the Dreadnaught, other large ships built here were the Dreadnaught,
1,414 tons, the Farragut, 1,549 tons, the Radiant, 1,608 tons, the Racer, 1,669 tons, besides sixty others of over 1,000 tons each.
For many of the foregoing facts we are indebted to Mr. John J. Currier, the son of the veteran shipbuilder mentioned above, who gave an address on the subject some years ago, and has also just published a substantial volume of 729 pages, pubitled "Ould Newbury, Historical and Biographical," a work full of valuable information as graphical," a work full of valuable information as
to the ancient ferries, bridges, wharves, docks and to the ancient ferries, bridges, wharves, docks and
shipyards, as well as other features of the history shipyards, as well as other features of the history
of this seagirt town. The book is embellished of this seagirt town. The book is embellished
by numerous cuts, one, the portrait, being kindly concerned. The business was extinct twenty years ago \mid car shipbuilder himself. John Currier, Jr., who laid Halem, Gloucester, Ipswich, Rowley, Salisbury and manner in which the roadway was laid is described out this shipyard in 1833 and occupied it for fifty longer in Newburyport, it is now decayed, and it will and being allowed to stand for two months. It was years, was the seventh in a direct line of descent from Richard Currier, one of the founders of Salisbury, Mass. founders of Salisbury, Mass.
He was born April 14, 1802, He was born April 14, 1802,
and died September 2, 1887; a man of integrity and honored with various offices municipal and ecclesiastical. During his long life he built and launched ninety-eight ships, brigs and other large vessels, which is probably more than was ever done in more than was ever done in that line by any other Ameri-
can. In April, 1883, he launchcan. In April, 1883, he launch-
ed the Mary L. Cushing, owned by Mr. John N. Cushing, which was the last merchant ship built in Massachusetts. Mr. J. J. Currier has made a curiously interesting and authentic list of all the ships, barks, brigs, brigantines, schooners and other tines, schooners and other
seagoing vessels built in the district of Newburyport, from the organization of the United States government down to 1877, with the class, name, tonnage and ownership of each vessel, and stating when and by whom it was built. By my actual count I find thus catalod 2,115 vessels thus catalogued 2,115 vessels, not including many more that were built here on contract and then sent, as was frequently done, to other ports to be documented; nor does it include the hundreds of fishing boats, yachts and other boats built here and of which no record has been made.
The decline in what may properly be called American commerce ; the rapid disappearance of the forests of oak, pine and other kinds suitable for ship timber; together with the gradual substitution of steamers for sailing vessels, are the main causes that have practically destroyed what was once one of our proudest industries oce as pion ally industries. Occasionally barges, sloops and smaller vessels are built along the Merrimac; but the era of ship building is ended, so far at least as these waters are

AN OLD NEWBURYPORT SHIPYARD.

A LAUNCH IN A NEWBURYPORT SHIPYARD.
henceforth be known only in history. But it certainly should thus be known. The nation that justly honors its statesmen, warriors, literary men, architects and inventors ought to keep a place amid its archives for men like the Woodwells, Moggridges, Carrs, Crosses, Curriers, Gerrishes, Jackmans, Merrills, Hacketts, Mansons, and others, who, during a period spanning more than two centuries, manned the busiest shipyards on the continent, gave employment to many hundreds of skilled artisans, launched more than 2,000 seagoing vessels, with an aggregate tonnage of fully 400,000 tons. We are indebted to Mr. Otis P. Gould, of Newburyport, for the accompanying illustrations of the old shipyard and launch, made from his photographs. Most of those forty shipyards of the Merrimac and vicinity have been absorbed by other and more prosaic industries. A few only remain, unoccupied and in ruins.

A Brick Country Road.

The first brick country road laid in the United States has been put down in Monmouth Township, Warren County, Ill., says the Boston Transcript. The road is the culmination of a series of experiments in road building, and though it is regarded as more or less on probation, the utmost confidence in its success is expressed. When hard road building began in the township, four years ago, it was decided to expend the money on hand in an experimental way. Monmouth Township had long been a sufferer from bad roads. In had long been a sufferer from bad roads. In
winter the town had often been completely winter the town had often been completely
blockaded by mud too deep for wagons. Even blockaded by mud too deep for wagons. Even
within the town itself the streets were so poor within the town itself the streets were so poor
that at times the "bus" lines were obliged to suspend business, and mail and baggage were ner in which the roadway was laid is described treated to an occasional scraping, so that it would pack evenly, and when the contracevenly, and when the contrac-
tors were ready to lay brick tors were ready to lay brick
it was as hard and even as a it was as hard and even as a
floor. The first thing was setfloor. The first thing was set-
ting the curbing. This was made by 2 inch $\times 6$ inch oak plank, set 7 feet apart, and held by oak stakes 18 inches long, and put down every 4 feet. Inside this was put a 5 foot bed of sand. This was evened up, and the single course of No. 1 paving brick was put down. They were set on edge, and make a fine roadbed. Outside of the curb 2 feet of crushed rock was laid, graded up to make an easy approach. This makes a road 11 feet wide. The earth on each side was graded and worked, making it all 40 feet wide, and affording tracks on each side for use iil dry weather. The average cost of the stone roads has been 70 cents per foot. The brick road cost $\$ 2,600$ for 3,000 feet, or about 90 cents a running foot.

Great St. Bernard

Avalanche.
The left wing of the great monastery of St. Bernard has monastery ol demolished by an avalanche, says a dispatch from Berne, dated March 1, 1897. Fortunately no lives were lost, nor was anyone seriously injured, but the monks occupying the monastery were in serious danger for some time before their safety was assured.
When the great masses of snow and ice descended upon the building, the occupants took refuge in the part of the building which remained in tact, and from there were able to dig a tunnel under the snow, through which they crawled. Most of them were severely frostbitten.

Motor fire engines are to be tried in Paris, and horseless carriages are now admitted to the Bois du Boulogne.

RECENTLY PATENTED INVENTIONS. Engineering.

Propulsion of Vessels.-John L Helmolt, New York City. According to this improve-
ment side paddles of finlike construction are located ment side paddles of cinlike construction are locate side, the paddles having a hinged connection with sliding support, and each set being adapted to move to against the water while the rear set moves forward folded close against the sides of the vessel, and vic versa, the blades thus operating alternately to propel the versa, the blades thus operating atternately to propel the
vessel. Means are also provided for reversing the action of the paddles, to move the vessel backward, and the propelling mechanisms are equally balanced at each side
of the vessel's hull, it being practicable to of the vessel's hull, it being practicable to turn th vessel on its center.

sailway Appliances.

Refrigerator Car.- Charles S Hardy, San Diego, Cal. This invention is for an im and covers better means of packing the foldng parts of the ice receptacle and improved spatter devices for the drain flue. The ice receptacle is composed of hinged sections, and is made water and air tight at all points and the partition at the are left for inlet and discharge, has rubber or other flexible material at its the drain flue end, so arranged that the.floor of the ice receptacle will normally seal itself to the drain flue by its own weight.

Electrical.

Voltmeter. - Paul Brandt. Berlin, ermany. In order to avoid errors of voltmeters due to the remanent magnetism of the iron ore actuated by
the solenoid, this inventor substitutes for the solid iron core hitherto used a sleeve of soft iron containing a bundie or cluster of wires, causing a mutual induction be tween the sleeve and the cluster of wires whereby the zed. The soft iron sleeve, containing its bundle or uster of wires, is actuated in the usual manner, being rawn into the spool or bobbin of the solenoid and suit ably connected to an index or pointer.

Miscellaneous

Nasal Expander.-George B.Farmer Perth, Canada. A spring yoke carrying on its fre ed to be readily inserted and applied to the nose, to properly expand the nasal wings and improve the passages for air inhaled to insure better breathing Each of the cups has a hard center and annular flexible strafaces of the nasal wings.
Movable Toy Device.-Axel L. Sjoberg, Union Hill, N. J. To impart a rapid or'slow vides a device which may be contained in the article or in a casing forming a portion of the article. A counter balanced winding shaft is journaled in a frame and pring tension device is secured at one end to one side of the movable object, a guide at the opposite side o ennected with the winding shaft and the other end onnected with the spring tension device. The winding of the device is accomplished by the motion of the

Breast Form.-George M. McCleary McKeesport, Pa. This is a pneumatic form with conexed outer faces and provided with non-elastic shapin ands holding the form close to the body. Shoulde traps and a girth are also provided, the latter havin nd at the front by a clasp.

Designs

Thill Coupling Plate.-Charles T Redfield, Glen Haven, N. Y. This plate has a main wing at an angle and terminating in a notched flang while at the opposite end is a shorter wing, als
Flower Holder.-Stephen M. Gris old, Brooklyn, N. Y. This holder consists of tw boops, side by siae, made of one
Incandescent Lamp Bulb. - Lawence H. Dolan, Alexandria, Ind. This is a six-side mond-shaped facets.
Note.-Copies of any of the above patents will be urnished by Munn \& Co. for 10 cents each. Ples end name of

NEW BOOKS AND PUBLICATIONS

A Manual of Photo Engraving, Con
TAINing Practical Instructions
For Pronucing Photo Engraved
Plates in Relief and Half Tone.
By. Jenkins. Chicaso, lll.: The ery practical book, beautifully printed, containing many illustrations of various styles of half tone work. the frontispiece being especially rich, representing the per the red breast, blue head, and intermediatecolors coming out most brilliantly. Preceding this page are picture of the bird in yellow, a pink red, blue and a darker red, which, when superimposed over each other, give the re markable multicolored picture. There are directions for preparing the plates and their treatment, illustrations of the apparatus used and examples of different kinds of screen plates and diaphragms shown. It is a book easily
understood, being based apparently on the results of actual experience, which is systematically classified and explained. It should prove a valuable aid to those desiring to be guided rightly in learning the elementary and practical points of the half tone process.

PBusiness and Personal.

he charge for insertion under this head is One Dollar a line for each insertion; about eight words to a line
Advertisements must be received at publication ofic searly as Thursday morning to appear in the follow h's issue.

Marine Iron Works. Chicago. Catalogue free

Simple Motor No. 64. क6. M. F. M., Sturgis, Mic
High grade well drins. Loomis Co., Tiffin, Ohio Ya. . Metal Polsh. Indanapolis. Samples free For bridge erecting engines. J. S. Mundy, Newark, N Improved Bicycle Machinery of every descriptio he Garvin Macline Co., Spring and Varick Sts., N. Y. Concrete Houses, - cheaper than brick, superior
stone. "Ransome," 757 Monadnock Block, Chicago. Machinery manufacturers, attention! Concrete and nortar mixing mills. Exclusive rights for sale. "Ran some
The celebrated "Hornsby-Akroyd" Patent Safety ou Engine is built by, the De La Vergne Refrigerating M/
chine Company. Foot of East 138 th Street, New York The best book for electricians and beginners in ele By mail, 84 . Munn \& Co., publishers, 361 Broad way N. Y. Pe Send for new and co New York. Free on application.

HINTS TO CORRESPONDENTS.
ames and Addrese must accompany all letters
or no attention will be paid thereto. This is for our information and not for pubication.
crrences to former articles or answers should
give date of paper and page or number of question
 be repeated: correspondents will bear in mind that
some answers require not a little research, and,
though we endeavor to reply to all either by lette though we endeavor to reply to all either by lette
or in this department. each must take his turn Buyers wishing to purchase any article not advertise in our columns will be furnished with addresses of
 personal rather than general interest cannot be
expected without remuneration.
ientitic Ancrican supplements referre to may be had at the office. Price 10 cents each.
books referred to promptly supplied on receipt price.
Miner and sent for examination should be distinctly
marked or labeled.
(7122) J. C. H. says: Supposing a ga jet in a dwelling house is left open and gas escapes at the the same? That is, would it lessen the pressure or spee of the gas, in passing the cock at the jet? If so, how ne flow by expanch of the the aperture in the tip. (7123) J. W. asks: Will you please in orm me in the ScIentific American how camphorated pharmaceutical preparations? A. Camphorated oil is prepared by dissolving 1 ounce avoirdupois of campho in 42 ounces avoirdupois of cotton seed oil, or dissolve once avoirdupois of camphor in 4 fluid ounces of oliv oil. We can supply the following books on pharma eutical preparations: "The Era Formulary," 5,000 ormulas, price $\$ 5$. Beasley's "Pocket Formulary, price $\$ 2.25$. Griffith's "Universal Formulary," price
$\$ 5.50$. "The Art of Compounding. A Reference Book for Pharmacists at the Prescription Counter," by Sco ville, price $\$ 3$ post paid.
(7124) C. H. W. asks: In a permawill the negative pole a positive and a negative pol positive pole will attract? If so, is the field of repulsion of the negative pole of the same size and of the same inverse intensity as that of the positive pole? A. We nswer the first query affirmatively. But the poles may vary considerably as regards the fiela of force their vicinity.
unsymmetrical.

INDEX OF INVENTIONS

For which Letters Patent of the

 United States were Granted FEBRUARY 23, 1897,AND EACH BEARING THAT DATE.

[See note at end of list about copies of these patents.]

Percolator stan

teering gear, N Nilson \mathbf{T}.i.
 Stopper. See Bothe, bas, T. T. B. Fulle
Stove, camp or army, O.D. Hunt.
 Stove grate, W. Thompson.
Stove or furnace grate. S. Smyth.
Stove or range, M. Mo Ko
Switch. See Automatic switch.
ar switch. Rail-

 Thermoscope, W. G. Looser....
Thresher and separator, grain, S.
Thessing machine bando cutter and distributing
feeder, Eddy \& Jones.

Tire val ve pneumatic, D. E. Waiker...............
Tires, method of and impement for patching
pneumatic, C. E. Green.e.ent pneumatic, ©. E. Green....
Toothinick, H.T. Tissington. Track gage, C. E. Irwin:
Transplanter, A. Speidel
Trap.
See An
Trap. See Animal trap. Stearitrap..............
Traveling case and baby carriage, combined, F Trolley, electric railmay, H. N. Gale Truck, W. S. \& J. W. B. Weaver Truck, car, M. G. Hubbard, Jr.......
Truck, Iumber, Ulman \& Emerson.
Typewriter cabinet, W.P. Yakeley
Umbreila, R.P. Knap. Upholstering, means for making piaited work in
H. B. Pitner................................ Valve, explosive en ine. E. L. T̈ubert.
Valve, hydrant, H. Pichler...........

mann .i.i..........................

Washing machane, J. H. Foub
Watch bow fastener H. F. Cois.
Water,
 Wells, removable plug for oil, $\dddot{\text { G. }}$. $\dddot{\text { P. Täder }}$.
Whieletree heot, M. M. Sanderson Window screen, E. E. Monroen.
Wire stretcher, W. W. Hendiciss
Wire stretching and splicing devi

DESIGNS.

Advertising fy net, H. D. Gaines.....................
Ash pan, M .
Bedstead end frame, metai, D. Frank.........26, 688 , Bedstead end frame, , , etal, D. F
Beicyele rame, R, M, Keatin.
Box, wooden viai, W. C. Estes...

 Chain, P.J. Duerr....iole....
Cigar ligher, C. . Goiden.
Clock case, C. D. Golden....

 Campbeil.:.

TRADE MARKS

Aperient waters, their salts and medicinal prepa-
rations containing such salts, natural, E. Sax-
lenher

 Cassimeres, Midalesex Company
 Flour, aged glutinous, E . A A Smith........
Flour, wheat, Freeman
Hiling Company: J. Foverages and cocoments, certan name Glue, liquid, E. J. Mills.
Hair crimping pins, J.
Hose hydraulic or
 Luting, ceent or putty, ion-hardening elastic,
F

 Paints, Harrison Brotters © Company Cony. Paper cutters, roll, American Roil Paper Com pany, stoves and heaters. Thoma. Toberts,
steven
stempany

 Toilet waters, Piver $\begin{aligned} & \text { © Cuie.... }\end{aligned}$
Woinet waters, Piver
Woolen clath, Midergno.e.........
PRINTS.
Cut No. 567, G. V.," I. E. Palmer
A printed copy of the speciffcation and drawing of

 Canadian parents may now be obtained by the in-
ventors for any of the inventions named in the fore-

For Evening Entertainments

At Home-In Church or Chape1,
In the Schoolhouse-In the Hall.
Can be Heard Distinctly in Any Size Room.

$\overline{\text { Berliner }}$ Gram=0=phone

The Most Perfect Talking Machine-Automatic Operation. Cannot Get Out of Order.

Wonderfully Adapted for a Novel Money-Making Entertainment.

Programme.

HOME ENTERTAINMENT.

Part First.

PIANO SOLO, - Princess Bonnie Waltz 2. SONG-Tenor Solo, TVE. Tramp, Tramp, Tramp banjo solo, $\quad=\quad=\quad$ Titus March 4. SONG-Baritone Sy Jolo, M. MyERS. 5. RECITATION, Imitation of a Street Fakir 6. HIALE QUARTETTE-MRAHAM. 7. SONG-Plantation Shout Bye, Mary Ann c. CORNE By BILLY GolDEN SONG, DUET, - Short and Sweet by ${ }^{\text {Signor GitanNini }}$

La Marseillais

Part Second.

o. BANJO SOLO, $\quad=\quad$ Medley of Jigs and Reels i. SONG-Tenor Solo, J= Down in Poverty Row 2. IIALE QUARTETTE-Negro So 13. RECITATION-Poem by Eugene Field. ${ }_{\text {Departur }}$ 14. DRUII AND FIFE (Descriptive), Spirit of '76 15. SONG-Baritone Solo, I Want Yer, Ma Honey 16. RECITATION, By Geo. Graham. Side Show Orator 17. SONG-(M. Farkoa's Great Success,
18. SONG-Baritone Sol
one Solo,
Say Au Revoir, Bu
By J. W. M YERS.
You will find our $\overline{\text { nin the list of our for each selection }}$ Records.

> THESE people are certainly enjoying themselves, and no wonder, for they a listening to one of the most varied entertainments ever given in a private parlor. They were first, as you will perceive by the accompanying programme, entertained by a piano solo. They then listened to a popular and patriotic song. The next selection was a banjo solo, and after that a song by the baritone, J. W. Myers, "Starlight, Starbright ;" then a recitation, " The Imitation of a Street Fakir." This was followed by a male quartette. Then came the very popular and famous Billy Golden with his plantation song, "Bye, Bye, Ma Honey ;" following that a cornet duet, and then the French national song, "La Marseillaise," by Signor F. A. Giannini.

> We have introduced in this advertisement the whole programme as rendered at this evening's "Home Entertainment;" each selection was a reproduction of the original. You listen to the quality and strains of the
cornet; you absolutely hear the picking of the banjo, while the quartette singing and the solo singing are the natural reproductions of the real artists.
> So true to life are these reproductions that if you were to come into the hall and see the people gathered together and yet not know that the evening's entertanmment was given by a reproducing or, as it is pertaps better nown, a talking machine, you would really hor how the room
> This special talking machine. the Berliner Gramophone, is the newest and the best. Its results are
better than those of the regular $\$ 100$ talking machines. We have made this result possible because of the dis. covery of a new way to record sound. It is recorded upon a flat disk and finally placed upon hard rubber, which makes it indestructible, very easy to handle, and, for the tirst time, thoroughly adapted for family use. These disks cost 60 cents singly, or $\$ 6$ per dozen, and as the variety is almost unlimited, you can have a never failing
source of pleasure and entertainment. Great men and great artists will be recorded, and you will thus be able to hear, in your own home, people of national and international reputation.
> There is no musical instrument that the Gramophone does not reproduce. This spring motor machine, which runs by clockwork, we sell for $\$ 25$, express prepaid to any point east of the Rocky Mountains. To points We guarantee Perfect Satisfaction, and will return your money. less express charges, if it is not satisfactory. It winds easily, weighs only fifteen pounds, and has the great advantage of being always ready for
use, because its power is within itself. use, because its power is within itself.
> We have two other styles for $\$ 10$ and $\$ 15$; the $\$ 10$ machine is run by hand, and is furnished with ear tubes for
two people to hear. The $\$ 15$ machine is also run two people to hear. The 115 machine is also run by hand, but is supplied with a governor, so that the speed is
regulated, and after it is turned as fast as necessary cannot be turned any faster. This makes the hand machine sure to give you a good reproduction, even in the hands of a novice.

These two styles-the $\$ 10$ and $\$ 15$ machines-sent prepaid as above indicated, upon receipt of price. All equipment necessary
accompanies each machine. Send for Catalogue. Send money by Registered Letter, Post office Order, or New York Draft to
National Gramophone Company, $=894$ Broadway, New York City

AMERICAN PATENTS. - AN INTER-

SPECIAL WIRE MACHINERY DESIGNED AND BUILT.
(Mr.J. N. DENNIS in charge of this department.)
Patterns designed for difficult Castings of Steel and Malleable Iron a Specialty. american wire goods co.. - lowell. mass.

DORMAN'S VULGANIZERS

 THE J. F. W. DORMAN CO

$$
\begin{aligned}
& \text { TRANSITS AND LEVELING INSTRUMENTS. } \\
& \text { PLIIMRERS' IRDN LEVEL With Double }
\end{aligned}
$$

ciping. Price 22.25 . Size 12 inch. For book on the
C. F RICHARDSON \& SON, PHYSICAL AND SCHOOL APPARATUS

SELF CHARGING MACHINE
For school, College
Circular free.
S. RITCHIE \& SOs
SCIENTIFIC AMERICAN SUPPLE-

 LATHES MAKSMITHS, TOOL MAKERS,
MENTAL AND REPAI
WORK
WORK, ETC.
Send for Illus. Catalog,
W. F. \& Jno. Barnes C In. Barnes
Ruby Street,
RocKFORD, I

F You Hre a manufacturer of Sheet Metal
 No. 1. Rolling Mill Machinery for sheet m
No. 2. Tue ano wire Mill Machinery No. 3. SLLUERWARE AND COINing Machinery No. 4. HARDWAREAND BRASS
NO. 5. BICYCLE MACHINERY THE WATERBURY FARDDRESS he waterbury farrel foundry \& machine co The Van Nor
 BUYTELEPHONES That Are Good--Not "Cheap Things" The difference in cost is little. We guarantee our appa-
ratus and guarantee our customers against loss by patent WESTERN TELEPHONE CONSTRUCTION Goth 250-254 South Clinton Street, Chicag Largest Manu facturers of Telephones
exclusively in the United States.

Experimental \& Model Work PORTABLE SINGLE RAIL SURFACE

 Civil Engineer
all Branches.
The Internat

THE IMPROVED GAS ENGINE.
 This beats Wind stitam or Horse GAS ENGIN E

GAS OR JAPOR ENGINES For Row Boats or Stationary W
No Fire Absulutlol Safe.
High Grade and Low Price 3/4 H. P. Pumping Outfits. All sizes Stationary up to $25 \mathrm{~h} . \mathrm{p}$.
Send stamps for descriptive matter and ofrics.
PIERCE ENGINE $C O .17$ N. 17 th St., RACINE, WIS. SCREW - CUTTING DIE HEADS SELF=OPENING and ADJUSTABLE.

Cbe Scientific American

 PUBILCATIONS FOR 1897.The prices of the different pubucations in the United
States, Canada, and Mexico are as follows: RATES BY MAIL. $\left.\begin{array}{l}\text { Scientific American (weekly), one year, } \\ \text { Scientific American Supplement (weekly), one year. } \\ \begin{array}{r}3.00 \\ 5.00\end{array} \\ \hline\end{array} \quad \begin{array}{r}3.0\end{array}\right)$ Export Edition of the Scientific American (month-
1y) in Spanish and English, Building Edition of the Scientific American
(monthly), 250 COMBINED RATES
in the United States, Canada, and Mexico. Scientific American and Supplement,
Scientific American and Building Edition,

Scientific American, the Supplement, and Building Edition,

Terms to Foreign Countries. The yearly subscription prices of Scientific American
publications to foretgn countries are as follows:

| Scientific American (weekly), | |
| :--- | :--- | :--- |
| Scientific American Supplement (weekly) | $-\quad 8.00$ |
| 6.00 | |

Building Edution of the Scientific Amer $\begin{array}{ll}3.00 & 012\end{array}$
xport $\begin{aligned} & \text { Edition of the Scientific Amer- } \\ & \text { ican } \\ & \text { liab, (monthly) in Spanish and Eng }\end{aligned}$
Combined Rates to Foreign Countries Scientific American and Supplement, - 8.501141 Scientific American and Building Edi-
tion, Scientitic American, Scientific American
Supplement, and Building Editon, -

Proportionate Rates for Six Month
The above rates include postage, which we pay. Re
mit by postal or express money order, or draft to order of

Improve Your Writing! "Daughberty Jisible" Cypewriter. Price $\$ 75$ Simple, Durable. Is a Saver. Has Everything in Sight Machines on Trial. Send Reference.
THE DAUGHERTY TYPEWRITER CO., KITTANNING, PA. New York Agency: c. c. W. Peck, 150 Nassau St.
 Iil Pypuriter EXCHANGE, $1 \frac{1}{2}$ Barclay St., New York 156 Adams St., Chicago
38 Court Sq., Boston. 818 Wyandotte Street, Kansas City, Mo.
 THE NATURE OF MUSCULAR CON

 Haw

A.W. PABER

LEAD PENCILS, COLORAD PENCLLS, SLATE
PENCILS, WRITING SLATES. STERL PENS, GOLD
 78 Reade Street et, $-\quad-$ New York, N. Y.
ctory Established 1761 . Manufact

THE POCKET KINETISCOPE.

 are the Best Pencils manufactured in
the world.
Every architect. draughts- PENCILS

SB COMPLETEELECTRIC

DON'T BE POOR $\underset{\text { year }}{\mathbf{8 2 0} 200 \mathrm{an}}$

 COPY LETTERS ifteen a minute, all legible, use my in
proved atomatitcopying machine.
Sena for iliustrated circuar. JOHN H. ANDERSON,
910 Monadnock, CHICAGO
GERMANY.
A firm dealing in imported technical goods and well known among German industrial establishments, which is located in the Center agency for the introduction of suitable Ma chines and other Technical Articles in Germany; only first class articles will be considered. First class references will be exchanged. For further information address T. 3901, care of RUDOLF MOSSE, COLOGNE, GERMANY ONLY PRACTICAL MAGAZINE CAMERA

SUNART'S
"VENI, VIDI VICI, MAGAZINE,
SUNART a for illustrated Cata SUNART PHOTO CO.. ROCHESTELR, N. Y

Every Scientist

Scientific American

He cannot afford to be without it any more than the doctor can dispense with the Materia Medica.

 the doctor can dispense with the Materia Medica.It is the leading scientific publication of the
world and is everywhere acknowledged as the standard authority on every subject pertaining to science in all branches. It consists of sixteen
large pages, profusely illustrated, and contains articles by the most eminent writers on the
mechanical arts. It it a weekly record of new
patents and iuventions, and is indispensable to patents and inventions, and is indispensable to
every person who is interested in the progress $\$ 3.00$ a year, $\$ 1.50$ for six months. Remit by
check, draft, express or money order payable to M^{\top} JNN \& CO., Publishers, 361 Broadway, New York City.

Study Law at Home

NAZARETH INDUSTRIAI, SCHOOL,

 $\$ 5000$ We orer cast for simpleideas, patented

EXPERIMENTAL MACHINE \& MODEL
 NESS \& READ NOISES CURED,

X Ray Apparatus

ICE-BOATS-THEIR CONSTRUCTION

Experimental Science

17th Edition Revised and Enlarged.

840 pages, 782 fine cuts, substantially and beautifully bound. Price in cloth, by mail, $\$ 4$. Half morocco, $\$ 5$.
This splendid work is up to the times. It gives young and old something worthy of thought. It has influenced thousands of men in the choice of a career. It will give anyone, young or old information that will enable him to comprehend the great improvements of the day. It furnishes sug gestions for hours of instructive recreation. Send for illustrated circular and
MUNN \& CO., Publishers, Office of the

SCIENTIFIC AMERICAN, 361 BROADWAY, = NEW YORK.

จfDvertisements.
OIDINARY RATES.
Inside Page, each insertion--95 cents a line
Back Page, each insertion--- $\mathbf{\$ 1 . 0 0}$ a line Hisher rates sore clequsses of Advertisements, Special and The above are charges per agate line-about eight
words per ine. This onotice sows the widt of thellie, and is set in agate type. Engravings may head adver
tisements at the same rate per agate line, by measure
mient

Cribune $\&$ Bīycle

The Easient Runing Wheel in the World.
THE BLACK MFG. CO., ERIE, PA.

Nickel Silver

Watches

We are casing all sizes of movements in this new metal. It takes a better finish and is mor enduring than sterling.
It supersedes the old nickel plate, and enables one to have a perfect timepiece at small cost. Our Solid Gold and Filled Cases, as well as Sterling Silver and Enameled patterns, are in greater variety this season than ever.
New specialties have been added.

Our '97 Model

Trump Cyclometer,
the 10,000 mile wheel recorder, are all shown in our new catalogues, which will be sent to all.
The Waterbury Watch Co. WATERBURY, CONN

 BIFIMETTILLUBRICATES If YOU HAVV:A HOTBORYIT. C.H.BESLY: 8 CHO

[^0]Boiler and Pipe Coverings. Fire-Proof.
Asbestos Materials
of all kinds.
Wicking, Fibre,
Mill Board, Easily Applied.

$* *$
Built to
Sit on,
Dot to
Straddle

 $\boldsymbol{C}_{\text {be }}$ Remmelly Protractor and Over 4,000 Othbr Cools are illustrated, described, and priced in Our Dew 1897 Catalogue. It is a book of 710 pages, $10 \frac{1}{2} \times 7 \frac{1}{2} \mathrm{in}$. Mailed ing us 35c. Discount sheet with each book. MOnCGOMERY \& CO., Makers of Figh Grade Cools, 105 Fulton St., Dew York Zity.
PRIESTMAN SAFETY OIL ENGINE

IMPERIAL BALL BEARING AXLE

THE BICYCLE: ITS INFLUENCE IN

Improvements,

6
REAL IMPROVEMENTS, NOT CHANGES MERELY, DISTINGUISH

NEW

 MODELS

of the

 REMINGTON

WYCKOFF, SEAMANS \& BENEDIC'T, 327 Broadway, New York
THARGite GASOLINE ENGINE

GRAND and UPRIGHT
\& DídMOS a
New Styles just introduced, embody ing many points of superiority.

Boston. New York. Chicago.

The Best Machines for Keeping Time that it is possible to make are American Waltham Watches.
Get either the
"RIVERSIDE" or "ROY $A L$ " movement. For sale by all retail jewelers.

The Most Popular Scientific Paper in the World Only \$3.00 a Year, Including Postage. This widelr circulated and splendidy illustrate paper is published weekly. Every number contains six-
een pages of useful information and a large number of uriginal engravings of new inventions and discoveries representing Engineering Works, Steam Machinery New Inventions, Novelties in Mechanics, Manufactures tecture, Agriculture, Horticulture, Natural History, etc. Complete list of Patents each week.
Trrins of Sub crintion. One copy of the Scien TIFIC AMERICAN will be sent for one year -52 numbersCanada, or Mexico on receipt of Thee Dollare the publishers; six months, 81.50 ; three months, 81.00 . Clubs.- Special rates for several names, and to Pos Write for particulars.
Express Money Order. Money carefully placed insid of envelopes, securely seaned, and correctly addressed seldom goes astray, but is at the sender's risk, Address
all letters and make all orders, drafts, etc., payable to all letters and make all orders, drafts, etc., payable to
MUNS © CO., $\mathbf{3 6 1 1}$ Broadway. New Yoric.

Sicientitic © This is a separate and distinct publication from THE size, every number containing sixteen large pages full of engravings, many of wnich are taken from foreign papers anc accompanied with translated descriptions.
THE SCIENTIFIC AMERICAN SUPPLEMENT is published weekiy, and includes a very wide range of contents. It
preserts the most recent papers by eminent writers in all the principal departments of Science and the Useful
Arts, embracing Biology, Geology, Mineralogy, Vatura Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geography Archæology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography, Technology. Manu-
facturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography. Medicine, etc. A vast amount of fresb and valuable information obtainable in no other publication.
The most important Engineering Works, Mecbanisms, The most important Engineering Works, Mechanisms,
and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT.
Price for the SUPPLEM ENT. for the United S!ates, canada, and Mexico. $\$ 5.00$ a sear; or one copy of th MENT, both mailed for one year to one address for $\$ 7.00$. Single copies, 10 cents. Address and remit by postal order, express money order, or check,
MUN $\&$ CO., 361 Broadway, New York.
ghilding 玉dition.
The Scientific American Bullding edition is
issued monthly. $\$ 2.50$ a year. Single copies, 25 en Thirty-two large quarto pages. forming a large and splendid Maeazine of Architecture. richly adorned with elegant plates and other tine engravings; illustrating the
most interesting exampies of modern Architectural Construction and allied subjects. of a variety of the latest and best plans for private residences. city and country, including tbose of very moderate cost as well as the more expensive. Drawings in
perspective and in coior are given, together with Floor Plans. Descriptions, Locations, Estimated Cost, etc. The elegance and cheapness of this magnificent worb bave won for it the Largest Circulation of any
Architectural publication in the world. Sold by all Architectural publication in the world.
newsdeaiers. $\$ 2.50$ a year. Remit to
MUN N $\mathbb{C O}$. $\mathbf{3 6 1}$ Broadway, New York.

Fxproct ixdition
porated "LA AMERICA CIENTIFICA E INDUSTRIAL,"
or Spanish edition of the SCIENTIFIC AMERICAN is published monthly, and is uniform in size and typography
with the SCIENTIFIC AMERICAN. Every number con tains about 50 pages, profusely illustrated. It is the finest scientific, industrial export paper published. It circulates throughout Cuba, the West Inaies, Mexico, Central and South America, Spain and Spanish possessions -wherever the Spanisu language is spoken. The sifi-
entific American Export Edition bas a large guaranteed circulation in all commercial places through-
out the world. $\$ 3.00$ a year, postpaid, to any part of the out the world. $\$ 3.00$ a year, postpaid, to any part of the
world. Single copies, 25 cents. world. Single copies, 25 cents
foreign trade may have large and hano desire to secure announcements publisbed in this edition at a very moderate cost. Rates upon application.
MUNN $\mathcal{E} \mathbf{C O}$. Publishers.

PRINTING INKS

[^0]: -

 ## The

 ## American

 Bell Telephone Company,

 125 Milk Street,
 Boston, Mass.
 This Company owns Letters-Patent No. 463,569, granted to Emile Berliner November 17, 1891, for a combined Telegraph and Telephone, covering all forms of Microphone Transmitters or contact Telephones.

