

THE JEROME PARK RESERVOIR, NEW YORK

 CITY.The Aqueduct Commissioners of the city of New York have now in active progress of construction two important works to increase the water supply of New York City. One is the new Croton dam, designed to increase the size of the present Croton Lake and thereby impound a greatly increased water supply for the city at large.
From the present Croton Lake two aqueducts, the cld one of 1840 , the other the new one completed in 1890 , run to the city, delivering their water directly into the reservoirs in Central Park. The city of New York has had one policy as to its water supply; it has always worked on the lines of an increase of reservoir capacity by addition, the old reservoirs being preserved This by addition, the old reservoirs being preserved. This
conservative method has been so fixed that to-day the conservative method has been so fixed that to-day the
proposals to destroy the original reservoir at Fifth

NEW YORK, AUGUST 29, 1896.

Avenue and Forty-second Street are opposed, and we duct service, yet there is always such a possibility, and find that for the immediate supply of New York City, in therefore the Central Park reservoir is to be kept filled ; addition to this reservoir, the lower and more recently an accident or cutting off of the aqueduct's delivery ddition to this reservoir, the lower and more recently per reservoir of still mare recent construction the further to the north and west auxiliary reservoirs for the supply of specific districts; but as the case now stands the lower portion of New York City depends upon the Central Park reservoir capacity. If the bottom of this reservoir was high enough when the water was exhausted to its lowest level, a billion of gallons would be available, but, owing to the low level of the reservoir, it an only be exhausted to about three-quarters of its ceases to be of further avail, so that the city can only epend upon this reservoir for threefourths of its capac ity, or three days' supply. While it is not probable that any accident would occur to interfere with the aque-
would leave New York provided with only three days supply of water
'To provide for additional storage capacity for direct use in the city, construction operations are now in pro gress on what is known as Jerome Park reservoir, in Fordham, in the annexed district.
Here Jerome Park, with its famous old race course on which so many celebrated horses have been ridden to defeat or victory, with a quantity of adjacent territory has been selected for a reservoir. The ground offers air advantages in point of elevation and configuration its vicinity to the city and its situation in the heart of the annexed district make it peculiarly available for the purpose. The area of about 5,800 feet long and 2,800 (Continued on page 186.)

THE JEROME PARK RESERVOLR, NEW YORK CITY.

Srientifir 2mmerian.

ESTABLISHED 1845.
MUNN \& CO.. Editors and Proprietors. published weekli at
No. 361 BROADWAY. NEW YORK.

terms for the scientific american.

 ne copy, one year (0xtrblished 1545.) Reuit by postal or express money order, or by bank draft or check.
MUNN $\&$ CO... 361 Broadway, corner of Franklin Street, Ne York.

Export Edition of the Scientific

 8 co. Readers are specially requested to notify the p
any failure. delay. or iregularity in receips. of papers.

NEW YORK, SATURDAY, AUGUST 29, 1896.

TABLE OF CONTENTS OF SCIENTIFIC AMERICAN SUPPLEMENT NO. 1078

THE RECENT FAILURES OF ARCTIC EXPEDITIONS.
It is hard to believe that the resources of mankind are unequal to traversing the few hundred miles of ice or water which intervene between the most northerly point reached by Nansen and the north pole. The lesson of the day is that man's powers are constantly on the increase, and that new fields of achievement are opened up to him by the greater extension of mechanical and scientificoperations. It is not only in the invention and discovery of the new, but it is in the extension of the old and in the joining of resources that this increase of power lies. Fifty years ago a great mechanical or engineering structure was the work of an individual, and its design and execution were properly attributed to its engineer. At the present time, if the business man finds that a great bridge is needed, a dozen contracting firms are ready to supply him with a dozen contracting firms are ready of almost any desired span. The consequence of bridge of almost any desired span. The consequence of
the existence of many great engineering establishments the existence of many great engineering establishments
of every class is, that the facility for extraordinary works is increased. The giant bridges of other days would to-day be considered small. The Bunker Hill monument is far overtopped by numbers of modern office buildings, yet in its day the monument in
was one of the tallest structures of the world.
The general feeling is that man can make almost anything if the means in the shape of money are provided. It seems impossible that his powers in other directions than that of mere construction should not also be increased by the improved appliances at his command.
It is a fair assumption that even twenty or thirty years ago it would have been pronounced a more difficult task to bridge the Forth in a single span than to reach the north pole. The laying of the first short-lived Atlantic cable was thought a great feat, while to-day a new transatlantic cable receives but a passing notice from the press. Yet, while a mere contractor stands ready to build a bridge of a half mile span, to lay a three thousand mile cable, to penetrate a hundred feet
through quicksand for a foundation, or to erect a building so tall that the greatest monuments of the earth would serve only for its columns, the north pole seems absolutely isolated from mankind by a few hundred miles of untraversable distance.
The tendency of the day is to attack the world's problems on new lines of united effort rather than of individual action. One of Stockton's clever stories tells of the great war syndicate, which waged a war by contract. In view of the fact that so much can be done by association, polar expeditions are open to criticism as being carried on upon the old principle of in dividual effort. This system makes man too much the
subject of atmospheric conditions. On the snow cap subject of atmospheric conditions. On the snow cap
his progress is fast or slow according to the weather. his progress is fast or slow according to the weather.
When we hear of Peary's 1892 journey of 1,300 miles in seventy-nine days, and compare it with his 1894 jour ney of 250 miles in forty-five days, we realize that a rational effort to reach the pole should be free from such uncertainty. It is hard to believe that the same powers of man which have created the engineering triumph of the day, and relegated the former wonders of the world to the region of the commonplace, cannot find a way across the unexplored polar area.
The open polar sea theory was a great reliance with those interested in Arctic work some years ago. Man has a taste for the paradoxical, and there were pretty
good grounds for believing that there might be a polar ocean free or nearly free from ice. The theory, how ever, has been pretty generally abandoned. The long drift of the unfortunate Jeannette in the sea north of Siberia shows that ice is there, and one of the possi bilities foreseen by the Nansen expedition, and actually carried out, was the abandonment of the vessel and taking to the ice.
When the Jeannette was abandoned and the journey to the south was begun, the northward current for the first ten days was so strong that seven miles were abso lutely lost, observations showing at the expiration of that period that while the party traveled due south the current had carried them to the north faster than thei rate of progress.
Nansen, in his specially constructed vessel, with his crew of selected men, relied on getting into such a cur rent to be swept across the pole, but failed. The dreariness of the work in the light of the experience of others is great. The wretched two years' drifting of the Jeannette, during which time but six degrees of north ing were made, and the long drift of the Fram, ope up a vista far from alluring for those who work upon similar lines. The abandonment of ship and crew to the current by placing the ship in an ice pack whence she can never stir until released by Nature's hand in cludes the voluntary abandonment of man's own re-
sources. It is like Andree's proposed ascension in his balloon, depending on a favorable wind to blow him and his coadjutors across the north pole.
The Arctic expeditions generally are conducted on very primitive lines. Peary's party of ten men, Nan sen's party of twelve men, Andree's party of three men go bravely to the north, relying on personal and indi vidual effort for success. The sinallness of the expedi-
tions and their limited appliances at least suggest that
greater possibilities might follow upon a better equipped organization. If the work were undertaken with adequate capital and resources to back it, a better chance would be presented
If, by the definite location of the exact limits of land in the north, and by the demonstration of the impossibility of reaching the north pole, these expeditions could be stopped, some good would be done. There seems to be a fascination in Arctic research which would cease were the region explored and mapped. But, until this is done, explorer after explorer will go north and seek for the unknown. Already the Antarctic region is being looked to, and in a few years we will have south pole expeditions working in rivalry with north pole ones. But it seems a pity that the business of polar discovery cannot be pursued under better auspices than those of the expeditions of the present time. It is pitiable to hear that Nansen might have succeeded had he had more dogs and sleds. With adequate backing, a chain of relief stntions of ships might be established along the meridian, and bases of supply carried along close in rear of the advance party. Then, when the properly supported explorers stood over the earth's axis and had, in a sense, the earth rotating about their feet, the deed would be done and the penultimate secret of the earth's surface would be solved.
The meeting of Stanley and Livingstone in equatorial Africa is recalled by the equally romantic meeting of Nansen and the Jackson party an earth's quadrant distant in the icy north. In our columns we have given full accounts of Nansen's work. It is to be hoped that before the century is over the north pole may be reached by the intrepid Scandinavian or by some equally endowed explorer. Under present methods the man determines the result of these expeditions. It is a pity that the methods and appliances cannot be made to insure their success.

and X Rays in

We have communicated to the Acc. di. Sc. fit. e mat di Napoli (February 25, 1896), that a spark introduced into the circuit of a Ruhmkorff coil and of a Crookes tube modifies the action of X rays.
We call positive air spark the spark introduced be tween the positive pole and the tube, and negative ai spark the spark introduced between the negative pole and the tube.
With rigorous experiments we have found that a positive air spark increases the effect of X rays and a negative air spark diminishes it.
By means of various arrangements, we have also ob tained the Crookes phosphorescence and the X rays from the Geissler tube.
The following arrangement (bipolar inductive) gives the best results :
On the outside of a Geissler tube are glued two pieces of tinfoil, which are connected to the poles of an induc tion coil. These are also in communication with graduated spark stand. When the coil acts, at every spark passing between the balls of the spark stand, a discharge passes through the tube and illuminates it. Contemporarily on the wall opposite to the positive tin foil appears the Crookes phosphorescence, which is accompanied by the X rays. The Geissler tube in this side is transformed, momentarily, in a Crookes tube while it maintains in the other regions the properties of the low vacuum tubes. In this arrangement the phos phorescence and the effect of the X rays depend upon the length of the air spark. There is a determined length, which produces the greatest action. When it is unnecessary to employ Crookes tubes to obtain X rays, the Roentgen phenomena may be produced by using low vacuum tubes without electrodes. Our arrangements are besides used to concentrate the cath odic rays, and consequently the phosphorescence and the X rays, in a restricted side of a Crookes tube. The concentration was also obtained by employing a mag netic field.

J. D. Whitney.

Josiah Dwight Whitney, professor of geology at Harvard University, died in New London, N. H., on August 19, at the age of 77 years. He was graduated rom Yale in 1839, and the following year he made a survey of New Hampshire. A geological exploration of the Lake Superior region, made by him in 1843, was ollowed by a survey of the mining regions of all the States east of the Mississippi. He was appointed State chemist and professor in the Iowa State University in 855. Five years later he was made State geologist of California. In 1860 he became professor of geology a Harvard, a post he occupied until his death. Many years ago he made a proposition to the university to give his geological library to the Museum of Natural History if a salary of $\$ 5,000$ a year should be guaran teed to him as long as he should live. The proposition was accepted. Prof. Whitney never became incapaci tated. Yale gave him a degree of LL.D. in 1870. He was a member of many foreign as well as American scientific societies.
*By F. Campanile and E. Stromei, in the English Electrical Review.

The Colossal Cavern of Kentucky.

by horace c. hovey.
The announcement of a new Kentucky cavern ought to cease to cause surprise. There are literally thousands of caves and grottoes in the Ohio Valley, few of which have been thoroughly explored. Each has its own peculiarities, and the time will come when what the French call the science of "speleologie" will not only have its isolated devotees, but its organized and endowed societies. Why not have an American Cavern Club as well as an Alpine Club ? No field would more richly reward systematic and elaborate investigation. I am, and always have been, an enthusiastic admirer of the Mammoth Cave, and still regard it as without a rival or a peer. Yet that is no reason for not exploring and admiring other remarkable underground regions. The Diamond Cave, and Dixon's, White's, Proctur's, Salts, and Grand Avenue caves, and many others that are found in the vicinity of the Mammoth Cave, would be regarded as wonderful were it not for their more famous neighbor.
The latest discovery, and one that is attracting many visitors, was made July $16 ; 1895$, by Mr. Pike Chapman, and has been named "The Colossal Cavern." Its wonders have only been partly opened up as yet, and great disclosures are expected from the judicious use of dynamite. Meanwhile what has already been made accessible to the public is worthy of description in these columns. From my intelligent guide, Mr. John Nelson, I obtained many facts to be added to my own observations and inquiries during a hurried visit to the region, supplemented by the notes taken by the distinguished cave photographer, Mr. Ben Hains, of New Albany, Indiana, although I regret to say that no views have as yet been taken that are suitable for purposes of illustration.
In order to reach this new wonder of Kentucky, the tourist stops at Proctor's station on the Mammoth Cave short line railway, where he finds a comfortable hotel, with the usual display of stalagmites and other fantasand elsewhere. A fairly good road has been constructed, leading for three miles to the foot of the hill in which the cave described is located. The entrance is half way up the hillside, and it is unique in that access is gained through the tip of a subterranean dome, laid open by the washing down of the eminence, and that is made accessible by a series of steep ladders whereby we climb down for 66 feet to the floor of clome, which at the bottom is 15 feet in diameter

A winding path from the north side of this dome continues for several hundred feet and is made pictur esque by numerous curious niches and small pits. This passage finally brings us abruptly against the perpendicular wall of Quinque Dome, whose floor is
visible about 36 feet below where we stand. Two ladvisible about 36 feet below where we stand. Two lad
ders lead down to the floor, and on descending them we note the five rocky projections that have suggested the peculiar name of this dome. The walls between by the water into strange and fantastic shapes. • Standing on the floor of Quinque Dome, we are more than 100 feet lower than the entrance to the cavern, and most of this descent, as has been remarked, is made by the use of ladders. The exit from Quinque Dome is by a low passage enlarged by blasting so as to obviate the necessity of crawling. After going along for abou 200 yards the greatest feature of the cavern is reached. namely, the Colossal Dome. Our path leads directly across the very tip of the dome, planks being laid for we may peer down into the dark abyss that measures by the plumb line fully 137 feet. Dropping a fire ball by the plumb line fully 137 feet. Dropping a fire ball
through this crevice, the corrugated sides of the dome through this crevice, the corrugated sides of the dore lighted up, and we watch the flaring mass of flame as it slowly circles around, until after many gyrations it touches the distant floor
Following the passageway for 150 feet further, we are confronted by an opening into what the guide tells us is the "main cave," which is about 40 feet high and 60 feet wide. Again availing ourselves of the aid of a ladder, we reach the floor and then turn to the righ wide and 60 feet high, flanked by enormous pillar formed by erosion, and springing aloft in majestic proportions. The slope of debris continues beyond the gateway, while the walls around us tower to an im mense height; and presently the fact dawns upon us
that we are now within the vast dome of which we that we are now within the vast dome of which we
had obtained a glimpse by lifting the plank in the had obtained a glimpse by lifting the plank in the
bridge overhead. At every step, as we advance, the subterranean scenery grows more and more wild and imposing. At length we find ourselves on the edge of an inner pit, like a cistern, whose bottom is the true now of the dome. Descending into it by a ladder, we stand at the very lowest level of the cavern, which is really the third tier or level, 240 feet vertically below the entrance. It will also be noticed that in order to the entrance. It will also be noticed that in order to pits or domes-the terms being used according to the point of observation. By burning magnesium we follow with the eye the fluted walls until we are barely
able to see the snow-white fungus growing on the
under side of the bridge over which it seems strange that we had dared to go. Large drops fall like shot from the apex of the dome to the floor, adding by their from the apex of the dome to the floor, adding by their
music to the majestic impression made on the mind ; and we try to imagine how it would seem to have a and we try to imagine how it would seem to have a
winter cascade fall thundering down for 137 feet on winter cascade fall thundering down for 137 feet on
the rocks where we stand, as it is said to do in the rainy season
The visitor returns by the ascending path by means of which he had previously descended. In doing so he has a better opportunity to examine the peculiar for mations that offer their attractions to his gaze. A digression is made through what is termed "the short route," in order to inspect a fine group of stalactites, which do not elsewhere abound in this cavern. After passing the mouth of a broad pit that nearly fills the pathway and that is 86 feet deep, we come to a smal body of water called the "Pearly Pool." This is a depression lined with tufts and sprigs of alabaster crystals, and the edge is crested with the same mate rial. The water being exquisitely clear, the general effect is very fine. Around the pool are stalactites and stalagmites uniting to form pillars 20 feet high. The roof for many yards is hung with countless smaller stalactites. Beyond this spot the cavern is occluded by debris, and we retrace our steps to the regular p The we had left for this excursion into fairyland
"cave miles," to explore which takes two full hours of continuous walking, sometimes over rough rocks and continuous walking, sometimes over rough rocks and
again over a sandy floor or some bank of clay. The avenue varies from 40 to 80 feet in width and from 20 to 40 feet in height. The special objects of interest here are the gypsum crusts and flowers (oulopholites) which being fresh and uninjured by the smoke of lamps and fire balls, sparkle with dazzling whiteness. Sections a yard square often hang down for six inches from the roof, ready to drop on the floor when jarred Here and there large clusters of cave flowers may be seen. This crystal gallery is several hundred feet long Interspersed amid extremely delicate lacelike forma tions are enormous rosettes of gypsum, and beyond these for a long distance the roof is covered by broad crystals of selenite. There are also patches of fibrous gypsum, the single spikes often being many inches long. What is called the "Bear's Robe" is of these fibrous crystals, softly tinted with gray instead of pure white. Staglike branches of crystals occasionally st out from the wall for a foot without any support.
Here the cave divides into two branches around an island," and at the farther end a broad passageway piled with enormous rocks, one of which is 6 feet
thick, 20 feet wide, and 60 feet long. Som distance thick, 20 feet wide, and 60 feet long. Som: distance
on we pass by two very deep and symmetrical pits into which the water incessantly drops. From here on the cavern is wild and highly diversified in its appearance until at the farthest point of exploration we find a recently discovered dome that is entered from the side by climbing down a mass of debris to the bottom. Its rising to the height of perhaps 120 feet, as if cut from a seamless mass of stone. This is really one of the finest things in the cave.
On returning to the entrance our attention is directed o an opening to the left, said to lead four miles to a considerable underground river. But this region has not yet been opened for visitors. Indeed, there seems to be a good deal of mystery about certain explora tions, the conjecture being that the Colossal Cavern is ameted with two others that have long been known, It would evidently be to the advantage of the man agers if they could find some way of obviating the necessity of climbing down and up again those long, steep, and somewhat dangerous ladders. But even a the cavern now stands it is worthy of being mentione amid the wonders of America

Big Machinery Export.

An entire locomotive making plant will be taken soon to St. Petersburg from Philadelphia on the British steamship Laleham, which has been chartered for the purpose. The plant is to be erected at Nijni-Novgorod the commercial metropolis of the interior of the Russian empire. Contracts for machinery for the plant amount
ing to over $\$ 500,000$ were awarded to American manu ing to over $\$ 500,000$ were awarded to American manu
facturers, most of them going to Philadelphia firms.
The plant is to be built for the Sarmova Works, a extensive establishment engaged in manufacturing
cars, steamboats, steam boilers, and employing 5,000 ars, steamboats, steam boilers, and employing 5,00 building 200 engines a year, and will employ about 1,000 hands. All of the foremen and engineers will be Ameri cans. The buildings have been completed and are now ready to receive the machinery.
The Czar has given valuable encouragement to the enterprise. Nearly 85 per cent of the railways in the empire are operated by the government, and the new company will get a great share of the work for them The company will be knowu as the Russian-American
Manufacturing Company. The consignment will aggreManufacturing Company. The consignment will aggre
gate over 3,000 tons.

Roller Ship Launched.

In the presence of numerous foreign engineers and a arge crowd of onlookers the so-called "roller steamer," the invention of M. Bazin, a well-known marine en gineer, was launched August 19 at the Cail dock yards, at St. Denis, France. The vessel will traverse the Seine cross the English Channel, and go to London.
The boat is a large rectangular iron box about 120 feet in length, 40 feet wide, and 5 feet high. It is mounted on six lenticular disks or rollers 30 feet in diameter and sunk in the water 10 feet, while the lower floor of the box is at an equal distance from the level of the water. In the sides of the box is the machinery, which is of 750 horse power. This sets in motion a screw and the rollers. In the upper part of the vessel, be tween the disks, which pierce the box and extend be yond it about seven feet, are comfortable cabins. This trange looking vessel has a displacement of 280 tons M. Bazin's first experiments were made with a smal model, the rollers of which were moved by clockwork the propeller being replaced by a weight, which was attached by a string passing over a pulley to the front of the boat. When the rollers were not working thc miniature boat took 22 seconds to cross from one side of the large vessel in which it was placed to the other side. When they were working it took only 11 seconds. As the power necessary to keep the rollers at work is only one-quarter of the power that is required to keep he screw going, the mathematical result is that the speed of the vessel is doubled by an extra expenditurc of power which amounts to only one-quarter. But a vast increase of speed is not the only advantage claim ed for these rolling steamers. It is pointed out that when they shall be used the length of voyages will be diminished, the consumption of coal will be lessened and, as a natural result, passengers and freight will be transported at far less expense than heretofore. Moreover, experts assert that the stability of the rolling boats will be far greater than that of the steam vessels at present in use. It is also asserted that the catastrophes at sea would practically cease by the use of ollers. In case of a collision or other accident, though some of the rollers might be damaged, some would almost certainly escape damage, and two would suffice to keep the vessel afloat and take her into port.
M. Bazin expects the boat to make from 45 to 50 kilo meters an hour while crossing the channel. The theory of the inventor is that boats should roll over the wate instead of cutting through it.
He has designed a large steamer on the same prin ciple, which he estimates will make the voyage from Havre to New York in four days, but of course this speed is largely problematical.

Recent High Balloon Ascensions.

In the Comptes Rendus of the Paris Academy of Sci ences for April, 1896, vol. cxxii, page 849, Messrs Hermite and Besancon give the principal results of the last scientific balloon ascension, which started at 11:30 A.M., March 22 , after consulting the weather predic tions of the Central Meteorological Bureau. The small balloon with its apparatus weighed 32 kilogrammes (70 pounds), and started with a vertical pull of 106 kilo grammes (235 pounds) ; consequently the balloon ros perpendicularly for three or four minutes with a steadily increasing velocity. For nearly half an hour the balloon scarcely moved from the vertical, so that the velocity of ascent certainly exceeded 5 or 6 meters 16 to 20 feet) per second. After three and a half hours the balloon descended near Cambray. The self-regis ters show that it, attained a maximum height of 14,000 meters (42,933 feet) within about forty-five minutes after starting, and a minimum temperature of $-63^{\circ} \mathrm{C}$. $-81 \cdot 4^{\circ}$ F.) The temperature at the surface of the arth beneath the balloon at that moment was $+14^{\circ} \mathrm{C}$ $+57.2^{\circ}$ F.) Consequently the average rate of decreasa was $1^{\circ} \mathrm{C}$. $\left(1.8^{\circ} \mathrm{F}\right.$.) for 182 meters (597 feet). This value does not much exceed that found in their voyage of October 20, 1895, when the aerostate at an altitude of 15,500 meters (50,854 feet) experienced a temperature of $-70^{\circ} \mathrm{C}$. ($-94 \cdot 0^{\circ} \mathrm{F}$.), while the temperature at the sur face of the ground was $+11^{\circ} \mathrm{C} .\left(+51 \cdot 8^{\circ} \mathrm{F}\right.$.) The regis tering thermometer has been tested in a very cold in closure, and records properly down to $-80^{\circ} \mathrm{C}$. $\left(-112 \cdot 0^{\circ}\right.$ F).-Monthly Weather Report.

The Majestic Beats Her-Best Record.
The White Star steamship Majestic clipped 12 minates from her own record on the voyage she finished August 19 from Queenstown. Her time was 5 days, 17 hours, and 56 minutes. From Daunt's Rock to Sandy Hook Lightship the seas were unruffled and the air was almost flawless.

College Laboratory Burned.

The chemical laboratory building at the University f Illinois was destroyed by fire August 17. It is sup posed to have been struck by lightning. The build ing was three stories high above the basement and con-
tained five laboratories. It was one of the largest and tained five laboratories. It was one of the largest and
best of its kind in the country and was erected at a cost of $\$ 40,000$. The fittings, apparatus, and supplies are estimated to have brought the entire value to $\$ 75,000$

A NOVEL CAR AWNING VENTILATOR.
To insure the improved ventilation of a railway passenger car, and prevent the entry of cinders and dust, as well as to prevent draught blowing through the ventilators down upon the passengers, the improvement shown in the accompanying illustration has been devised and patented by Charles A. Bennett, of No. 32 West Hamilton Place, Jersey City, N. J. Fig. 1 represents the application of the improvement on a por tion of one side of a car roof, there being two deflect ing wings hinged on the ends of the window casings. and these wings being pivotally connected by links on their inner faces with the arms of a lever fulcrumed on

BENNETT'S CAR AWNING VENTILATOR.
a plate set in the window casing. An arm of this lever is engaged by a handle sliding in the sill, and the outer end of the handle may be moved by means of a rod extending along under the windows, whereby all of the wings on one side of a car may be turned simultaneously, the three-armed levers thus actuated causing the wings on one side of each window to swing outward, while its opposite wing swings inward, longitudinally of the car, closing part of the window casing. Thus, as will be seen by Fig. 2, when the car is moving as indicated by the arrow, the wing that is swung outward deflects the strong air currents over upon the opposite closed wing, and prevents cinders, dust, and an objec tionable draught from passing in at the window.

to ring a bell without swinging it.

The illustration represents an improvement whereby bells on churches, schools, etc., may be rung without causing special strain of the tower, belfry, or any part of the structure by which the bell is supported. The improvement has been patented by Rev. John H. Strain, of Gentryville, Ind. The bell is rigidly secured at its top in the usual belfry or tower, so that the bell will remain stationary instead of swinging when rung. On the under side of the clapper is an eye connected with the ends of oppositely extending chains which are connected at their other ends with the ends of a curved

strain's bell ringing mechanism.

arm attached at its middle to a shaft journaled in bear ings immediately below. One end of the curved arm is weighted, to hold it when at rest in the position shown in the illustration, and the other end of the arm is connected with a downwardly extending rope, by pulling upon and releasing which the clapper strikes and sounds the bell alternately on opposite sides. As will be seen, a proper and full sounding of the bell is insured by this mechanism, which imparts a swinging motion to the clapper, and the building is not injured by jarring, as so frequently happens with heavy bells

A hotel at Nice, France, advertises a special race track for the exclusive use of its cycling patrons.

Sorrespondence.

A Simple Method of Regulating the Vacuum in
To the Editor of the Scientific American :
A little point which I have found out about focusing Crookes tubes may be of interest, as I have not seen it in print. In use, the vacuum of the tube runs up, necessitating increasing the power of the coil to get the same results, and after this increase becomes impracti cable, heating the tube is resorted to. This is apt to destroy the tube by cracking it, unless very carefully done, and, even if safely done, it soon loses its power to restore the tube. It occurred to me that the increas of vacuum was due to the absorption of gases by the platinum anode, and, knowing that the negative pole threw off gas, reversed the polarity of the tube. After working it in this way for half an hour, the tube was restored to full power, and I have practiced this process for the past two months with perfect success and with out injury to the tube. After an hour's run with the X rays I reverse it as above, and it is ready for another hour's run. The coil should be cut down in power when reversed, as there is danger of disintegrating the platinum and depositing it on the glass. I cut out half the battery power. The tube makers recommend that very high vacuum tubes be sent them to have air admitted and repumped, but my method appears preferable, and, besides, saves their charge of three dollar and the time.

New York, August 19, 1896
Modern Practice in Interior Wiring.
In the course of his paper on the "Evolution of In terior Conduits from the Electrical Standpoint," before the National Electric Light Association at New York, recently, Luther Stieringer made the following state

The best experience of the past fifteen years in inte ior wiring has demonstrated the following facts :
First-Indiscriminate wiring with staples is univers ally condemned.
Second-Cleat wiring is admissible in exposed work where the circumstances admit, but not in any con cealed work
Third-Wires embedded in plaster, depending on the insulation only for protection, are condemned.
Fourth-Lead covered wires are also condemned, ex ept where protected in a conduit.
Fifth-Wires in mouldings do not afford mechanica or chemical protection, and are only admissible in sur face work.
Sixth-Wires carried in plaster, and covered with split or zinc tubes to prevent injury by trowels, ar condemned.
Seventh-Glass or porcelain insulators can only b tilized in special cases of exposed work.
Eighth-Paper tubes do not afford absolute mechan ical and chemical protection.
Ninth-Insulated tubes covered with a thin coating of brass or other metals do not afford absolute mechan cal and chemical protection, but, in exposed work they are, to a certain extent, admissible.
Tenth-Woven fabric conduit does not afford abso lute chemical and mechanical protection.
Eleventh-Heavy insulating covering, integral with the insulation, offers no absolute protection against mechanical and chemical injury, and is analogous to rubber tubing for gas distribution installed throughout a building.
Twelfth-Concentric wiring is practiced in England with satisfactory results, but it is not in use in the United States. It offers many possibilities in the direc tion of a solid and fixed system.
Thirteenth-Paper lined iron or steel pipes, known as "iron armored conduit," "builders' tube," "armor ite," "Clifton," and plain iron or steel pipe, are the only conduits that can afford absolute security against mechanical and chemical injury and assure perma nence.

A NEW SELF-REGULATING WIND WHEEL.

The wind wheel shown in the illustration is designed to quickly adapt itself to the variations of force and di rection of the wind, and maintain a practically eve speed and power under great changes in wind velocity It has been patented by John T. Shilling, of Fisher's N. Y. Fig. 1 is a front view of the wheel, portions being broken away to show its construction, and Fig. 2 a horizontal section. The upper end of the centra shaft is braced by guy lines and cross arms, and rotat ing on this shaft is a tubular shaft whose lower end rotates on-ball bearings and has an annular beveled gear by means of which the power of the wheel may be utilized by means of another similar gear on a horizon tal shaft. Upon the tubular shaft are upper and lowe disks between which are held sails, blades, and sup plemental blades, attached to vertical rods, and all o canvas or other flexible material. Rotating upon the tubular shaft, and having a bearing upon the central shaft. is an auxiliary frame carrying bars which extend
beyond the circumference of the wheel, as shown in

Fig. 2, and support a vane. On the opposite end of this frame, supported by stay rods and horizontally curved bars, are held damper curtains adapted to be automatically moved toward and from each other, to more or less restrict the opening for the passage of wind to the wheel. The rear edges of the curtains are ttached to spring rollers and their adjacent free edge to ropes which extend over pulleys and down a hollow standard to connections with a drum below, mounted loosely on the tubular shaft. There are pivoted weighted arms on this drum, and, as they swing out ward with the increased velocity of the wind, the drum is drawn into frictional contact with a collar, and is ro-

SHILLING'S WIND WHEEL.
tated to pull upon the ropes and draw the damper curtains toward each other, thus cutting off some of the wind from the wheel, the spring rollers separating the curtains more or less as the frictional contact of the drum with the collar is reduced, whereby the speed of the wind wheel will be kept practically uniform.

AN IMPROVED VEHICLE WHEEL.

The illustration represents an improved construction of the tire, hub, axle box and spokes of a vehicle wheel by which it is designed that the tire may be tightened should the rim or felly shrink, and the spoke will be protected from injury by collisions, while the hub will be rendered stronger and more durable than usual, and a ready means is afforded for lubricating the axle spin dle The improvement has been patented by John S Court, of Springdale, Tenn. Fig. 1 represents a portion of a wheel made according to this invention, a part of the hub being broken away, Fig. 2 showing a form o spoke sleeve especially designed for repairing, and Fig 3 showing how the sleeve is attached to the spoke. The tire is flanged and beveled, and fits over a felly which is exteriorly beveled, corresponding to the inner bevel of the tire. The ends of the tire have inwardly extending lugs which abutand are fastened together by nuts and bolts, whereby the tire may be tightened should the felly shrink. The hub is of metal in one piece and at its central

COURT'S VEHICLE WHEEL

portion is a series of tubular or hollow arms which form a central support for the axle box, there being perforations to admit oil to the axle spindle, and the chamber surrounding it containing cotton waste. The spokes are fastened in the tubular arms of the hub, and the outer end of each spoke is mortised in the felly, the outer end of the spoke being surrounded by a metal sleeve with ears to engage the front and back of the felly and the flange of the tire. A second sleeve also surrounds each spoke, being attached at one end to the outer end of the tubular hub arm from which the spoke extends and at the other end to the outer sleeve. A longitudinally split sleeve, as shown in Fig. 2, is used at the outer end of the spoke for repairing purposes.

Tesla Says Hoentgen Rays are Streams of Very small Missiles.

According to statements recently published, the Roentgen rays are now declared, by Nikola Tesla, to be material particles. Mr. Tesla states that the electrical conditions within the tube from which the rays issue produce absolute particles. He further says he can feel the effects of these particles striking against his eye, and has noted the sensation produced when they come in contact with his brain. He says :
"'I'here is little doubt now that a cathodic stream within a bulb is composed of small particles of matter thrown off at great velocity from the electrode. The velocity probably obtained can be estimated, and fully accounts for the mechanical and heating effects produced by the impact against the wall or obstacle opposed to the bulb. It is furthermore an accepted view that the projected lumps of matter act as inelastic bodies, like innumerable infinitesimal bullets. It can be shown that the velocity of the stream may be as much as 100 kilometers a second, or even more. But matter moving with such great velocity must surely penetrate great thicknesses of the obstruction in its path. if the laws of mechanical impact are at all applicable to a cathodic stream.
"I have so much familiarized myself with this view that, if I had no experimental evidence, I would not doubt that some matter is projected through the thin wall of a vacuum tube. The exit from the latter is, however, the more likely to occur, as the lumps of matter must be shattered into still much smaller parti cles by the impact. From my experiments it appears that the lumps or molecules are indeed shattered into fragments or constituents so small as to make them lose entirely some physical properties possessed before the impact.
"The matter composing the cathode stream is," continues Mr. Tesla in his letter, "reduced to matter of some primary form heretofore not known, as such velocities and such violent impacts have probably never been studied or even attained before these extra ordinary manifestations were observed. The important fact pointed out early by Roentgen and confirmed by subsequent researches, namely, that a body is the more opaque to the rays the denser it is, cannot be explained as satisfactorily by any other assumption than that of the rays being streams of matter, in which case such simple relation between opacity and density would necessa rily exist.
"This relation is the more important in it bearing upon the nature of the rays, as it doe not at all exist in light giving vibrations, and should consequently not be found to so marked a degree and under all condition with vibrations pre sumably similar to and approximating in fre quency the light vibra tions. An almost cruci al test of the existence of material streams i afforded by the forma tion of shadows in space at a distance from the bulb. Such shadow could not be formed under the condition described except by described except streams of matter.

Music and Haldness.

An English statisti cian has recently been engaged in an origina task, that of studying the influence of music on the hair. The in vestigator establishes, in the first place, that the proportion of bald persons is 11 per cent for the liberal professions in general, with the exception of physicians, who appear to hold the record for baldness, which is 30 per cent. Musical composers do not form an exception to the rule, and baldness is as frequent among them as in the other professions. But it is with instrumental performers that the influence of music makes itsell felt, and in two opposing directions. Thus while stringed instruments prevent and check the fall ing out of the hair, brass instruments have the mos injurious effects upon it. The piano and the violin especially the piano, have an undoubted preserving influence. The violoncello, the harp, and the double bass participate in the hair-preserving qualities of the piano. But the hautboy, the clarinet, and the flute piano. But the hautboy, the clarinet, and the flute
have only a very feeble effect. Their action is not more than a fiftieth part as strong. On the contrary, the brass instruments have results that are deplorable.

Fig. 2.-MARSTON PISTOL IN UNITED STATES PATENT OFFICE.

Fig. 3.-LEONARD REVOLVER IN THE UNITED STATES PATENT OFFICE

The cornet-a-piston and the French horn act with surprising surety and rapidity; but the trombone is the depilatory instrument par excellence. It will clear the hair from one's head in five years. This is what the author calls "baldness of the fanfares," which rage with special violence among regimental bands.

THE MODERN REVOLVER-THE EVOLUTION OF A TYPICAL INVENTION by e. J. prindle.

There is a popular impression that many inventions are produced in a complete and perfect state by one supreme effort of some genius. But, on inquiring into the history of even the most simple device which has been contrived for the use or pleasure of mankind, it will almost invariably be found that it had a most elemental and simple beginning, and that its growth from that state was by a series of short steps, each effected only after prolonged efforts and many failures,

Fig. 1.-0LD FLINT LOCK PISTOL FOUND ON BATTLEFIELD OF NEW ORLEANS.
and that in many cases there were intervals of centuries between the steps.
The origin of the plow, for instance, is lost in antiquity, and, as far back as history goes, the Egyptians dragged the forked stick to till the earth and find a lodgment for the seed, and at best it was only a scratch that was produced. In spite of all the thought which was spent on the subject, it was not until the present century that the iron plow was created, and of such strength and form that it would dig down and overturn the sod and stand the blows of the rocks in its path.
Before the Christian era machinery operated by

Fig. 4.-ALLEN "PEPPERBOX" (CAP SHIELD DISPLACED)

Fig. 5.-COLT'S ARMY REVOLDER
produced that shown in Fig. 2, in which several bar els in the same plane were discharged in succession by firing pin which was struck by the hammer and which was pointed at each cap in succession. But it was evident that a very cumbersome weapon would be produced if more than two or three barrels were used To obviate this difficulty the barrels were grouped around a center and the hammer made to rotate around the circle step by step as each barrel was fired. Thi form is shown in Fig. 3.
Use, however, developed disadvantages in this form. It was difficult to put the caps on the nipples, and the hammer was necessarily of awkward and weak con truction. Efforts to remove these defects resulted in the form of a revolver shown in Fig. 4. The barrels, still grouped around a center, were caused to revolve while the hammer remained stationary. This con struction, however, was still unsatisfactory. The whole structure was necessarily weak, and there were six barrels extending the whole length of the pistol from the hammer forward
Further efforts produced the modern revolver shown in Fig. 5, in which a rotatable cylinder carries the car tridges and is only of sufficient length to accommodate them. A single barrel carries the balls after they leave the cylinder, and the revolver is reduced to its highest strongest and simplest form.
How infinitely greater would the chances be in favor of a man armed with the latest form of revolver compared with those of a man defending himself with the earliest type of pistol! With the latter but one shot was possible, and it was not at all certain that the charge would be fired when the trigger was pulled; while with the former six practically certain shots could be fired in most rapid succession.
Hundreds of inventors have striven for more than four centuries to produce a weapon having the advan tages of the revolver in its present form, and each has added his mite to the final result. A full realization of the difficulties and labor with which each new fact is wrested from the unknown darkness and brought out into the light where it can be used, leads us to honor hat perseverance and wisdom which puts us in the possession of any new thing.

Aphasia in Polyglots.
In a recent number of the Revue de Medecine, Dr Pitres details a number of interesting observa tions with reference to the peculiarities of aphasia as it occurs among patients who were able to speak flu ently more than one lan guage. It appears that such patients do not become aphasic in the same degree for all the languages which they speak. At first, as a rule, there is genera aphasia, then, as im provement occurs, the patient is able to under patient is able to under stand and then to speak that language which h has known longest and with which he was most familiar. The capacity for use of the other less familiar languages wa acquired later. Such a conclusion does not o course imply the exist ence of different center for the different lan guages, but is merely an illustration of the fact that qualities and capabilities which ar acquired latest are mos easily lost or impaired by any condition which
steam was used to open the doors of temples and even interferes with the nervous structures which underlie to propel a deity on his throne along the ground. But them.-Lancet. it was two thousand years before the steam engine wa produced in a sufficiently practical form to be gen erally used.
One of the clearest examples of this law of evolution in inventions is the principal part of the modern revolver; namely, the cylinder which carries the car tridges. Without reference to the other features of the revolver, notice how alearly the steps can be traced be ween the five forms ending in the modern revolver cylinder.
In Fig. 1 is shown the old single barrel, muzzle loading pistol. With this form but one shot could be fired without reloading, and a man after one shot was, in case of a failure, at the mercy of his enemy. The engraving represents a pistol found on the battlefield of New Orleans and now in the United States National Museum, , Washington. The first step from this form

Prof. Andrée to Return.

Prof. S. A. Andree, according to reports received at Christiania on August 21, told Capt. Sverdrup, of the Fram, who visited the aeronaut, that it was how too late to make the proposed ascent, and that he would probably soon return to Spitzbergen, and make anothe effort to reach the North Pole in a balloon next April This confirms the Berlin dispatches of August 18, which tate that Sir William Conway met Andree on August 10 , and that he was doubtful of success even then.

Dr. J. Walter Fewkes will again conduct explorations for the Smithsonian Institution among the Pueblos of Arizona. He left Washington for a three months' expedition, on May 30, accompanied by Dr. months' expedition, on May 30, accomp
Walter Hough, of the National Museum.
the jerome park reservoir, new york CITY.
(Continued from first page.)
feet wide is to be surrounded by an embankment and the bottom is to be excavated until good surface is reached, so as to establish an available depth of 33 feet 6 inches. This will involve a very large amount of excavating; the engineers calculating that there will be nearly seven million of cubic yards of excavation to be made, of which $3,165,000$ will be in solid rock.
The reservoir will be bounded on the west by Sedgwick Avenue, on the east by Jerome Avenue, north by Van Cortlandt Park and south by Kingsbridge Road. One of our cuts is designed to show the general plan as contrasted with the race course so familiar to many. The embankment is made in earth and laid in the well known method adopted by the Aqueduct Commissioners, in six inch layers, worked down and rolled with a heavy grooved roller and rammed at points which the roller cannot reach
Throughout the center of the embankment a core wall of rubble masonry is carried, which rises above the water level and descends well below the bottom of the reservoir, in many cases having its foot deeply embedded in rock. Thus the strength of the embankment will consist in the earth, and the dam will be absolutely impervious, which imperviousness will partly be due to the earth embankment; but in case of a deficiency in any place in the earthwork, the slightly battered core wall, three feet thick at the top, will be present, and present an absolutely impervious diaphragm. It is so well known as to be obvious that the smallest leakage through earth is subject to constant increase, and it is such leakage which the core wall is designed to prevent. The embankment will be 20 feet wide at its top. On both sides it slopes $21 / 2$ to 1 , and is sodded on the out slope, and on the in slope is paved and concreted.
It will be seen that it forms a very perfect type o embankment, and a reservoir so made cannot but be impervious as regards its sides. The nature of the country is such that no trouble can be anticipated from bottom leakage, and wherever any weak spots occur concrete laid upon broken stone is to be used to secure absolute impervi ousness.
Running approximately north and south, the reservoir has a masonry structure or dividing wall through which the old aque duct passes. The old aqueduct is caused to diverge from its course so as to follow the some what sinuous line of this struct ure, and from a mile to the north a branch is taken from the new aqueduct, which is carried to the above masonry structure and follows it to an outlet near the southern end. A little to the north of the center of the reservoir, on the line of this structure, is established a gate house, and near this is a vertical shaft connecting with the new aqueduct (of 1890) and built at the same time. This shaft connection with the new aqueduct of 1890 becomes an important adjunct in providing the requisite connections. From this gate house six lines of 48 inch pipe radiate; two approximately northwest, two approximately west and two approximately east. In the gate house a very elaborate system of connections is provided, so that water may be taken from either righ or left hand divisions of the reservoir or aqueducts and distributed to any of the six lines of pipes. Both new and old aqueducts have outlets into the reservoir also controlled from this central gate house, so that the new reservoir virtually supplies two reservoirs of the most perfect possible description, which can be operated entirely independent of each other. As regards capa city, about two billion of gallons will be contained, and taking into consideration the level of the annexed dis trict, practically all the water in the reservoir can be advantageously withdrawn for the supply of the city The delivery from the six 48 inch pipes will be utilized by the Department of Public Works, who control the city distribution.
One plan suggested is to carry a line from the six 48 inch pipes down across the Harlem River to the city connecting with its princ pal mains, which in their turn run to the Central Park reservoirs. This would pro vide for interruption in the supply of the portions of the aqueducts crossing the Harlem River, one over High Bridge and the other by inverted siphon. In ad dition to the central gate house, which will be a complicated structure, smaller gate houses will be provided where the 48 inch lines emerge from the embankment and at the point 5,000 feet to the north, where th branch is taken from the new aqueduct, a fifth gate house will be established. For the construction of this branch matters have been so arranged that only twenty-four hours' interruption of water supply will
branch and the original aqueduct, which operation in itself may rank as a minor triumph of engineering. As the new aqueduct is only partially filled with water, its crown will be broken into and the gate house will be built about it in the rock. The branch will be carried up to the aqueduct's sides and connected thereto; the sides of the aqueduct being reinforced where exposed by temporary masonry laid up against the outside. When all is ready for the connec tion there will be nothing to be done but to break down these walls and the sides, when the brickwork will be finisbed at the corners, all of which will be a compara tively small operation
The line of the aqueduct structure and the place for the location of the gate houses were all indicated by the nature of the ground. The high level of the water will be five feet below the top of the embankment. On the completion of this reservoir, New York will have about three weeks' supply of water available in it and in the present Central Park reservoirs.

The Seismic Wave in Japan.

Writing from Tokio on June 26, the correspondent of che London Times gives an interesting though melan choly account of the great wave disaster in Japan, by which in five minutes 30,000 people were killed and 12,000 houses were destroyed.
There was nothmg (he says) to presage the disaster. From 11 in the forenoon until half past 4 in the after noon heavy rain fell. It was followed by a fine even ing and a dark, calm night. At about half past 7 three or four shocks. of earthquake were felt; not violent shocks, though of the vertical kind that people in Japan have learned to dread. The barometer gave at the time no indication of anything unusual. Some 20 or 25 minutes later a booming sound became audible from the direction of the sea. It appears to have been variously interpreted. Only a very few suspected the real signifience the
carried a baby to a hill, and found that none of the others followed, set down the baby and ran back, only to perish with the rest. The story of a retired soldier is worth repeating. His experiences in the recent war had taught him to apprehend the raiding of Japan's coasts by a hostile fleet. Thus, when the cannon-like roar of the advancing waters and the cries of the people reached him, he threw on his tunic and ran shoreward sword in hand. Next morning his corpse was found much battered, but not separated from the sword.
Along the beach the timbers of wrecked houses li piled upon each other; moss covered roofs of thatch that sheltered happy families a few days ago in quiet country nooks are strewn pell-mell on the sands; here houses that have had their walls torn away, stand mere skeletons; there, others have been wrenched from their foundations, telescoped into each other tumbled upside down, or heaped together in shattered confusion. Horses and cattle lie wedged among the rocks, and men and women wander about, stupefied and helpless, looking as though their minds and ener gies had been numbed. Numerous corpses are stil buried under the debris of ruined buildings, or unde heaps of mud and sand thrown up by the waves, and often when a body is disinterred no friend or relative remains alive to identify it. The government is, of course, adopting vigorous measures of relief, and liberal subscriptions are pouring into the newspaper offices, both vernacular and foreign, for when calamity over takes Japanese, the benevolence of the foreign com munity is invariably large handed.
As to the cause of the disaster opinions are still divid ed. At first it was supposed that the disturbance had its origin in a sudden collapse of the sides of a subter ranean crater. On the other hand, considering that the advent of the great wave was immediately preced ed by earthquake shocks whose vertical character pre cludes the hypothesis that they were due to the stupen dous rolling of the wave itself, the most reasonabl conclusion appears to be that a submarine volcanic eruption took place. That the water had been thrown up from great depths to swell the bulk of the colossal bil low is proved by the fact that deep sea shell fish were found in the hills visited by the wave. It may be added here that since the catastrophe the fish seem to have deserted the upper waters a few can be caught now only by using the deepest seines, the grea bulk having apparently gon down to inaccessible depths.
Ever since the ninth centur Japan has suffered cruelly from earthquake waves. The very district now devastated was mo mentarily buried under the sea in 869 A. D., and the loss of a thou
top of their speed. assumed the volume and deafening din of a great par of artillery, and then, in a moment, waves from 20 feet 30 feet high were thundering against the shore.
Kamaishi is a little seaside town, situated at the head of a rocky inlet two miles deep, and directly facing the Pacific Ocean. Behind it is a precipitous hill. The inhabitants seem to have remained until the last wholly unconscious of what was pending. Suddenly a moun tain of sea was observed piling itself up at the mouth of the inlet, and in a moment, with a thunderous roar waves 30 feet high swept over the town. Three time these avalanches of water rushed forward, the first incomparably the most terrible, and in less than two minutes the town was virtually annihilated. Out of 1,223 dwellings only 143 remained standing, and out of population of 6,557 death had overtaken 4,700 and 500 lay wounded. In completeness of destruction this ecord heads the list.
There were some remarkable escapes. Men swept out to sea from one side of a bay were thrown up alive on the opposite beach, and in one case several persons were deposited on an island nearly three miles from the town whence the wave had torn them. A few saved their lives by clinging to balks of timber, and several etting wedged among the wooden debris of wrecke uildings, were preserved until the wave receded. At n inn in O-ura a traveler, apparently the only man in he house, was grasped by four terrified women, and the combined weight of the five furnished a steady point. But such bright incidents were rare, whereas o inexpressibly sad happenings there are numbers. The parents of six children caused the little ones to throw their arms round a beam of the house. There they clung, the water reaching up to their shoulders. The smallest child, losing its hold, was swept away, and its mother, springing after it, shared its fate. Presently the father, trying to fend off some floating debris that threatened to strike the children, was carried off, and he five orphans alone remained. In another family o ten, one child of eight drifted to a rock and was raved; in
another family of the same number, the father having
sand lives is recorded, a catastro phe scarcely smaller under the conditions of the time phe scarcely smaller under the conditions of the time did the destruction of life attain dimensions such as have now to be recorded.

Big Dry Dock Settles.

The 550 foot dry dock at Erie Basin, with the Ham burg-American steamship Phœnicia in it, settled two eet August 19 from causes that have not been explained The Phœnicia is a big twin screw freighter and immi grant carrier. She had been docked for painting and for the readjustment of her propeller blades. At 8:30 'clock fifty machinists and helpers were at work about the stern of the ship removing one of the propellers Without apparent cause, and without warning the for ward end of the dock gave a lurch and settled two feet. There was danger that the dock gates might give way. The accident at the Brooklyn Navy Yard was fresh in the minds of the workmen, and they fled or their lives, clambering helter skelter up the steep teplike sides of the dock. The gates creaked and groaned, but held fast
Then the dock was flooded and the gates were opened t was found that the Phoenicia was stuck fast. The Phœnicia was afterward floated. The dock was not materially injured

Headaches from Eye Strain.

Dr. S. Weir Mitchell, in Medical News, says there are many headaches which are due directly to disorders o the refractive or accommodative apparatus of the eyes. In some instances the brain symptom is often the most prominent, and sometimes the sole prominent symptom of the eye troubles, so that while there may be no pain or serse of fatigue in the eye, the strain with which it is used may be interpreted solely by occipital or frontal headache. The long continuance of eye troubles may be the unsuspected source of insomnia, vertigo, nausea and general failure of health. In many cases the ey trouble becomes suddenly mischievous, owing to some failure of the general health, or to increased sensitive ness of the brain from moral or mental causes.

THE FARTHEST NORTH.

Lockwood and Brainard, of the Greely expedition, on May 13, 1882, reached a higher latitude than had ever before been attained in that quest to reach the pole which has tempted ambitious explorers for over three hundred years. Since that time their record, 83 degrees 24 minutes, has stood as the nearest approach to the pole yet made by man. Now Dr. Fridjof Nansen, a Norwegian, has attained the higher latitude of 86 degrees 14 minutes. Most of the details of this last expedition were given in last week's Scientific American, but we are now able to add some further particulars, together with a map showing the explorer's route. In a signed statement published in the London Chronicle Dr. Nansen says :
"On March 3 we reached 84 degrees 4 minutes north. Johansen and I left the Frain on March 14, 1895, at 83 degrees 59 minutes north and 102 degrees 27 minutes east. Our purpose was to explore the sea to the north and reach the highest latitude possible, and then to go to Spitzbergen via Franz Josef Land, where we felt certain to find the ship. We had twentyeight dogs, two sledges and two kayaks for possible open water. The dog food was calculated for thirty days and our provisions for one hundred days. We found the ice in the beginning tolerably good traveling, and so made good distances, and the ice did not appear drift ing much. On March 22 we were at 85 degrees 10 minutes north. Although the dogs were less enduring than we hoped, still they were tolerably good. The ice now became rougher and the drift contrary. On March 25 we had only reached 85 degrees 19 minutes north and on March 85 degrees 19 minutes north, and on March 29,85 deg difting now evidently drifting fast toward the south. Our progress \mid much open water to the southwest. We hoped to have was very slow. It was fatiguing to work our way and an easy voyage to Spitzbergen over the floe of ice and carry our sledges over the high hummocks constantly the open water. We were obliged to manufacture new being built up by the floes grinding against each clothes from blankets and a new sleeping bag of bear other. The ice was in strong movement and the ice pressure was heard in all directions.
"On April 3 we were at 85 degrees 50 minutes north, constantly hoping to meet smoother ice. On April 4 we reached 86 degrees 3 minutes north, but the ice became rougher, until on April 7 it got so bad that I con sidered it unwise to continue our march in a northerly direction We were then at 86 degrees 14 minute direction. We were then at 86 degrees 14 minute north. We then made an excursion on skis furthe northward in order to examine as to the possibility of a further advance. But we could see nothing but ice of the same description, hummock beyond hummock to the horizon, looking like a sea of frozen breakers. We had had low temperature and during nearly three weeks it was in the neighborhood of 40 degrees below zero. On April 1 it rose to 8 degrees below zero, but soon sank again to -38 . When a wind was blowing in this temperature we did not feel comfortable in our too thin woolen clothing. To save weight we had left our fur suits on board ship. The minimum temperature in March was -49 and the maximum was -24 . In April the minimum was -38 and the maximum -20 degrees. We saw no sign of land in any direction. In fact, the floe of ice seemed to move so freely before the wind that there could not have been anything in the way of land to stop it for a long distance off. We were now drifting rapidly northward. On April 8 we began our march toward Franz Josef Land. On April 12 our watches ran down, owing to the unusual length of the day's march. After that date we were uncertain as to our longitude, but hoped that our dead reckoning was fairly correct. As we came south we met many cracks, which greatly retarded our progress. The provisions were rapidly decreasing. The dogs were killed one after the other to feed the rest.

On May 31 we were in 82 degrees 21 minutes north and on June 4 in 82 degrees 18 minutes north, but on June 15 we had been drifted to the northwest to 82 degrees 26 min utes north. On July 22 we continued our journey over tolerably good snow. On July 24 , when about 82 degrees north, we sighted unknown land at last, but the ice was everywhere broken into small floes, the water between being filled with crushed ice in which the use of the kayaks was impossible. We therefore had to make our way by balancing from one ice piece to another, and we did not reach land until August 6, at 81:38 north and 63 degrees east longitude.
"On August 26 we reached a spot in 81:13 north and 65 east, evidently well suited to wintering, and as it was now too late for the voyage to Spitzbergen, I con-

telegraph laying cycle

'We left Franz Josef Land in the steamer Windward on August 7 and had a short and very pleasant passage, thanks to the masterly way in which Captain Brown brought his ship through the ice, and thence in the open sea to Vardoe."
On August 20 word was received of the safe arrival of he Fram at Skjervoe, near the North Cape. After Dr. Nansen left her she drifted nearly two degrees northward, to $85^{\circ} 57^{\prime}$. The deepest sounding taken by the

Fram was 2,18 $\dot{\check{5}}$ fathoms, and the lowest temperature recorded was 52° below zero. It is stated that on August 14 the Fram called at Danes Island, where a visit was made to M. Andrée, who is attempting to reach the pole by means of a balloon, but who had not yet made his ascension.

CYCLE TELEGRAPHS IN WAR

As is well known, electrical communication plays an important part in the warfare of to-day, ${ }^{\text {a }}$ part that emphasizes the necessity of de veloping it to the highest degree of efficiency for armies operating upon a base apart from a commercial telegraph system. . Special attention has been given by the Signal Corps of the United States Army to provisions for temporary tele graphic or telephonic intercommunica tion. Flying telegraph trains equipped with the most modern appliances are lo cated at several government stations in the West. Among pending experiments are those pertaining to insulators, wire, batteries and the most important one of the naked wire telephone.
The question of the reeling out and recovering of wire and outpost cable by bicycle, automatically, has come in for a considerable share of attention, and the results have been very satisfactory. The Signal Corps has now a bicycle equipped with an automatic reel that works per fectly. The attachment was made in San Antonio, Texas, under the supervision of its inventor, Captain R. E. Thompson, of the Signal Corps. The line was laid out and recovered at a moderate rate on the day of the first test. The speed wa; gradually increased, and it was found that the wire was paid out quickly. Af ter dismounting for a monent to reverse he action, the officer began a return trip, keeping in the middle of the road and riding hard. The recovery was perfectly made, the wire being spooled evenly and the tension was at no time troublesome, although the course of the line was occasionally departed from by many feet, showing that the problem of compensating for increased speed of the recovery due to increasing bulk of the spool has been solved. The time occupied in running out and then picking up the reel of wire was two minutes, the reel holding about one-third of mile of cable Practical use has been made of the equipment in sending messages at other times than on the trial trip.
We present an engraving of a device for the same purpose which has been invented by a German who is at present living in London, Mr. Leo Kamm. This is a cycle for laying wires for military purposes. It consist of an ordinary pneumatic tired safety pro vided with two or three drums of wire of about four inches in diameter. On each of the spools is wound a twisted wire composed of fine steel threads. Each reel carries a mile of wire. The wire passes over a wheel connected with a telegraph receiver. As the rider travels, the rotation of the bicycle ur:winds the wire from the drum, leaving it on the ground. The bell rings before the wire is entirely paid out from the drum. When it is desired to send a message to the starting point, the rider dismounts and fixes in the ground an earth rod which is carried for that purpose. The apparatus for laying the wire weighs 7 lb ., and each mile of wire weighs 10 lb . This machine was actually employed at the recent Aldershot maneuvers. It was also shown at the military tournament at Agricultural Hall.

The Storing of Dry Plates.

Ever since the dry plate has been commercially used, defects or deterioration due to the packing of plateshave become known. It was found chemicals in the paper separator strips, combined with the moisture of the atmosphere, acted on the film, producing a developable fog. Mr. A. L. Henderson, in a paper lately read before the London and Provincial Photographic Association, described a series of experiments he had made, and came to the conclusion that paper was unsafe as a receptacle for holding plates. His recommendation is that plates be separated by strips of tinfoil and stored in metal boxes, a suggestion which seems feasible in view of the acility which the X rays have of passing through paper. There appears to be a phosphorescent action from paper on the film, as well as chemical, according to the results of his experiments.

This year's recruits for the Russian army numbered 270,000 , which is considerably more than the whole British army.

More About Strange Explosive Sounds. by A. s. Hooker.

The recent article in the Scientific American on "Barisal Guns and Mist Pouffers" is worthy of the journal that, since my boyhood, has given so many interesting articles on the mysterious and unexplained things in nature, to the delight and wonderment of thousands of readers. These curious explosive sounds, called "guns," while not all of the same origin, take strong hold on the superstition and the wonderment of mankind. That beautiful sheet of water, Seneca Lake, in the State of New York, has achieved quite a local reputation for its mysterious "lake gun." A writer in Mrs. Stephen's Monthly, in 1857, speaks thus : "The lake gun is a mystery. It is a sound resembling the explosion of a heavy piece of artillery, that can be accounted for by none of the known laws of nature. The report is deep, hollow, distant, and imposing. The lake seems to be speaking to the surrounding hills, which send back the echoes of its voice in accurate reply. No satisfactory theory has ever been broached to explain these noises."
In my work on "Great Earthquakes," it is related, page 123, that long after the earthquak" of "November 16, 1827, in New Granada, subterranean detonations were heard in the whole valley of Cauca during twenty or thirty seconds, without any perceptible vibration."
'One of the most remarkable of these 'earth bellowings' is that described by Humboldt as occurring in the elevated Mexican plateaux, called by the inhabitants the 'roaring and subterranean thunder (bramidos y trucnos subterraneos) of Guanaxuato.' Far from any active volcano, the noise began about midnight of January 9, 1784, continuing for a month.

From the 13th to the 16 th of Janu-
ary it seemed to the inhabitants as if heavy clouds lay beneath their feet, from which issued alternate slow rolling sounds and short, quick claps of thunder. The noise abated as gradually as it had begun."
At Moodus, near East Haddam, near the mouth of the Connecticut River, every few years a succession of explosive sounds are heard, which have received the name of "Moodu: noises," and are noted as far back as 1728 and as recently as two years ago. In the former year, Rev. Mr. Prince said: "I have myself heard eight or ten sounds successively, and imitating small arms, in the space of five minutes. Oftentimes I have observed them coming from the north, imitating slow thunder, until the sound came near or right under, and then there seemed to be a breaking, like the noise of a cannon shot, or severe thunder, which shakes the houses and all the people that is in them."
C. Barrington Brown, in his explorations in British Guiana, 1868-72, says: "As we were on the point of leaving the landing to descend the Issano, we were all startled by a heavy booming sound, resembling the distant discharge of a heavy piece of artillery. The sun shone brightly at the time, and not a cloud was to be seen in the sky. On making inquiries, I learned from the Indians that these sounds were frequently heard at this place, and are supposed to have their origin in the mountains to the south."
In 1874, Bald Mountain in North Carolina, gave forth a series of sounds of a start ling nature, loud and explo sive, seemingly from its inte rior, and succeeded by shak ings of the earth, and the in habitants thought it wa bout to break forth wa volcano.

Four years later, about May 25,1878 , the residents o the mountain, especially a section of the 'Bald' about four miles away from the first manifestation, were startled by sudden movements of the arth and loud rumbling and rackling noises, with sudden rackling noises, wh novenents in the mountr -s, and the wildest reports were
spread abroad by telegraph spread abroad by telegraph and rumor. The newspaper announced, with startling headlines, that Bald Mountain had suddenly become a volcano, and it was some time before the 'volcano' was re olved into ordinary forest fires, and the noises into sub

THE HOMESTAKE GOLD MINES AND STAMP MILLS SOUTH DAKOTA.
terranean sounds, produced by the sliding and breakage of the tilted-up strata of the mountain, near where, a century before, there had been an extensive slide, when a portion of the mountain a quarter mile wide had moved down 500 feet. Now violent explosive sounds, crashing and rumbling noises, and shakings of the earth occurred. Fissures opened in various directions, splitting the steep wall of the mountain in various places. One of these large fissures extended along the 'Bald,' almost at the top, for over 300 feet southeast erly, then turned south and ended a hundred feet farther. The surface opening is from 2 to 6 feet wide, and is entered by two funnel shaped holes, and extends downward in some places 70 feet. The side

IN THE HOMESTAKE MINES, LEAD CITY, SOUTH DAKOTA.
(re or mat
are of gray granite, with nowhere a greater width than 8 feet. New cracks were discovered almost every week, running through sections of solid granite." Great Earthquakes, pages 127, 128.
A cave of large size was discovered under the moun tain, and a writer for the New York Herald described the tilted-up and almost perpendicular strata as "large flakes of rock 80 feet high by 50 feet wide and 10 inches thick," and thinks the fall and sliding of these rocks the cause.

Dr. Ludwig Mond, of London, has given to the Royal Institution the freehold of No. 20 Albemarle Street adjoining the building of the Royal Institution in London, and has also equipped and endowed it to be known as the "Davy-Faraday Research Laboratory of the Royal Institution." It is to be freely open to a imited number of persons who have already done original scientific work or are fitted to do it, without reference to nationality or sex. The laboratory is one of the finest in the world, and Dr. Mond's generosity cannot fail to result in the facilitation of important researches. The directors are Lord Rayleigh and Pro fessor Dewar.

LEAD CITY, SOUTH DAKOTA.

It undergoes no change on exposur the atmosphere, and is not affected by hydrochloric sulphuric or nitric acid, or by any simple acid except lenic acid ; nor do the alkalies affect it. It is howeve dissolved by any mixture which liberates chlorine. It usual solvent is aqua regia, which is prepared by mix ng one part of nitric acid with four parts of hydro chloric acid. For heat and electricity gold has been found to be one of the most perfect conductors.
The specific gravity of this metal is less than that of iridium or platinum, ranging from 19.2 to $19 \cdot 4$.
One kind of gold crushing is done by means of arge cast iron rollers, which break the auriferous quartz as it passes between them. The more common form of crusher is the stamp mill, with iron-shod piles of wood, worked by an axle with projecting cams after the fashion of the flint mill. The ore pounded by the stamp is washed, and for doing this there is an endless variety of contrivances. In one of the richest quartz district of Dakota, it is carried by a steady current of water over coarse woolen blankets laid on inclined boards By this means the lighter particles of quartz are car ried away and the gold, which of course is the heaviest becomes entangled in the fibers of the wool. The blankets are changed and washed each day

The gold containod in these drifts and in the stamped quartz is recovered by amal ramation, and the mercury is afterward distilled cff in retort, leaving the gold chcmically pure.
At Lead City, Dakota, are the celebrated gold mines known as Homestake, which form tho subject of the ac companying illustrations. The ore bodies mined here havc an average width of from two hundred and fifty to four hundred feet, and penetrate into the bowels of the earth to an unknown depth. Si hundred stamps, crushing 20, 000 cubic feet of ore every twenty-four hours, drop in cessantly day and night in the six mills without intermission, even Sundays.
The Black Hills, Dakota are seamed with veins of ore-bearing rock which will return $\$ 35$ to $\$ 175$ in gold to the ton of ore stamped. But unfortunately the ore is refractory, and cannot be treated by the ordinary process of amalgamation. Only recently it has been dis:covered that by a procesa
known as lixiviation the precious metal can be cheaply separated from the auriferous vein rock. Following this discovery, leaching works of one and two hundred tons capacity were constructed at Deadwood, Dakota, and gold which was formerly proof against amalganation on the battery plate or in the pan is now readily recovered in the leaching vats.

A Swiss Mountain Railroad.
An interesting description has lately been given of the Stanserhorn Railroad, one of the most recently opened of the Swiss mountain railroads, says the Railway Review. It consists of a series of inclines, each of which is operated by cables driven by independent electric hoisting engines. The current is generated by dynamos driven by turbines actu ated by a mountain tor rent some five miles distant. 'This plant also sup plies current for lighting the village and hotel, and also for the search lights on the mountain tops. The road is constructed in three uarts, each at an angle with the other, the gradients being in some instances as high as 60 de grees. The passengers are required to dismount twice in each ascent of about 5,000 feet.
Two cars are attached to the ends of a pair of wire cables, and are provided with automatic safety de vices consisting of rail grip pers on one rail. These are thrown into operatio by a worm operated by a pair of bevel gears, the driver of which is loose on the axle and is driven thereby by means of a conical friction disk or pulley which is pressed against its counterpart as soon as the tension on the hoisting rope is released

Should the rope break or the strain be released, the friction disk grips, and beginning to revolve, drives the worm, which spreads the longer ends of the two levers, the short ends of which are wide and flat, and immediately bears against the weh of the rail; less than two revolutions of the axles hold the cars in place without chance of slip. This device also prevents the wheels from rising from the rails, as the jaws of the grippers are directly under the heads of the rails.
The conductor is supplied with an "electric whip" by which he can immediately communicate with the engineer at the terminal and intermediate stations. This "electric whip" is a brass rod provided with a wooden handle; two insulated wires passing through it connect at all times with the telephone and signals. Thus the car can be stopped instantly by the engineer on signal in case of need, even when out of sight. This mountain road is built on solid masonry from end to end, and in no case is there any possibility of shifting of roadbed. The hillsides are "palisaded" where the earth is not solid or where forests have been felled, and there are masonry gutters on each side. Numerous paths are carried over and under these roads by stone arches, provisions which, of course, add materially to the first cost. It should be mentioned that, in order to keep the safety device in perfect working order, tests are made regularly every fortnight. Scientific American Supplement, No. 1077, contains a fully illustrated article descriptive of the Rigi, Brunig, Pilatus and other celebrated mountain railways.

AIR COMPRESSOR AND ELECTRIC PLANT, HOMESTAKE MINE, LEAD CITY.
critics. To me, therefore, who published the first scrap of such a text in the Petrie papyri, it was naturally of the highest interest to learn whether the newly discovered text presentea the same peculiarities.

It will be remembered that the former scrap from the eleventh book showed beginnings and endings of lines not in our texts, and this so frequently as to amount to a surplus of one-sixth. Mr. Grenfell had already examined his fragments from this point of view, anc showed me that, out of about eighty lines, thirteen are | ld | showed me that, out of about eighty lines, thirteen are |
| :--- | :--- |
| rie | not to be found in our vulgate. The conclusion, |

Mr. Grenfell, who has been exploring in Egypt last ments, brought recently to Dublin the many frag them are several passages in iambics, one in anapests, and some in prose, which he has not yet been able to assign to any known Greek author. There is one prose passage so like Plato in style that it seems hardly pos sible it can belong to any one else. But we have not yet identified it. These fragments are in very old therefore, which I had drawn, that before the recension by the Alexandrian critics the Iliad presented a very different appear ance, is hereby confirmed in spite of the adverse criticism of some learned Germans. They held that the Petrie text was an ac cidentally bad and sloven y copy, with many varia tions from the texts re ceived even in that day In the face of the new dis covery I am disposed to maintain my original conclusion, and now prophesy that whatever new text of the Iliad, in handwrit ing of this great age, arc hereafter found, the addi tional lines will amount to fifteen per cent. I ma not be right in every casc for in the present groul of fragments those from the twenty-first book show hardly any departure from our text, but the general result will, I be lieve, corroborate the facts now ascertained. When Mr. Grenfell publishes these fragments, the critics will have ample opportu nity of examining this in teresting question
We already possess a very large number of specimens papyri, and therefore dating from early in the third of the Iliad from the second to the fourth century A papyri, and therefore dating from early in the third $\left\lvert\, \begin{aligned} & \text { of the fiad from the second to the fourth century A } \\ & \text { century B. C., perhaps even earlier. Every syllable }\end{aligned}\right.$ we can recover of Greek writing so ancient as this has, at any rate, a great palæographical interest. But there are a good many of these fragments representing an early copy of some books of the Iliad-I hesitate to say the whole Iliad, from the size of the writing. For the professional book hands of this date are (so far as we know) much sinaller. The fragments in Mr. Gren fell's possession amount to about eighty lines or parts of lines, and come from various books, iv, viii, xxi, xxii, and xxiii. There is no doubt.whatever that the writ ing is of the earliest kind we know, and thus undoubt edly dates from before the days of the Alexandrian discounting mere blunders) the vulgate text of ou printed editions. The solitary exception is the Gene van fragment published by Prof. Nicole. This ha many additional lines like the old texts, but a glance at the writing will show any palæographer that it must have been written (in the second century A. D. three or four hundred years after the pre-Alexandrine ragments. The considerable variants in this fragment show that the old, perhaps loose and prolix, text stil survived. It affords us, at all events, a third witness to the fact, and makes it well-nigh impossible to deny

HOMESTAKE STAMP MILLS, LEAD CITY, SOUTH DAKOTA
at predeces sors were not so conserva tive as has usually been as sumed. - Prof. J. P Mahaffy, in London Athe næum

Damage by lightning is unmistakably increasing according to the director of the statistical office of Ber lin. Various causes are as signed, such as the employ ment of electricity in var ous industries, the contin ual change of form of the earth's surface by defores tation, drainage, etc., and the impurities introduced into the atmosphere by the growing consumption of coal. Professor Von Bezold some time ago showed that for Bavaria the.fires due to lightning increased from yearly average of 32 in 183 to 1843 to 132 in. 1880 to 1882 while the number of per sons struck by lightnin and of those killed rose from 134 and 73 respective ly in 1855 to 186 and 161 in 1885. An interesting fact noted is that persons struck generally perceive neither lightning nor thunder, but receive the impression of being enveloped by fire. Public Opinion.

Science Notes.
Underground Ireland is almost unknown. M. Martel, the French cave explorer, proposes to hunt for Irish caves and to examine those he finds thoroughly. He caves and to examine those he finds thoroughly. He
has devised a system of portable ladders, telephones, and electric lights for cave exploration.
The result of recent analyses show that the loss of weight suffered by coal from exposure to the weather is considerable. In some cases it reached 33.08 per cent, while the deterioration in quality for purposes of fuel or gas making reached a still higher figure.
Vesuvius is an interesting sight just now. Une stream of lava flowing down from the center is a huudred feet wide and from seven to fourteen feet deep, while a hundred other smaller streams are running down the cave and a big column of black smoke rises into the "tsis
Sir William Macgregor receives the Royal Geograph-
ical Society's gold medal this ical Society's gold medal this year for his explorations in British New Guinea, and Mr. St. George Littledale the patron's medal for his Pamir journeys. The Labrador explorers, Messrs. Low and Tyrell, receive grants of money.
Friedrich August Kekule, professor of chemistry at the University of Bonn, who has just died at the age of 77 years, by the discovery of the fouratomic character of carbon established the basis for the modern theory of chemical combinations. The paper describing this discovery and Kekule's later paper on the theory of
benzole are the most important speculative works in benzole are the most importa
chemistry of this generation.
chemistry of this generation.
Messrs. Read, Campbell \& Company submitted to the Royal Society of London small receptacles (capsules), of pear shape, about 16 millimeters diameter, containing liquid carbonic acid under a pressure of 60 atmospheres. Each capsule weighs less than 10 box 30 centimeters in each direction. For making "mineral" waters and carbonated beverages generally, one capsule being sufficient for one bottle. erally, one capsule being sufficient for one bottle.
Each capsule has a peculiarly constructed hard rubber Each capsule has a peculiarly constructed hard rubber
stopper, which is broken off aiter placing the capsule on the mouth of the bottle.
An official report on the death of Prof. Langerhaus child, which was the occasion of an attack on the anti diphtheritic serum last winter, has at last been published in Berlin. The professor injected the serum into his healthy boy himself to inoculate him against croup; the child died almost immediately, when his father published a violent attack on the serum. The whole
stock of anti-toxin, from which the portion used on the stock of anti-toxin, from which the portion used on the
child was taken, has been traced, analyzed chemically child was taken, has been traced, analyzed chemically
and microscopically, and found to be of normal quality. and microscopically, and found to be of normal quality.
The doctors who made the post mortem examination found that the child died of suffocation. He had eaten his dinner just before the injection and had some milk and cake with it; this he threw up, and being faint on account of the pain from the injection, could not get rid of the matter, but drew it into his larynx, where it choked him. The injection was justified by the present cet reproduces from the Berliner Klinische Wochenschrift.

In a recent paper on "The Relief of the Earth's Crust," by Professor Hermann Wagner, of Gottingen an abstract of which, by Mr. Hugh Robert Mill, is given in Nature, some interesting figures are given. By
means of the hypsographic curve connecting elevations means of the hypsographic curve connecting elevations
and percentages of area derived from measurements of height, depth, and area of land and water, the surface of the lithosphere is divided by Wagner into five regions, in place of the three suggested by Dr. John
Murray, and hitherto accepted by most physical geogmaphers. The five are as follows: The culminating area of the earth's crust, occupying 6 per cent of the surface, and lying altogether above 1,000 meters, with a surface, and lying altogether above 1,000 meters, with a
mean height of 2,200 meters, or 7,200 feet above the mean height of 2,200 meters, or 7,200 feet above the
sea. The continental plateau, occupying all the surface from the 1,000 meter contour line of elevation to the 200 meter contour line of depth, i. e., to the margin of the shallow sea border or continental shelf. It comprises 28.3 per cent of the surface, and has a mean elevation of 250 meters, or 800 feet, above the sea. The continental slope, from a depth of 200 meters to 2,300 meters below sea level, covers 9 per cent of the earth's surface, and has a mean depth of 1,300 meters, or 4,300 feet. The oceanic plateau, between the depths of 2,300 meters and 5,000 meters, occupies no less than 53.7 per cent of the surface, and has a mean depth of 4,100 meters, or 13,500 feet. Finally, the depressed area,
leeper than 5,000 meters, is assumed to occupy 3 per leeper than 5,000 meters, is assumed to occupy 3 per
cent of the surface, with a mean depth of 6,000 meters, say 20,000 feet. In this classification of regions the coast line is ignored, the abrupt change of slope at 200 meters-or rather the familiar 100 fathom line of our charts-being rightly given the greatest weight in a hypsographic study. The mean level of the surface of the earth's crust is placed by these calculations at a
depth of 2,300 meters, or 7,500 feet below actual sea depth of 2,300 meters, or 7,500 feet below actual sea
level. The area of the continental block, or region level. The area of the continental block, or region
above the mean level of the crust, is found to be 43.3 above the mean level of the crust, is found to be 43.3
per cent of the surface, leaving 56.7 per cent for the per cent of the
deeper region.

Copenhagen has 30,000 cyclists.
Yokohama now has its bicycle school.
President Kruger now rides a bicycle
President Kruger now ris a bicycle
The Salvation Army in England uses bicycles to some xtent.
The charge for carrying a bicycle to Europe and Parn is $\$ 7$, and-it must be crated.
Parisian cabmen claim the telephone and the bicycle have destroyed their business.
According to reports lately made, says the Bicycling World, there have been 14,006 bicycles stolen this year up to the week ending July 11. Here is an object lesson the very reverse to being attractive. The bicycle thief is more numerous than we had dreamed.
A bicycle rack for baggage cars has been designed by S. J. Collins, general superintendent of the Wisconsin Central lines, to avoid the liability to injury by chafing and swinging which bicycles are subjected to if hung from the roof of the car. The rack is on one side of the car, and the bicycles stand on the floor at an angle of 45 degrees to the side. The space thus reserved
is inclosed at the sides and covered by a shelf for is inclose
For seven months in the year, only, is it possible to ride a wheel in the open air in Moscow, says The Wheel During the remaining five months wheelmen are allowed to ride two days each week in the great military hall This hall is so large that a five-lap track is easily laid out in it. The only drawback to the scheme is that the authorities will not allow the track to be banked. Despite the vastness of this hall, there is not a single
pillar or support to obstruct either the onlookers' view pillar or support to obs

In Paris a special duty, called the octroi, is levied at the gates on eatables, wines, kerosene, etc. This of course tends to make smuggling profitable. A short time ago a fat man was run over by a wheelman. He was very much flattened out and attempted to run off The people who had come to his aid found a pool of oil where he fell. The octroi officers arrested the punc tured man and found that he was padded with rubber sacks containing liquids. In this country bicycle tires have been used to transport illicitly distilled whisky.

It will interest cyclists to learn, on the authority of M. Bouny, who recently presented a memoir to the Paris Academy of Sciences on the measurement of the work expended in driving a bicycle, that to double the velocity required triple work, and more. He meas ured the work done by a pedal of special construction, ter the force exerted in two directions at right angles o each other, and also so as to take into account th effect produced by the deviations of the pedal from the horizontal plane.
A cone made from good tool steel and properly hard ened will run from 20,000 to 25,000 miles in ordinary use, says the Industrial World. They have been tested with 100 pound weight on each cone, which is equiva lent to 400 pounds on a bicycle, and under this load Whey will run 5,000 miles before beginning to show wear While strange, it is nevertheless a fact that in Eng land it is possible to send a bicycle by mail if it doe not tip the scales at over twenty pounds. The rules of the English parcel post system have been so revised what it may be, provided it weighs no more than twenty pounds and is valued at not more than $\$ 100$, by the
payment of a small toll and registration fee, which also payment of a small toll and registration
The cork or corkaline grips on the handle bars of a wheel often get dirty from the perspiration of the hands and from dust. They may be cleaned to look almost like new, however, by wiping them thoroughly with a rag saturated with benzine. Should the grips get loose on the bars and twist or come off, they may be replaced by giving the interior of the handle a coating of shellac for about three inches, from the end Then force the handle on to the bar as far as possible and allow the shellac to dry thoroughly before using. To remove a broken or injured handle, heat the bar about four inches from the handle. This will soften the cement or shellac, and allow the handle to slip off. Care should be used not to get the bar too hot, which would injure the nickel finish and take the temper out of the steel.
The commissioners of indirect taxes have published an interesting return giving the number of bicycles in France. At the time of the exhibition of 1889, it was estimated that they numbered about 50,000 , but it was not until 1892 that a tax was levied upon them, and
there were then 119,000 . The total went up to 132,000 in 1893, while at the end of last year the tax was paid upon nearly 160,000 , this being at the rate of four for every 1,000 inhabitants. But the proportion is not, of course, uniform throughout France, and while in Cor-
 in several and only one for every 1,000 inhabitants nearly 900 to every 100,000 inhabitants in two or three of the departments around Paris, in which there are about 25,000 bicycles. It is stated, too, that about 1 in 20 (or 8,000 in all) of the bicycles belong to women.

Recent Archæological News.
A remarkable discovery was recently made in the Assiot necropolis in Egypt. Among the objects found was a whole company of wooden soldiers fifteen inches in height. The soldiers carry lances and give a good idea of their equipment in the Pharaohs' time.
Recent investigations not far from Sebastopol have yielded some interesting finds. Near the French cemetery the discovery was made of what must have been the site of a very large Byzantine city, and objects of classical Greek art of great beauty have been brought to light.
The excavations among the ancient Greek ruins at Eretria have been carried on some years by the American School of Classical Studies at Athens. The gymnasium and other buildings which have been uncovered are probably part of the buildings on each side of the ancient street laid bare last year between the theater and the naval school of King Otho. When the houses found last year were cleared, a floor of cement and pebbles was discovered about a yard below the surface.
In the course of further excavations in the island of Melos, by the director and students of the British School of Atheas, one of the most important discoveries has been that of a mosaic which is believed to be the finest yet found in Greece. It seems originally to have been about 40 meters long, and to have consisted of five panels, three of which are ornamented with geometric patterns and the other two with figure subects, very beautiful both in design and color. On one of them are represented two vines with leaves and grapes, among which birds and animals are grouped, the other panel, with a circular design, consisting of a series of different fish, while each of the angles holds a ragic mask, very finely treated. The finer details of color are represented with glass tesseræ, while portions of the black are laid in gleaming obsidian, so that the whole has a most brilliant effect. More recently the excavators have come upon a series of graves of the sixth century B.C., in one of which was found a number of ornaments in gold and silver. In another Roman) tomb was found a series of gold leaves from a wreath, and a gold ring was a fine subject in cameo.
The trained workmen who have for some years been making excavations in order to explore the remains of the Roman city of Calleva, at Silchester, have very recently opened up several additional buildings, one of them with a very interesting hypocaust showing some unusual features, while others are believed to have been used as dyers' workshops. One or two good specimens of Samian ware are among the latest "finds" in the ruins, says the Pottery Gazette. They have been removed to Silchester Museum, at Reading, estab ished specially for the reception of antiquities discov ered in the course of the excavations. Perhaps the most important of these was an earthenware pot con-
taining 253 silver denarii, ranging in date from B.C. 40 taining 253 silver denarii, ranging in date from B.C. 40
to A.D. 211, though there have been also many object in gold, bronze, metal, bone, and glass, much pottery, and a fine slab of Purbeck marble. The Calleva remains are a mile and a quarter in circumference. Some of the walls are nearly 12 feet high, and the pavements are considered very fine examples. The previous discovery of numerous wells, stone hand mills, furnaces, etc., seems, in connection with the buildings disclosed by the latest excavations, to leave no doubt that extensive dye works were once carried on in the buried city. At a recent meeting in London of the Egypt Exploration Fund, Mr. D. G. Hogarth, the well-known explorer, said, says the New York Evening Post, that the excavations of last season had convinced him that there was no hope of the preservation of any of the contents of the libraries of Alexandria within the city. Not only has the subsoil water risen generally above the Roman level, but, even where the water does not reach, there is a gieat deal of damp sucked up by capillary attraction, so that there is no chance, even if any papyri were found in Alexandria, of their being legible at the present day. Mr. Hogarth emphatically expressed his conviction that, whether the great libraries were totally destroyed or not, there are not under the houses of Alexandria at this day literary remains of any one of them. One of the main reasons for stopping the work at Alexandria was that even below the water level everything was found to be in the utmost state of ruin; walls knocked down, pavements ripped up, everything as it would be left after the most awful sack and pillage. This had been the experience of every excavator there. The explanation of this fact could only be sought, he thought, in the history of Alexandria, and he suspected that the Arabs were more responsible for it than even the early Christians or the Roman mob. After the Arab conquest, any of the books which remained would naturally drift from Alexandria to Cairo. It is not, however, in the rainy delta that they must be sought, he declared, but higher up the Nile, where man has been less active. It is only to Egypt, he said, that we can look with any confidence, to the Fayum and to the dry upper valley of the Nile, for the best classics-perhaps for Sappho and Menander-and for the missing early Christian literature.

TRAJAN'S SHIP OF STATE

The excavations and discoveries made during the las two decades in all parts of what was formerly the civil ized world have prepared us for all kinds of surprises, but we certainly could never have expected what has happened. The sea has given up a victim that it has hidden and-we hope-preserved for two thousand years. Near Rome, and not far from Genzano, in a craterlike hollow lies Lake Nemi, whose blue waters have long attracted artists and lovers of nature. The ancients knew how to appreciate the quiet beauty of the place. In a thick grove, near the Spring of Egeria, stood a temple of Diana-now in ruins-and, on account of the placidity of its surface, the lake was called "Diana's Mirror."
According to an old tradition an elegantly fitted ship of either the Emperor Trajan or the Emperor Tiberius was once sunk in this lake, and the tradition seems to be confirmed by the fact that a beam with bronze dec orations was found when the lake was being searched for other purposes, in 1535. This beam is still preserved in a museum at Rome. A few weeks ago the hearts of all antiquaries were stirred by the news that these researches which had been suspended for so many years were to be continued by divers who had been set to work at the suggestion of Prince Orsini, the owner

Lamson's Kite-Trial of a Kite Carrying one Hundred and Fifty Pounds.

We have in past issues of our journals illustrated various tailless kites. The sport of kite flying has re cently been taken up seriously as an adjunct to meteorology and aeronautics. Hargraves, Eddy, Lamson and others have done excellent work, especially at the Blue Hill Observatory, near Boston, Mass. Valuable experiments have been carried on. The Scientific American, vol. 71, No. 11, and volume 74, No. 11, and Scientific American Supplement, 1070, may be reerred to for illustrated articles on the subject of ad vanced kite flying. On August 20, Mr. Charles H. Lam son, using a cellular or box kite built somewhat on the Hargraves model, attained a new and valuable result He succeeded in lifting with his kite a weight of 150 pounds, designed to represent a man, to a height, as re ported, of 600 feet.
The kite was started from the ground with a length of 400 feet of rope paid out. It then, as released, rose steadily without any jerking until, as the altitude of 600 feet was reached, the rope parted. The kite floated off about half a mile down the wind, and is said to have eached the surface so gently that, had a real man bee carried by it, he would not have been injured.
The kite includes a number of features that dis-
are samples and specimens of everything, showing the wide range of Russian industry. There is not much perhaps, that is new and original in the purely European exhibits, but in respect of things which the West does not produce there is extraordinary diversity and abundance. The peculiarities of Russia's various races and. the products of her provinces from the Arctic Circle to Central Asia are admirably displayed.
The exposition covers an area of 200 acres, near the confluence of the rivers Oka and Volga, beyond the Fair. The place is 260 miles east of Moscow, from which city it was expected there would be many visi tors at the conclusion of the coronation festivities With a view to this, numerous immense hotels were erected along the new avenue extending from the railway terminus to the main entrance of the exposition These palaces, with the floating hotels on the Oka have failed till very recently to obtain many guests, hough the government has made gi eat efforts to ren der the place attractive to foreigners. The exposition buildings consist of a large number of separate pavil ions, interspersed with restaurants, refreshment kiosks and flower gardens, grouped around a circular gallery which forms the center. One of the most interesting sections is that of Central Asia. The people, thei industries, their residences and mode of life, are fully

TRAJAN'S SHIP FOUND IN LAKE NEMI-A RECONSTRUCTION.
of the lake. The Italian papers announce that the sunken vessel-they fail to state whether the builder of it was Tiberius or Trajan-has been discovered at a depth of 80 or 90 feet, being completely covered with mud. After much trouble the divers succeeded in bring ing up a bronze lion, a wolf of the same metal, besides various other objects. The Italian department of education and the learned men of the country have united as much as possible in the attempt to raise th treasure. The result is anxiously watched for.

In its original form the vessel must have been a splendid affair, provided with all the luxuries and comforts to which the rulers of that time were accustomed, and entirely in accord with its idyllic surroundings. The idea of having a little palace on the water was not original with the Romans, but, like much in their art and literature, was merely an echo of the civilization of other nations. The Greek historian Athenæus gives us accounts of the splendors of the vessels of Heron II of Syracuse and Ptolemy IV which show that they must have been very like the Roman one that was lost in Lake Nemi. If Trajan had anything to do with thi vessel, it will be safe to assume that it was designed by the renowned architect, Apollodorus of Damascus. The accompanying illustration, for which, with the forego ing particulars, we are indebted to Illustrirte Zeitung, represents a reconstruction, actual size, of Trajan's ship of state, from remains found on Lake Nemi, the work having been done by the architect, Rainero Arcaini.
tinguish it from any other. The relations of the cells to each other can be changed by manipulating a lever, and if a passenger were carried by it, this and other means enable him to materially change the course and the position of the kite and also to direct its descent. The continuation of these experiments will be watched for with much interest. The fact that the kite carryng so large a weight descended gently to the earth in itself a most valuable result of the experiment.

The Educational Value of Russia's Great Expoaition.
The Pan-Russian exposition at Nijni Novgorod, nomi nally opened by the minister of finance on June 9, is now in full progress, says the New York Sun, and the multitude visiting it is swollen by the crowds of mer chants and traders that annually attend the famous fair at the same place. The exposition is a government undertaking, upon which a great deal of monev has been lavished, with the object of promoting trade within the empire. It is the 16 th industrial exposition of al the Russias since 1829, three having been held in War saw, and the others in Moscow and St. Petersburg. The last was in Moscow in 1882. Since that date there has been a remarkable development of Russia's manu factures. It is evidenced by the present exposition in a most convincing way that Russia has ceased to be an exclusively agricultural country, and must be ranked with manufacturing countries of the first class. There
reproduced. The varied productions of Siberia are well displayed. Among the rest, the $1971 / 2$ tons of gold worth $\$ 140,000,000$, obtained in the last 64 years from the mines of the Czar, are represented by two large globes. The exhibit of minerals, furs, etc., is very rich. Photographs of Siberian convicts disclose the queer circumstance that most of them are punished for "concealing their avocation and family origin."
Agriculture makes a poor showing, reflecting, it is supposed, the condition of this industry, which is depressed in Russia as in other parts of the world. The depressed in Russia as in other parts of the world. The rural and domestic industries, apart from farming,
make, however, a large display. Whole villages, it seems, are turning to the manufacture of useful articles to the neglect of agricultural pursuits. Spinning and basket work occupy great numbers. The largest progress in the past 20 years has been in mining and metallurgy, but much has been done in textile fabrics, cotton goods, silks, etc. Electrical contrivances obtain, of course, a marked prominence. The Machinery Hall has 147,000 square feet of space and is a fine affair. The art display is poor. The exposition was brought to Nijni this year, it is said, to revive the prosperity of this trade center, which has been declining. It is hoped that the great Siberian railway, when completed, will produce the same results. Expert opinion is, however, adverse to this view. The increased railway communication must, it is held, tend to develop other distributing centers.
recently patented inventions. Hailway Appliances.
Stock Car.-Robert C. Burke and provides for supplying an ordinary stock car with double deck or floor, in such a way that the car may b used either with a single or a double deck, the second deck being both secure and effective, and, when folded allowing the car to be loaded with large animals or othe material. The upper deck is preferably formed of six sections, each hinged at about the middale and adapted
to fold down against the side of the car, or to be sup. ported in the position of a deck or secoud tor be sup. of folding legs. These auxiliary floor sections may
also be swung up directly beneath the roof of the car.

Railway Crossing Signal.-Judson Shoecraft, Harveyville, Kansas. This signal, vhich ma be a bell or gong, is operated by a motor, an electro
magnet having an armature arranged to hold the moto out of operation, and an electric circuit including the mag net and a generator. Two circuit breakers are located on the track on opposite sides of the crossing, and adapted
to be operated by trains passing in either direction. The to be operated by trains passing in either direction. The should the battery or other generator in the circuit ru down, or the connections become impaired, the alarm will be continuously sounded
Tie Plate. -- Charles J. Schenck Gila Bend, Arizona. This tie plate comprises a male and a female member arranged for interlocking engagement
each member having a spring-bearing surface engagin opposite sides of the rail, such surfaces facing one an one plate being engaged by a flange on the other plate Portions of the gripping surface of the tie plates may b
extended upward to engage with the head of the rail extended upward to engage with the head of for the rails, especially at their outer sides on a curve. This tie plat
Coupling.-Melvin T. Miles, Cherokee, Iowa. For conducting air, steam, etc., from on ple and durable automatic coupling, arranged to effect positive connection without danger of leakage, and
acapted to set the brakes in case the train breaks in two. acapted to set the brakes in case the train breaks in two.
The invention consists principally of a spring-pressed having a longitudinal groove adapted to extend through the valve seat when a coupling is made.

Mechanical.

Nut Lock. - Andrew J. Bennett Bridgewater, Iuwa. According to the improvement,
groove is made across the threads of the nut has a groove across its threads, and a threaded key bar is slidable in the groove of the bolt when the groove
in the nut is over the key bar, there being ou the outer in the nut is over the key bar, there being on the oute
end of the latter a spring limb to lock it from sliding The invention affords simple and effective means for r leasably holding a nut on a bolt, and one also available for holding the nut of
Flue Cutter.-Jeremiah Fitzpatrick Raton, New Mexico. This device has a tubular body adapted to enter a flue, a collar fitting against the outer
end of the flue, and there being in the body a transverse pening in which slides a carrier holding a revolving cut er, adapted to cut the flue from the inside. The carrie is forced outward, to bring the cutter into engage ment with the inside of the flue, by a wedge, driven in
by a feed screw at whose outer end is a handle, and on the tubular body, outside of tha collar, is a ratchet whee engaged by a spring-pressed pawl held in a handle ful
crumed on the body. By means of the latter handle th is turned in the flue, and the cutter rotated Tool for Oil Wells. - Harold G Durnell, Bolivar, N. Y. Th remove worn or damaged valves from oil wells, where the wells are of gr.at
depth, this inventor has devised a special tool in which tap attached to the sucker rod, when it touches the threa in the standing valve, will be screwed into the thread by the wod at the top of the well. The tap thus engaging the halve, the latter can be readily withdrawn, the work alve, the latter can be readily withdrawn, the work eretofore used
Well Tubing Support.-Emmett R. Curtin, St. Mary's, Ohio. An improved device adapted
to automatically catch and temporarily support the tubing or rods while pulling them up or letting them down into the well is provided by this inventor. In a casing hrough which the tube or rod passes are arranged toothe od to be pulled up, but securely hold them when the pul released. These jaws are held away from the tubing or drill rods when they are to be lowered into the well, by means of a spring-pressed lever, but when the operaor releases the lever, in case a part of the mechanism
should break, the jaws move inwardly to bring their eeth into engagement with the tubing or rods to firmly rip and hold them in place.
Machine for Making Book Covers -Henry J. Brauer, New Orleans, La. This is an auto matic marhine for placing cloth, paper, or similar mate rial, on paper board used as book covers, the machine
having certain parts adjustable to accommodate it to different sizes of covers. Novel means are employed for pply ing an adhesive to the cloth or paper and carrying
hem forward, cutting in the desired places, affixing on the bare boards, and finally ejecting the product in a finished condition. The machine may be attendcd and operated by one person, the feeding of the stiffening boards being done manually, and all the rest of the work being
automatic. The cloth is evenly glued, and brushes turn the edges down more firmly than can be done by hand, the machine being designed to turn out a better an
more finished cover than is produced by hand work.

Bicycles,
Pedal. - Charles Otis, New York Cit. pedal designed by this inventor has a strap for th
insertion of the foot of the rider, to hold the foot on
tha pedal at all times and also to enable the rider to he pedal at all times and also to enable the rider
pull upward on the pedals when desired for speeding o pull upward on the pedals when desired for speeding o
heavy riding. The strap normally lies at the lower side of the pedal, so that it is not liable to be stepped upo y the rider, and provision is made for revesition to permit the rider to enter his foot beneath it.
Lock for Bicycles.-Albert W. Nutz Wallace, Kansas. This lock has but few parts and is
trong and inexpensive. It is designed to lock the han dle bar in any desired position, and thus prevent the us of the wheel until it is unlocked with a key. The casing of the lock is bolted or riveted to the head, and a bolt sliding through the casing from front to rear enters an pening made in the head, there being in the handle bar ne or more openings, circumferentially arranged, eithe ead. The locking is effected when the handle bar has been placed in proper position, by simply pressing the bolt inward.
Cap for Bicycle Valves. - David in place b_{j} suctional engagement with the rim of the wheel, thus preventing leakage from the valve and als preventing the loss of the metal valve cap, which sume
imes happens when the bicycle is in motion. The cap is preferably made of rubber, and is in one piece, having ubular body portion adapted to cover the exposed portio the inner face of the rim around the valve. The cap is readily put on or
parts of the valve.

Agricultural.

Churn. - Ben Walker, Jr., Austin, Texas. 'The body of this churn has at its base a circula hamber at the center of which is journaled a tubula laft carrying a fan or agator, the lower end of the rawing in a current of air which is discharged to pas upward through the cream. The churn is adapted to be perated by either hand or power, and is so constructed that it may be readily taken apart for cleaning after
churning is finished, and easily put together again.
Preserving Milk or Cream.-Fred rick Casse, Copenhagen, Denmark. This inventor ha devised a method of preserving milk or cream unaltered early as possible at the temperature of melted froz milk, this method also preventing the formation of but
ter during the conveyance of the milk. The entire bod of milk is first cooled to near the freezing point, and ortion of the milk is then taken out and separately milk.

Miscellaneous.

Life Boat.-Robert D. Mayo, Frank for for a boat which will be able to float in any kind weather, and either on its top or bottom, while air will ee supplied to the interior, no matter in what position
he boat may be, except when entirely submerged, mean or signaling by means of rockets being also provided There are strong bulkheads at each end of the boat, and inner bulkleads form airtight compartments, between
which is the living compartment, in which is a cageor car Which is the living compartment, in which is a cage or ca
riage where persons may be seated and be unaffected by he movement of the hull. Means are provided for auto atically closing the air inlet temporarily when the bo passes below the surface, the admission of air being aual is above effected the moment any portion of the ve oves on ball bearings, the cage being capable of having he hull rotate around it, and an air tube axially coin ident to the hull is passed from the cage in
ment having atmospheric communication.
Woven Fabric.-John Bister, Brook n, N. Y. This is a fabric more especially designed f ppearance It cons in in ing a silk varp threads and a series of silk warp threads, each anged a cotton warp thread, the silk threads being ar ranged alternately with a series of the cotton war
hreads and bound in at intervals by the weft threads, whereby the silk threads will be floated on the face of

Window Frame.-Alexander Erklin ew York City. Accordng to this improvement, frictio ollers are placed in the sash grooves of the frame, the bearing on the sashes whether the latter are in law r upper position. Tension devices are provided for sach window sash at each of its sides, to prevent the prising a face plate having openings at each side of its center through which extend portions of the peripheries friction rollers.
Sash Fastenfr.-Richard A. Griffin, Nashville, Tenn. A strong and easily operated sash
ock is provided by this inventor, consisting of rack bars arranged transversely of the window frame on each side of a toothed wheel, each bar having an inner toothed dge designed to engage the wheel, and the bars moving in opposite directions. The bars have projecting clamps,
to bind the outer and inner sides of the upper and lower eashes and the bars are arranged to be uperated so as not fere with the curtains or draper
Window Cleaning Chair.-Jame Lynch, Brooklyn, N Y. This invention provides veniently secured on the outside of a window sill, to nable an occupant of the chair to conveniently clean window on the outside. On each of the front uprights sonnecting the seat with the top ran of the back is a shich extends a horizontal eye on the inner end of which extends a horizontal adjusting screw, with
cushioned head forming a clamp by which the chair may be firmly held in position, the cushioned head of the he firmly held in position, the cus
screw bearing against the inner wall.

Panel Decoration for Pottery.William T. Murphy, New York City. To fit in a recess in the face of a similar article, this inventor provides a
netal tray conforming to the shape and curvature of the etal tray conforming to the shape and curvature of the overing for it, a clamping head extending aransparen dge of the tray. The invention affords a means for placing pictures, chromos, or photographs on vases flasks, etc., in such manner that the pictures may be re moved or changed at will, without marring
njuring the article to which it is applied.
Wagon End-Gate Fastener.-Thomas B. Pell, Lewisport, Ky. This is a fastening devic for end gates, particularly of wagons in which the rea nd a lower outwardly and downwardly curved portion, the device drawing together the side boards as the en gate is clamped in position. Near the top of each side hreaded on one end fitting in the slota, by means of hich, with the aid of a clamping arm, the sides of the dy may be drawn firmly against the end gate.
Hand Pad for Writing Purposes. William T. Martin, Dayton, Washington. This is
cradelelike device, made of any suitable material and in cradelike device, nade of any suitable material and in
sizes to fit different hands, and has on its under face a bearing surface and its uper face being dished to rece portions of the inside of the hand, providing proper support near the wrist and giving freedom of motion to the hand in writing. A palm projection of the pad enables
one to hold the pad on the hand while lifting the hand one to hold the pad on the hand while lifting the hand
from its support, and the device is designed to facilitate rom its support, and the device is design

Hardening Bituminous Sub --edwin T. Dumble, Austin, Texas, This ing viscid bitumens, tars, or asphaltums, natural tificial, by mixing them with bituminous coal or ana ogous material. and subjecting the misture to a tem perature below the boiling point of the liquid sub
stance, thereby softening and dissolving the solid sub tance and uniting it with the liquid, the temperature then being grad
Weighing and Computing Scales. homas A. Kilman Tenn. According to this invention, a frame rigid with
he scale beam carries an upwardly projecting arm perating a pointer, a second arm pivoted between it ends in the frame operating a pointer, and there being a povides simple means for ascertaining the price of an article being weighed, and is designed to be particularl useful for millers or dealers in grain, etc. The improve ment may be applied to an old pair of scales by removi
he old post and substituting the one employed in the in ention.
Trousfrs Stretcher.-Harrison Keane, Douglas, and Michael Guider, Cork, Ireland. For distending riding and other breeches these inventors
provide a collapsible, breeches shaped, airtight bag, preferably made of vulcanized sheet caoutchouc, with an inlet valve and adapted to be inflated, a waistband brace preventing undue distension at that portion, and butto reeches. The device is light and portable and self dapting to the shape of the breeches, facilitates the cleaning and pipe-claying, and prevents shrinkage in

Bottle Top. - Jacob A. Moller, Jr. New York City. A bottle provided with this improve-
nent has a threaded neck with which the top is threade ointerlock, a hinge in slidably connected sections havin one section pivoted to the neck and the other so connected to the top that the latter can rotate independently having a projection engaging the thread of the top. Th cap or cover, after unscrewing, remains connected wit the bottle, thus avoiding the possibility of its being lost, and the device permits of better expansion for the cork than is usual. But little sealing is necessary with a
bottle provided with this improvement, and as all the parts are readily made by machinery, the top is quite in

Nhektie.-Gustav Kraus, New York City. This invention relates to neckties known as "fourmay be made without waste of material The tie is made of two pieces which have their inner wedre-shaped ends sewed together to overlap and form a continuous strip the strip being doubled lengthwise and its edges sewed together. The tie may be made for about the same price
as tiee ordinary necktie now made, owing to the saving material by the special catting and sewing.
Lap Board.-Sophia M. Rivers, New York City. A device especially adapted to facintate board having a curved or substantially cylindrical outer face and being adapted to fit the lap of a person. The outside of the board is pliable to admit of pinning to it the material tightly stretched, preparatory to basting the
lining to the goods, there being no difficulty in taking lining to the goods, there being no diface
Tobacco Pipe Attachment.-Henry Seidler, Fort Benton, Montana. This attachment has spring arms to engage the sides of a pipe bowl, with
longitudinal slots forming a central spring and side pertions to which a cover is pivotally connected, the cover being held normally closed by engagement with the spring. The device may be readily applied to or removed from pipe
inexpensive.
Game Apparatus.-Joseph B. Sargent, Worcester, Mass. This is an apparatus for a game
designed to resemble croquet. a shallow box with a glass op having miniature wickets and stakes, as in that game, and the balle being rolled through the wickets by
the operator tilting the box in the right direction. If the balls goes through the wrong wicket, or through any wicket in the wrong direction, the player must return the ball to the starting point and begin again

Child's Toy Wagon.-John G. We er, Brooklyn, N. Y. This is a novei convertible wagon, or its quick and convenient conversion into either of the rticles named, and the cabinet having a door hung o inges. The body portion may be made in different and a two-wheeled vehicle may be converted into wagon.
Toy Base Ball.-John W. Weaver echanically playing base ball, the apparatus being for ained in a box of two hinged and folding sections, re. presenting the inner and outer fields. The game comrises a pitching apparatus, a batting apparatus, a serie of tilting bases to be operated by the weight of a batted ball to release a base runner, and channel runways be-
tween the bases. The game is played with eighteen numbered marbles, nine of one color and nine of another.

Designs

Bicycle Cover.-Gaston E. Constan in, Brooklyn, N. Y. This cover in general contour o afford a neat looking, inexpensive, and efficient

Spool Holder. - Russell Fraser, New York City. This design is for an article having a main ends to clasp the ends of a spool, there being an angled

INHAIER.-Clarence W. McKee Phenix, Arizona. This device has two oval and taperng members, with perforated ends, the members being oined at their larger ends by a spring loop.

A Handled Vessel.-Thomas B. Brow, Noroton, Conn. This design is applicable to all kinds of handled vessels, such as loving cups, mugs, pitchers, etc., and has one or more stag handles ex-
tending from its sides, the ends of each handle terminating in raised ornaments on the exterior of the ses.

Spoon.-Augustus F. Shriver, Newcastle, Cal. This spoon has a straight round handle hav-
ing cross sections of different diameters, the largest ing cross sections of di
section being outermost.
Note.-Copies of any of the above patents will be send name of the patentee, title of invention, and date of this paper.

NEW BOOKS AND PUBLICATIONS.
Lincoln's Campaign; or, the Political. REVOLUTION OF 1860. Chi Osborn H. \& Lee. Pp. vi, 241 . Price 75 cents. This volume gives most interesting reading describing very commendable portion of it consists in the reproduc. tion of cartoons and of campaign literature of the period, the whole forming a very interesting contribution to the history of the epoch on which strange events depended. In a concluding chapter the presidential possibilities for 1896 are considered, over ten in number, of which one
has come true as far as the nomination is concerned
The Nut Culturist. A treatise on the propagation, planting, and cultiva-
tion of nut-bearing trees and shrubs Stapted to the clinate of the United non names of the fruits known in commerce as edible or otherwise use-
ful nuts. By Andrew S. Fuller. Ilfulnuts. By Andrew S. Fuller . 1 I-
lustrated. New York: Orange Judd
Company. 1896. Pp. iv, 289. Price Comp
$\$ 1.50$.
merica, with its endless variety of climate, is adapted to almost any class of agriculture or pomology, and in the present volume we find a very acceptable treatise
on the cultivation of nuts in America. In it are treated the almond, beech nut, hickory, walnut, and other similar products. In California considerable success has been obtained in the cultivation of almnnds, and it is quite possible that Florida may yet be converted into a successful field for nut cultivation. The present book is a
plea for the value of this class of tree product We particularly commend the indes.

Handy English Phrases. Appropri-
ate to bicycling. With table of parts of bicycles, measures, etce, in both
anguages. By C. C., of L. A. W., No. 70,817 . New. York: Louis Weiss
$\&$ Company. Pp. 23 . Price 25 cents. Any one who has made a bicycling tour in France, belgium, an Wo is familior with the what difficulty has in acquiring the bicycle vernacular. The commonest bicycle terms seem strange and unfamiliar and it is only after considerable pains and experience that one acquires
the proper outfit in the way of a vocabulary. Our autho has produced for the members of the League of American Wheelmen, and for such others as contemplate a European trip, a delightful handbook of French and
English conversation, in which all the technical terms relating to the bicycle are skillfully introduced A m cabulary giving the names of the different parts of the wheel appears at the end of the pamphlet. The frontispiece is adorned with a "Scorcheur" primitif, froman old stained glass window of the
made famous by Gray's "Elegy."
The Century Company, of New York, issue some very striking posters to announce on news
tands the numbers of the Midsummer Century and St Nicholas Magazines. The Century poster took first prize in a competition in which about 700 designs were decker, a young Chicago artist now studying in Paris. It is a most original conception and cannot fail to attract a good deal of attention.

PBusiness and Personal.
The ciarge for Insertion under this head is one Doilar a line
for eaci insertion : aioour ciont wordis to a iine. davertivements must te received at pubitication office as ecariv as
Tnursiay morning to appear intine foilowino week's issue

Marine Iron Works. Chicaro. Catalogue free. Higb arade well drills. Loumis Co.. Tiffn, Obio. For mining englees. J. S. Mundy. Newark, N.J.
"C. S." metal polish. Indianapolis. Samples free. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J Screw machines, milling macnines, and drill presse The Garvin Mach. Co.. Laight and Canal Sts.. New York. Concrete Contractors-Extend your business. Investi-
gate Ransome's s ystem. 758 Monadnock Block, Cbicago Wet Tool Grinder, Sensitive Drills, for all light work especially adapted for Bicycle work. C. N. Cady The celebrated "Hornsby-A kroyd" Patent Safety Oil Engine is built by the De La vergne Refrigerating Ma
chine Company. Foot of East 138th Street, New York The best book for electricians and beginners in elec-
tricity is " Wixperimental Science," by Geo. M. Hopkins tricity is " Fixperimental Science,' by Geo. M. Hopkins
By maii. $\$ 4$, Nunn \& Co.. publishers. 361 Broadway, N. Y. Concrete.-See Kidder's new book on "Building Con-
struction and Superintendence." Comstock, 23 Warren Street, N. Y.
Stay with your job, and with your wakes pay install-
ments for a proftable olive orchard. Booklet free. Whiting's Olive call
Corsend for new and complete catalogue or scientifit and other Books for sale by Mun.
New York. Free on applifation.

HINTS TO CORRESPONDENTS.
Na mes and Address must accompany all letters or no attention win be paid thereto. This is for our
 some answers require not a little research, and
though endeavor to reply to all either by lette
or in this department. each must take his turn. Buyers wishing to purchase must article not not advertised
in our columns will be furnished with addresses of in our columns will be furnished with addre
houses manufacturing or carrying the same.

 to may be had at the office. Price 10 cents each.

Boaks referred to promptly supplied on receipt o | price. |
| :---: |
| $\begin{array}{c}\text { pinera } \\ \text { marke }\end{array}$ |

(6938) A. E. H. says: Will you please reply through the columns of your paper or otherwise
the best and most practical receipt for making gelatine the best and most practical receipt for making gelatine
moulds for casting in plaster? A. A good gelatine mould may be made in the folfor 24 hours, then drain off all the water. Melt the soaked glue in a water jacketed kettle, then pour the glue upon the object, the latter being
incased in a lead or pasteboard box. Let it cool for 12 hours, then separate the cast from the object. If the object be a statuette, a thread should be attached to the back, and extended out of the mould at both end8, so
that it may be used for cutting open the mould after it is cooled, to permit of taking out the statuette. A good is cooled, to permit of taking out the statuette. A good
material for a mould is made in the following way : Dissolve 20 parts of fine gelatine in 100 parts of hot water, and add $1 / 2$ part of tannin and the same amount of rock
candy. It is said that a mould made of gelatine or glue candy. It is said that a mould made of gelatine or glue alone may be made more durable by pouring over it a
solution of bichromate of potash in water, 1 purt of Bolution of bichromate of potash in water, 1 purt bichromate to 10 parte of water, and afterward exposing
it to sunlight. Most objects require oiling slightly before being covered with glue or gelatine.
(6939) E. R. asks now to find the gear a a bicycle. A. Divide the diameter of rear wheel, in multiply by number of teeth in front eprocket.

28 inch wherls.			
Teeth in Sprockets.	Gear.	Feet per Revolution.	Revolutions per mile.
16×6	74	19:37	272:59
16×7	64	16.75	315.22
${ }_{16 \times 8}^{16 \times 8}$	${ }^{56}$	14:66	${ }^{360 \cdot 16}$
${ }^{17 \times 6}$	79	20'68	${ }_{2}^{255.41}$
$\xrightarrow{17 \times 7}$	${ }_{59}^{68}$	1780 15.44	- 341.63
18×6	84	$21 \cdot 9$	$240 \cdot 10$
${ }_{18 \times 7}$	72	$18 \cdot 85$	$280 \cdot 25$
18×8		16:49	${ }_{26}^{320.19}$
${ }^{20 \times 6}$	80	24.34 20.94	-216.92
20×7 20×8	${ }_{70}^{80}$	20.94	$252 \cdot 14$ 288.04
20×8 22×6	10	$18 \cdot 32$ 26.70	-288.04
22×6 22×7	102 88	${ }_{23}{ }^{26} 003$	197.75 2929
22×8	77	20.16	261.96
24×7	96	$2 \cdot 12$	$210 \cdot 19$
24×8	84	21.99	240•10

(6940).J. B. says: Please give the formula or process of dissolving or softening the rubber
rollers which are used in clothes wringers. I haveseveral rubber rollers of clothes wringers to repair, they having become loose from the shaft that runs through them. I have tried several processes to dissolve or soften the rabber of the rollers, but find none to do it. A.
The rubber of the rollers, being vulcanized, is insoluble. The rubber of the rollers, being vulcanized, is insoluble.
To fasten rolls on wringers proceed as follows : 1 . Clean shaft thoroughly between the shoulders or washers, where the rubber goes on. 2. Give shaft a coat of copal haft coat of varnish and wind shaft tightly as possible with 5 ply jute twine at once, while varnish is green, and
let it dry for about six hours. 4. Give shaft over the
twine a coat of rubber cement, and let it dry for about

six hours. 5. Give shaft over the twine a second coat o | six hours. 5. Give shaft over the twine a second coat |
| :--- |
| rubber cement, and let it dry for about six hours. 6 . |
| R | rember cement, and let it dry for about six hours. rubber rolls are always longer than the space between the washers where the rubber goes on, as they shrink or take up a little in putting on the shaft. 8. Clean out the

hole or inside of roll with benzine, using a small brush or hole or inside of roll with benzine, using a small brush or
swab. 9. Put the thimble or pointer on the end of shaft swab. 9. Put the thimble or pointer on the end of shat
that the washer has been removed from, and give shaft over the twine and thimble another coat of cement, and stand same upright in a vise. 10. Give the inside 11. Pull or force the roll on the shaft as quickly as pos sible with a jerk, then rivet the washer on with a cold chisel. 12. Let roll stand and get dry for two or thre days before using same. Cement for use should be so with that it will run freely; if it gets too thick, thin
(6941) W. E. says: Would you please inform me through your columns what chemicals you would use in toning a photograph to produce a dark prin
which resembles a carbon 9 A. To Obtain Black Tone on Silver Prints.-Scholzig prints on sensitized albumenzed paper under green or dark yellow glass, and tones with borax, 90 grains; uranium nitrate, 4 grains; gold chloride, 3 grains; water, 24 ounces. Teape prints under green glass, and tones with gold chloride, 1 grain; saturated solution or borax, 1 ounce; water, 6 ounce (Phot. N., Xxxiv, 623). Slightly washed prints absorb
more gold in toning and give more permanent images than well washed prints (ibid., 639). The effects observed when silver printing is carried on under green glass are due to the specific action of the rays transmitted
by the glass. Signal green absorbs the greater part of by the glass. Signal green absorbs the greater part of
the rays that act on silver chloride, but transmits rays that act upon silver albuminate or silver citrate. When albumenized paper is printed under green glass, the nate, while with gelatno-citrochloride under simllar con ditions the image consists of altered silver citrate.
(6942) H. B. M. says: Will you kindly answer the following queries in the Sciennfic Ameri
can : 1 . What is the safest and best remedy for remov ing freckles ? A. Hydrokinone Wash for the 8 kin.

Hydrokinone........................ gr. xlviif.
Acid phosphoric glac................ gr. xxx.
Glycerine................. dr. ii.
Aqua dest v.
$\xrightarrow{\text { Misce. }}$
This lotion is stated to give exceellent results. It is to be applied to the skin of the face, etc., in the usual way
at least twice in the course of twenty-four hours, after it has been washed and dried carefully. If the skin be of the nature known as "greasy," a preliminary wash with lepid water containing a few drops sal volatile or liqmmon. fort. is advisable. 2. Please suggest a remed hor heat breaking out over the body. A. Lotion o Borax.- . Borax (powdered), $2 \not / 2$ drachms; distilled
water, $1 / 2$ pint. Mix, apply twice a day. Drink plenty sodium icicarbonate is added.
(6943) J. P. M. says : I should be pleased know some easy way to mark negatives, mark them
It but the fllm is roughened too much by it. A. To print the name o:1 the photograph, several methods may be
adopted. The simplest is to write the title of the subject adopted. The simplest is to write the title of the subject nary copyng ink mixed with gamboge or vermilion Then slightly dampen the surface of the negativ ear the bottom right or left hand corner in as un as possible. Press down the paper with the writing pon it. Leave for a few minates and then remove the paper, when the wating will be found to have adhered to the negative. When printed the name will print out white. Another way is to write backward on he negative, while another and better plan is to write it is printed on. The ink will wash off in the after operations and leave the name in white where the sarface of the paper has been protected by the ink.
(6944) Q. T. E. asks : 1. Constructed as
directed, which motor will give more power with the
same battery power, No. 759 or No. 641, with a drum arsame battery power, No. 759 or No. 641 , with a drum ar-
mature $\%$ A. Motor No. 759 , we consider the more powerful of the two mentioned. 2. How can I calculate the voltage and amperage necessary to drive a motor ? A.
The amperage you can calculate from the size of wire used and its carrying capacity, remembering that the armature is wound in paralle.. In an approximate way to In practice the voltage may be mach higher, owing to counter electromotive force, and the amperage propor-
tionately less. 3. In a drum armature, (a) which is the best, carnage washers, tin disks, or charcoal iron punchings 9 (b) Do the disks have to be insulated from the
shaft 9 A. Charcoal iron punchings, if as thin shaft ? A. Charcoal iron punchings, if as thin as the
others. The thinner the disks are, the better. They need others. The thinner the disks are, the better. They need
not be insulated from the shaft. 4. Which is the best for the field of motor 641 ? Laminated field as shown, a cast field, or a wrought iron strip of the required dimensions bent to shape ? A. As a motor a solid wrought
iron core is best, but cast iron is quite good enough. 5. What battery power does 641 need-759? A. Ten
twenty watts. (6945) W. S. and others write : Will you inform me where I can get a mineral rod that will locate
a hidden treasure? It is gold and copper If yon can, nform me if there is such a thing and where I can get of this kind, but do not know any firm that makes them, hut I thought you would. You will greatly oblige me by giving me fnll particulars, and where I can get one, and the cost of it. A. If there were any such thing as an operative mineral or divining rod, we think the owner would refuse to part with it; certainly no price would be wasted; neither gold nor copper will an a divining rod is "magnetic" rods, the needle of which turns when pasising over beds of iron ore. See the article entitled "Divining Rods, Scientific and Unscientific," in the Scientific American, No. 8, vol. 67.
(6946) W. O. K. says : Will you kindly let meknow how to boil a meerschaum pipe that has
been in use some time, so as to coilor readily $?$ Also how to fix the color in the pipe when it is once there? A.
Ordinarily the pipe is boiled for coloring in a preparation reinarily the pipe is boiled for coloring in a preparatio eld on the surface of the pipe, and made to take a high polish. They are first soaked in melted tallow, then in white wax. Under the wax is retained the oil of tobacco which is absorbed by the pipe, and its hue grows darke in proportion to the woacco used. A meerschaum pipe at first should be smoked very slowly, and before a is to keep the wax as far up on the bowl cool off. This rapid smoking will overieat, driving the wax off and eaving the pipe dry and raw. A new pipe should never be smoked outdoors in extremely cold weather. Wher the color has once existed it can be brought back by careful heating, which will drive the color out towar
(6947) P. C. says : Do you know of a remedy which will promote the growth of
vent it falling out ? A. Quinine Hair Tonic:

Rose water-enough to make. .15
The quing slightly, then the other ingredients are lide by (6948) G. P. asks (1) for a remedy fo warts upon the hand. A. It is said that the daily appli cation of whale oil to the wart for two or three week will cause it to disappear. 2. Also which is the greatest istance, a mile or a knot, and what is the difference in
feet? A. The word knot is often used to indiagte nautical mile. The land mile contains 5280 feet. The United States coast survey has adopted as the value of a nautical mile the length of an arc of one minute on a great circle of a sphere whose surface is equal to that o he earth. This gives it a length of $6080 \cdot 27$ feet. he British Admiralty Office have adopted as thei hJdrographic mile, 6080 feet. The term knot is not to express it as a nautical mile, leaving knot to indicate the divisions of the \log line

INDEX OF INVENTIONS

For which Letters Patent of the

August 11, 1896,
AND EACH BEARING THAT DATE. [See note at end of list about coples of these patents.

566,579
$.555,464$
$.565,786$
56518
 565,49
565563
565,64
5
\&
$\stackrel{y}{2}$
$\stackrel{y}{3}$565,736
565,881
56

565,770
565567822
665.527
 $\underset{6}{865,659}$Mä....
565,529,
$\cdots \cdots \%$Stili welliliuinaiion by metaiiïc coating upo
 888 888

cavating, removin. and depositiog earthy	
matter, apparatu losive, safety, M	
arric. See Woven Pabric.	
an, water motor, Mingle \& Bem	
et	
Fender. See Car fender.	
Fibers, electrolvtic separation of $\mathbf{v} \epsilon_{\text {getable, Sum- }}$	
Fruit can. W. Glanzer...................................... 56...5659	
Re. See Paper make	
Game apparatus, folding pocket, Gildersieeve \&	
Gate. See Farm kate. Rouier gate.	
Grinding machine, F.	
n, blow	
Gun, Eatery derice for action bars of boit, W	
${ }_{\text {ns, }}^{\text {Dasell }}$ sextractor for break	
and and	
loader, Gilliliand $\dot{\text { d }}$ Jackson..	
Heading chipper, W. L. Keliogg.................. 565.463	
Hoek.	
Hoops, machine for trussing or driving keg or barrel, J. J. George.	
Horse checking device. G. E. Hutton..................... 565,681	
Horseshoes, a djus table ice attachment for, W. H.Hackley	
Hose clamp, C. Sparks Hose banger, B. \&. McCielian.	
Ironing board, s. M. . Föra.	
${ }^{1} \mathrm{P}$ S	

Riveting machine, L. .E. Khodes.e............
Rivets, machine for making sbeet metai, B:
Cummings

ed for, J. G. Lesner
Roling mill. G. Scobubmani..................

 Seed deint ter. cotton, J. M. Pollar.
Beparator. See Cream separat or.
Separator mechanism, W. .t. Sharpless (reissue)
Sewate apparatus for treating, O. E. Meser... Sewing machine, D. A. Tonens.

 Stove. A. Ohnemus.......
Stove heater, Munaky.
Strainer for eaves traye
Switch. See Elioctric switcc. Raiiway switch.
Switchboara, multiple, R. M. Andrems

Tele Tires, manufacturing, \neq R Cowen. Irap. See Overflow trap. Steam trap. Traversing machine, J. Sw eet....... Truck, car, J.C. Barber. Truss, F. A. Bell Tub. See Batt tüb. Tube drawing apparatus, C. D. Rice. Tunneling ma chine, J. L. Mitchell.. Thurbine, W. H. Elqer.. Turret, revolving gan, J. A. Turrets, etc support for rotary J. Type case cabinet, c. Stolzer Type justifging mecbanism, Type justifying Type justifing mecbanism, P. T. Todge. Type justifying mechanism, F. Filder. Type mould, I. Baas, Jr.......̈ici... Type writing machine, W. J. Barron. Type writing nachine, J. M. Fairfleld Type writing macbine, O. F. Mayer................... Valve, G. H. F. Schrader... Valve, automatic stop, H. A......̈eidie... Vaive gear, H. C. Sergeant............. Valve, steam, C. Jenkins.... Vaive, tank flusb, T. Kruse. Vapor burner, J. B. de Lery Vapor burner, J. B. de Lery …....................... vessel with temperature isolating wails, A. Rot $\mathfrak{i l}$ Vessels, device for preventing injury to coliding. Vise, F. H. Boite et al. Wagon brake, automatic, G. Larson. Wagon, dumpink, Killacky \& Madde Wagon, dumping, Rillacky \& M adden. Wagon rod fastening devcee, T. B. Peli Washing fibrous material, machine for, W. Wat- Water. apparatus for procuring pure..................... Water elevator, D. di B. Savrrgnan 1 i........ Water elevator and carner, T. D. Wiikerson.t Well or cistern cleaner, H . s. Lowderbaugh. Well tool, oil. H. G. Durnell................... Wheel box. carriage. H. Noel te. Wind wheel, J. T. sibilling. Window, J. J. Hall ...ing Wire drawing apparatus, W. \dddot{W}. Woven fabric.............. Wrapping machine, package, Maciav \& Seaman	

TRADE MARKS.

PRINTS.

"New Era," United States Playing Card Compans.... 2

WDvertisements.
ordinalif rates. AMERICAN Water St., Seneca Falls, N. Y.

 C. F. RICHARDSON \& SON,
P. O. Box 9fy,
ATHOL, MASS., U.S.A. Fords Patent
selfi-Lubricating
SIIENES
 Emery Grinding Machin Diamond Face Grinding Machine

 Dry
Die
Die
Die
co.
cons. FINEST AND FASTEST
THE RIVETT LATHE Faneuil Watch Tool Co.
 new tools . . New cataliogoe, 1896
 "My Well and what came out of it." A story by the novelist Frank R. Stockton.
"Your Well and what will come out of it
Pohlé Iir Lift Pump The Ingersoll-Sergeant Drill Co.

H2LATHES
CUNSMITHS, TOOL MENTAL AND REPAIR MENTAL AND REPAIR
WORK, ETC. Send or 1llus. Catalog.
W. F. \& Jno. Barnes Co.
1999 Ruby Street,
ROCEFORD, ILL.

Pressure Regulator
 For Steam, Water and Air

(IT Send for catalogue No. 10.
THE MASON REGULATOIR CO.
Experimentala \& Model Work

GALVANIZED IRON.
 Eesides.
Eeangy heet and part of a sheet guaranteed. Which
meturn for any defect whatever. Apollo Iron and Steel Company,
Pittsburg, Pa.

Experimental Science

GEO. M. HOPKINS.
Seventeenth Edition.
REVISED AND ENLARGED.

840 pages, 782 fine cuts, substantially and beautifully bound. Price in cloth, by mail, $\$ 4$. Half morocco, $\$ 5$.
This splendid work is up to the times. It gives young and old something worthy of thought. It has influenced thousands of men in the choice of a career. It will give anyone, young or old, information that will enable him to comprehend the great im provements of the duy. It furnishes sug estions for hours of instructive recreation.

Send for illustrated circular and
MUNN \& CO., Publishers, Office of the

SCIENTIFIC AMERICAN,
BROADWAY, NEW YORK.

THE BLISS School of Electricity

Bliss Building, WASHINGTON, D. C.

E2 VANDUZEN STEAM PINMP

DORMAN'S VULGANIZERS

(1)This SCREW CUTTING LATHE 6 inch 4-jaw Chuck- jaws reversible, 6 Lathe Tools, Set
Twist Drill, $\$ 6.85$.
ulus. Catalogue mlus. Catalogue of Tools for stamp.
FRED FRASSE CO.
21 Warren Street,

DUY TELEPHONES

WESTERN TELEPHONE CONSTRUCTION CO.
The Largest Manufacturers of Telephones in the U.S.

ELECTRO-CHEMISTRY RECENT AD-

ARMSTRONG'S * PIPE * THREADING
 CUTTING-AFF MACHINES
Both Hand and Power.

The Van Norman Universal Bench Lathe.

THE MODERN ICE MACHT. - BY

Mie Fpumititer
EXCHANGE,
$1 \frac{1}{2}$ Barclay St., New York 156 Adams St., Chicago. 38 Court Sq., Boston.
818 Wyandotte Street, Kansas City, Mo.

FULL COLLEGE COURSE IN CHEMISTRY.

The Backus Gas Engine

"WOLVERINE" BAS AND GASOLINE
 ENGINES, STATIONARY

 ELECTRICAL SUPPLIES
 CLYMER \& HEILEMAN, Rendiuis, Pa. A.W. FABER LEAD PENCILS, COLORED PENCILS, SLATE
 78 Reade Street, \qquad
 Qa

PORTABLE SINGLE RAIL SURFACE

Scientific Pook Catalogue
RECENTLIY PUBIISHED.
Our New Catalogne contaming over 100 pages, fnatad-
ing works on more than fifty difrerent subjects. Will be mailed free to any address on application. MUNN \& CO.. Publishers Scientivic American,
G. A. R. NATIONAL ENCAMPMENT,

The B. \& O. R.R. will sell tickets from all points on Its ines for the round trlp, good for all trains, Angust 29th, 30th and 31st, valld for return passage until September September 30th by depositing ticket with Joint A gent. The Rate from Phlladelphia will be........ 828.00

will also be placed on aale at the other stations of all ricrets will also
connecting lines.
The B. \& O. maintains a double dally service of
through solid vestibule trains between the East and Cbicago, with Pullman sleeping and dining cars attacherg, with Pullman sleeping and dining cars attrains run vta

MONITOR

MARINE GAS ENGINES LANDCHES

MONITOR VAPOR ENGINE Z

Ror Water Works and Clites. Towns.
PLAIN, ALL WOOD TOWERS ELEVATED TANKS
or Antomatic Fire Sprinkle MRON and STEEI. TA
Loulsiana Red Cypress Wood Tanks
W. E. CALDWELL CO., 219 E. Main Street,
LOUISVILLE, KY., U. S. A.

OARETB

THE SUBMERGED PIPE LINE ACROSS

EREHEISDEAD
 ACETYLENE GAS AND CARBDE OP

FISH

FSCIICERMECHANICS.

 NOVELTY SIGNS A Amatis dibudivill
 DRILLS Por Bicyceles, machinery, Jewelry-an kinds

DEAFNES \& HEAD NOISES CURED

DRAUGHTING or HRVEYNG Ranght

DEAFNESS CURED! THE
ARRBORUNDUMV正

RUBBER Copping Cloths make sharp, clean cut let. . 1 IPIL

SCIENTIFIC AMERICAN SUPPLE
 THE DURANT COUNTING MACHINES

Twelfth Edition Now Ready.

THE SGIENTIFIC AMERICAN
CYCLOPEDIA OF
Receipts, Notes and Queries
12,500 RECEIPTS. 708 PAGES.
 ail parts of the

 be found answered.
Those moo are engage in almost any branch
of industry will find in this book much that

 hundreas or most excelient suggesti.

MUNN \& CO., Publishers 361 Broadway, New York.

Tested and True.

The Easient Running wheel in the World.
THE BLACK MFG. CO., ERIE, PA. THE BICYCLE: ITS LNFLUENCE IN

The sumiaia Cycle Saddle

for Ladies' use. Broad and comfortable, and guaran-
teed to told its shape. Most sensible and serviceable
Sadte in the market. Mwenty years

 THE DUGUUID SADDLERY CO., Syracuse, n. Y

MR. BOOKKEEPER,
do you know what the Comp.
tometer is 1 t to costs you nothing
to find out. It will holp you out
 accuracy, is twice as rapid as
besta accountanta and revilive
nerrous and mental strain. Write for Pamphlet.
 AUTOMOBILE CARRIAGES: THE

The

American

Bell Telephone

 Company,125 Milk Street
Boston, Mass.
This Company owns LettersPatent No. 463,56 , granted to Emile Berliner Novem ber 17, 189r, for a combined Telegraph and Telephone, covering all forms of Microphone Transmitters or contact Telephones.

The HARTFORD, No. 2

las an Automatic Platen Lift An Automatic Switch for ribbon movement, feeding both ways Automatic Lever Locks
Alignment that is positively permanent
Compared with the Hartford, no other machine is up-to-date We solicit cash trade and can give such customers A GAIN 0 $\mathbf{5 0} \%$ over what is offered by competing houses in our line THE HARTFORD TYPEWRITER CO., 1 LAUREL ST., HARTFORD, CONN., U. S. A

 DIXON'S American Graphite Mentiont ScIENTIFIC ANEst. OS. DIXON CRUCIBLE CO., JERSE CITY,

- HAVE YOU GOT OUR CATGas and Gasoline Stationary Engines CLINE Traction Engines
COMbined Engines and Pumps Gasoline Portable Engine
USED ANY ALACE
CHARTER GAS ENGINE CO., BOX 148, Sterling, III.
PREISTMAN SAFETY OIL ENGINE
 This beats Wind, Steam, or Horse GAS ENGINE

half a Century of cycles.-an

Bristol's Patent Steel Belt

The \$5.oㅇ

 POCKET KODAKEASTMA
to and booklet
AK CO.,
At $\frac{1}{4}$ Prico

ETE ESTABLISHED 1845
The Most Popular Scientific Paper in the World

This widely circulated and splendidly illustrated paper is published weekly. Every number contains six-
teen pages of useful information and a larke number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam New Inventions, Novelties in Mechanics, Manufactures, New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Flectrictty. Telegraphy, Photograpty, urchitecture, Agriculture, Horticulture, Natural History,
etc. Complete list of Parents each weal etc. Complete list of Parents each week.
T $e r$ ins of Subserintion.-One copy Trrims of filbseription.- One copy of the ScIEN-
TIFIC AMERICAN will be sent for one year - 52 numberspostage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of Three Dollary by
the pubishers; six months, 81.50 ; three months, 81.00 . the pubishers; six months, 81.50 ; three months, 81.00 .
Clu bs. Special rates for several names, and to Postmasters. Write for particulars.
The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefully placed inside Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed of envelopes, securely sealed, and enrrectly addressed,
seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to

 This is a separate and distinct publication from THESCIENTIIIC AMERICAN, but is uniform therewith in SCIENTipic Americas, but is uniform therewith in
size, every number containing sixteen large pages full of engravings, many of wnich are taken from foreign papers and accompanied with translated descriptions. The Scientific American SUPplement is published weesls, and includeas very wide range of contents. It
preserts the most recent papers by eminent writers in all the principal departments of Science and the Useful Arte, embracing Biology, Geology, Mineralogy, Vatural
History, Geography Archæology, Astronomy, Chemis History, reography Archer
try, Electricity, Light try, Electricitt, Light, Heat, Mechanical Eip Building,
Steam and Railway Enfineeriog, Mining, Ship Build Marine Engineering, Photography, Technology. Manufacturing Industries, Sanitary Engineering, Agriculture, Horticuture, Domestic Econowy, hography. Medicine obtainable in no other publication.
The most importhint Engineering Works, Mechanisms,
and Manufactures t , home and abroad are illustrated and Manufactures at home apd abroad are illustrated and described in the SUPPLEMENT.
Price for the SUPPLEM KNT. for
Canada, and Mexico. $\$ 5.00$ a year; or one copy of the SIIENTIFIC AMERICAN \&Dd one copy of the SUPPLE-
MENT, both Mailed for MENT, both mailed for one year to one address for 87.00
Single copies, 10 cent. Adr ess and remit by postal

ghulding Flition.
The Scientific amehican Building Edition is
issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Thirty-two large quarto pages. forming a large and
splendid Maeazine of Architecture. richly adorned with elegant plates and Jther flne engravings; illustrating the most interesting exampies of modern Architectural Construction and allied subjects.
A special feature is the presentation in each number dences. city and country, including those of very moderate cost as well as the more expensive. Drawings in perspective and in color are given, together with Floor
Plans. Descriptions, Locations, Estimated Cost, etc. Plans. Descriptions, Locations, Estimated Cost, etc.
The elegance and febeapness of this magnificent work have won for it the Largest Circulation of any Architectural publication in the world. Sold by all
newsdeaiers

Export ©
of the Scientific american, with which is incorporated "LA AMERIA CiENTIICA E INDUSTRIAL,
or Spanish edition of the Scientific American is publish ed monthly, and is uniform in size and typography
with the Scientific Amerions. Every number with the SCIL NTIFIC AMERIOAN. Every number con-
tains about 50 pages, profusely illustrated. It is the finest scientific, industrial export paper published. It circulates throukhout Cuba, the West Indies, Mexico, Cenlates and South America, Spain and Spanish possessions
tral and

- wherever the Spanish -wherever the Spanish language is spoken. The sci-
entiplc american Export Edition bas a large guaranteed circulation in all commercial places throughout the world. 83.00 a year, postpaid, to any part of the
world. Single copies, 25 cents. world. Single copies, 25 cents.
foreign trade may have large and handscmely displayed announcemenss published in this edition at a very moderate cost. Rates upon application.

MUNN \& CO., Publishers.
PRIINTINC INKE

