distinct types, according to the work for which they were designed.
The year 1888-89 was memorable for the introduction of the compound engine into America. Compounding had already reached a high state of development in Europe, when the Pennsylvania Railroad determined to give it a trial in American service, and to this end purchased an English compound engine, designed and built by Mr. F. W. Webb, of the London and Northwestern Railway. The Pennsylvania, as she was called, was put to work on the company's regular trains and made an excellent record for economy.
Speaking of its performance, a prominent Pennsyl vania official said at the time: "I am not at liberty to give exact figures as to the saving of coal shown by the Webb engine over our regular passenger locomotives, but I will say that it has been considerably over twenty-five per cent. The era of compounding, thus introduced, has resulted in its trial on most of the leading roads of the country, and invariably with a showing of large economy. The outside two-cylinder compound has been the favorite type. Two fine examples of the four-cylinder compound are shown in the accompanying cuts of an express passenger, and a heavy Decapod freight, engine, built by the Baldwin works under the Vauclain patents. By reference to the cuts it will be seen that the cylinders are arranged in pairs, the high pressure above the low pressure, the piston rods engaging a common crosshead. Piston valves are used, being placed on the inner side of the high pressure cylinders. The engines shown have the Wootton firebox, designed for burning low-grade coal, the total heating surface of the firebox of the passenger engine being $1361 / 2$ feet, and of the freight enwine $2341 / 4$ feet.
As illustrating the highest development of the simple eight-wheel express passenger engine, we have selected the New York Central engine No. 999, of Empire State Express fame, which is at present hauling the fastest train in the world, and holds a record speed for the mile of something over
one hundred miles an hour. one hundred miles an hour.
The dimensions of these three engines, together with those of the Lake Shore and Michigan Southern engine No. 564 (Brooks Locomotive Works), to whose phe nomenal run we refer later, are given in the accompanying table :

The Lake Erie freight engine is rated to pull 4,600 tons on the level, and on a run between West Carbondale and Ararat Summit, with a load of 1,107 tons, it consumed 8.28 pounds of fuel per car mile, with a water evaporation of 7.57 pounds per pound of coal. This is a really astonishing performance, when we bear in mind the grades and the loads. From Carbondale to Forest City, 25 cars, weighing in all 818 tons, were hauled for 5 miles over a $1 \cdot 33$ per cent grade; and from Forest City to Ararat Summit, 33 cars, weighing 1,107 tons, wer hauled for 13.7 miles over a 0.95 of one per cent grade.

No. 999 is one of the class of New York Central en gines which hauled a 361,000 pound train from New York to Buffalo, $436 \div 32$ miles, at the rate of $64 \cdot 22$ miles an hour, exclusive of stops. This superb locomotive which was built at the shops of the New York Central and Hudson River Railroad, was on exhibition at th Columbian Exhibition at Chicago, and is the most popu lar and widely known engine in America to-day.
No. 564 to-day holds the record for long distance fas runs, having covered 86 miles at the rate of $72 \cdot 92$ miles an hour. This performance formed part of a 510 mile run with various engines from Chicago to Buffalo, at the rate of 65.07 miles an hour, exclusive of stops. The train load was 304,500 pounds, and the 86 mile run of No. 564 included 8 miles at 85.44 miles an hour, and 33 miles at 80.6 miles an hour, with one mile at 92.3 miles an hour. At this last speed the revolution of the drivers was 469 per minute, and the piston speed 1,878 feet per minute! Thisperformance of No. 564 in hauling $152 \frac{1}{4}$ tons for 33 continuous miles at $80 \cdot 6$ miles an hour is unquestionably the greatest locomotive feat that was ever officially recorded. That it should have been done by a six connected $51 / 2$ foot driver engine simply proves the value of great boiler capacity and large steam ports.

The growth of the locomotive industry can be best told in figures. In 1846 the Rogers Locomotive Com pany turned out 17 locomotives; in 1896 their yearly capacity is 300 , and they have built 5,150 locomotives in all. In 1846 the Baldwin Locomotive Works turned out 42 locomotives ; in 1896 their yearly capacity is 1,000 , and they have built nearly 15,000 locomotives to date! It is estimated that to-day there are over 36,000 locomo
tives in service in America, representing a money value of not less than three hundred millions of dollars.

THE BICYCLE.

Lord Charles Beresford has said, " Whoever invented the bicycle deserves the thanks of humanity." At the present day the bicycle sturds uirivaled as a means of healthy exercise and pleasure. The practical uses to which it may be put seem limitless, and now the bicycle is assisting the electric railroad and the automobile car riage to relegate the horse-drawn vehicle to the past The evolution of the bicycle from the primitive form has been by a series of positive steps, each step mark

THE VELOCIPEDE UF 1868

distinct advance in the march of improvement If for no other reason, the last half century is notable on account of the introduction and development of the bicycle, and nearly the whole history of this ev
tion falls well, within the period we are considering.

It is necessary to go back to the last century for th germ of this great invention, when a strange device called a "hobby-horse" was introduced. It consisted of two wheels connected tandem by a rigid frame o
wood. The rider sat on a saddle midway between the wheels and propelled it by means of strides on the ground. Naturally its motion was limited to a straight line. This rigid, non-steering bicycle, propelled by the feet on the ground, was the first step toward the modern machine. The second step was taken in 1818, when Baron Von Drais introduced a vehicle called "draisienne," which resembled the foregoing machine

TANDEM VELOCIPEDE OF 1869

but the front wheel was so arranged that steering was possible. That such cumbersome means of lecomotion soon fell into disuse is not to be wondered at. For a long tine no real progress was made, though various systems and devices were introduced to enable the rider to propel himself, but they were mostly tricycles and vere cumbersome and unmechanical. The third step consisted in the invention of a bicycle which was capable of being steered and which was propelled with out touching the feet to the ground. This machine
was credited to a Scotchman, Gavin Dalzell. The motion of the pedals was downward, the feet describing a smal segment of a circle. The motion was transmitted to a crank attached to the axle of the rear wheel by levers or a long time it was supposed that this invention dated from 1834, but in 1892 a close scrutiny of the matter resulted in the downfall of the legend, as blacksmith's bill for the iron work was found, which proved that it was made in 1847, and also that another Scotchman named MacMillan had anticipated Dalzell's nvention.
It is to Ernest Michaux, a young French locksmith fourteen years of age, that we are indebted for the nex ible. P wish conceived the idea o the front wheel. He tried the device for couple of days and then showed the machine to his friends. The driving mechanism wa improved by Pierre Lallement, to whom the credit of the invention is sometimes given, but the French seemed to have settled the matter by erecting a monument to the memory of Ernest and Pierre Michaux at Bar-le-Duc in 1894. The Michaux bicycle or "velocipede," a it was called, attained great popularity. We illustrate a typical example of the machine as improved and ridden by the Hanlon Brothers, taken from an engraving published in the Scientific American for August 19, 1868 The popularity of the velocipede or "bone shaker" at that time knew no bounds; riding academies were established, races run and th nachine even penetrated to the far East. Th columns of the Scientific American of thi period faithfully mirror the enthusiasm of the time. In the issue for March 20, 1869, amon the "Velocipede Notes," appears an interest ing item to the effect that thirty years pre viously Michael Faraday could be frequently seen driving his machine through the suburbs of London.
In 1869 M . Magee, a Parisian, still further improved the velocipede by making it entirely of iron and steel In the same year rubber tires were used; these wer both important'steps in the development of the bicy le. In 1869 M . Michaux conceived the idea of makin he front or drive wheel larger than the rear wheel, and various other improvements, such as a brake, were in troduced. In 1874 M . Merchegay showed that weight would be reduced by using a large front wheel and a small rear wheel, and that the rider should be mounted directly over the axle of the front wheel. These idea were carried out, and the popular "spider" or "ordi nary " was the result. This machine remained in the ascendency for nearly fifteen years. In \{1875 touring ascendency for nearly fifteen years. In $\{1875$ touring
became popular, and the bicycle soon showed that it became popular, and the bicycle soon showed that it
had come to stay. The new wheel weighed from 35 to 50 pounds, against 80 to 100 for the old velocipede. We present an engraving of a wheel of the best type of ordinary.'
There were certain' undeniable dangers connected with the use of the high wheel, and accidents wer many and serious. At length came signs that the de sign and construction of the wheel was in a state of transition. Various expedients were adopted to avoid he dangerous "header." The "Star" bicycle becane prime favorite. In this bicycle the small wheel wa placed in front and the rider was mounted over the axle of the high rear wheel. They were propelled by levers, straps and ratchets, which enabled the wheel to be geared up, thus introducing one of the most impor tant principles used in the modern machine
In 1877 Rousseau, of Marseilles, introduced the "Kan garoo," in which a smaller front wheel was used Power was communicated to the axle by means of in dependent chains and sprockets, to the latter of which power was applied by pedals; this arrangement al lowed the wheel to be slightly geared up. About the year 1880, Starley introduced his famous "Rover." At the first blush the "safety" of to-day is unrecognizable in this machine, but it really embodied the vital points of the modern bicycle in its form. The wheels wer both low, though not of the same size, and the rea wheel was driven by chains and sprockets, as in our latest wheels. The great superiority of this machin over the ordinary was soon recognized. Cycling be came more popular, and by degrees the high wheel wa abandoned by all the makers. The pneumatic tire wa the greatest of all the advances since Michaux, and marks the last step in the improvement of the wheel of to-day.
The modern bicycle is distinguished from the older types of wheels on account of the difference in mate ials, frames and tires. Complex shapes, once thought impossible to produce except by casting, are now orged. Great improvements have been made in braz ing together the parts and in cold swaging also, so that the joints are no longer considered the points of weak ness.
Great improvements made in the manufacture of ubing during the last few years have rendered it pessible to construct a good road wheel which weighs, when complete, only 19 to 22 pounds. By a series of careful
tests on the strength of the material used, the liabilit of breakage has been greatly reduced. The use of interchangeable parts and automatic machinery has also tended to standardize the product. Great advances have also been made in the rims, and at the present day in this country the heavy steel rim has iven place to the wooden rim, which, as now con structed, has considerable strength.
Changes in the frame have been notable. The original Rover frame, which was not strong enough, was soon practically abandoned, and, after a time, the diamond frame took its place. At first, however, the rames were built on dissimilar lines, every manufac turer having a model of his own. Soon the frames of the wheels began to have a general resemblance, and at last the almost universal straight line pentagonal diamond was adopted. Gradually the top bar of this frame was raised until to-day, in the latest machines, it is parallel with the ground. In its frame the bicycle is now a veritable mechanical and engineering achievement. The bearings received more and more attention, until now a wheel with ball bearings will travel thousands of miles without showing any appreciable wear either to the balls or to the bearing cones. There has been a gradual improvement also in the sizes of the wheels ; at first even in the modern safety the wheels were of different sizes, out now they are almost universally of the same size. In the old velocipedes, the frame was rigid, then springs were:introduced into the saddle and the different parts of the frame, and rubber was introduced into the tires. Then the cushion tire was introduced, which made riding more enjoyable. Finally the pneumatic tire was resurrected from theold patent records, thus furnishing the ideal spring between the rider and the ground, minimizing the jar due to inequalities of the road and giving the maximum of ease and comfort to the rider. In 1845 R . W. Thompson patented in England the first pneumatic tire, but it was only in 1889 that it was adapted to the bicycle by an Irish veterinary surgeon named Dunlop. The cushion tire, in which there was a hollow space in the rubber, was known as far back as 1870 , but it became very popular only when the pneumatic tire began to be introduced. It soon succumbed, however, to the pneumatic. It is to the pneumatic tire that we are indebted for a large part of the popularity which cycling now enjoys, and it may be regarded as one of the most important improvements. By these gradual steps the bicycle has been brought to its present state of perfection. An impressionable Italian has well defined the bicycle as "a poem in metal."

In connection with the bicycle, it is necessary to take notice of the tricycle, which was at one time very popular.
The mechanical difficulties connected with the tricy-

THE "ROVER" OF 1880.
cle were less than those connected with the bicycle The large, cumbersome vehicles which traveled ove our streets some years ago are now rarely seen. There appears, however, to be a considerable demand for tri cycles built upon the lines of the modern bicycle, and the machines which have been produced within the last few years are comparable in design and workman ship with the bicycle itself. There have been a num ber of special forms of bicycle, which, from time to time, have been put on the market, and many of which have been very successful. The tandem is the best ex ample of these special forms of bicycle. As far back a April 10, 1869, the Scientibic American published an
illustration of a tandem velocipede, which was probably the earliest known example of the tandem. The back seat was intended to be used either as a side saddle for women or a man's saddle. The inventor also had in view the placing of two side saddles over the rear wheel, thus foreshadowing a modern type of special machine. The advantages connected with a tandem are so great that it is little wonder they have achieved a wonderful popularity. Geared up to high speeds, they are able to cover the ground with great ease. Not only are the two riders able to carry on conversation, but the absence of vibration, and the power which it has against a head wind, have all conduced to make
few years have rendered it a valuable aid for business purposes. It makes the slow fast, and now telegraph messengers, postmen, lamplighters, building and street inspectors, '"walking delegates," policemen, firemen, coast patrollers, express messengers, doctors, and others are all using the bicycle in their respective avocations. The experiments used to demonstrate the applicability of the bicycle for war purposes have been entirely successful, so that this opens up a new field of usefulness. Bicycles propelled by electricity or one of the petro leum products have been made, but are not in use to any extent
An eminent physician has said that not within two hundred years has there been any one hundred years has there been any one
thing which has so benefited mankind as thing which has so benefited mankind as
the invention of the bicycle. Thousands of men and women are now devoting half their time to this healthy recreation and are strengthening and developing their bodies and minds, and are not only reaping benefit themselves but are preparing the way for future generations which will be born of healthy parents; and in brief this epitomizes the hygienic side of the bicycle.

THE PROGRESS MADE IN THE GENERATION OF ELECTRIC ENERGY AND ITS APPLICATION TO THE OPERATION OF MOTORS DORING THE PAST FIFTY YEARS.
The advancement of science during the past fifty years has been so great that many are inclined to believe that we have found out more within this period than all that was known before. While this conclusion may not be strictly correct there can be no doubt that the value of the principles, the truth of which has been conclusively demonstrated during this period, is greater than that of all discov eries previously made. This is true even of the purely theoretical development o science, but when we come to consider the question of the practical application of the knowlege thus acquired we can, without hesitation, say that the last half of the nineteenth century has not only produced greater ad vancement than any previous period of equal length but more than all the centuries that have gone before it This may seem an extravagant statement, but any one who will consider the difference between the presen state of advancement and the condition of the world fifty years ago will come to the conclusion that it is substan tiated by the facts. The steamship, the railroad, the telephone, the telegraph, the electric light, the electri motor, electric railways, and all the numerous collateral industries that have been brought into existence there by, have been developed within this period. It is true that the telegraph, the locomotive and the steamboat were invented previous to this time, but their reduction were invented previous to this time, but their reduction
to a thoroughly successful form and their extensive to a thoroughly successful form and their extensive
practical application has taken place almost wholly practical

since 1845

Although progress in every department of science has been very great, that which overshadows everything else is the wonderful development of electricity, specially within the last twenty years.
Previous to 1850 , this science was in a very crude state. Even the most eminent physicist of those day knew little about the fundamental laws of the subject and some of them held views that in the light of ou present knowledge were absurd in the highest degree When it is considered in its economic aspect it wil be seen the bicycle has wrought a veritable revolution, rehabilitating many industries and causing the downfall of others, while travel is diverted into new channels. It is estimated that at present there are $4,000,000$ bicycle riders in the United States, while New York City alone possesses 200,000 riders. There are at least 250 reputable wheel manufacturers in the United States, besides a host of smaller concerns that cannot be strictly called manufacturers. Over $\$ 60$,000,000 are invested in the plants, which give employment to more than 70,000 persons. It is estimated that the wheels turned out this season will exceed $1,000,000$. A whole army of workmen are engaged in making bicycle sundries and in repairing. The wheel has brought prosperity to numberless country hotels and road houses which had become almost extinct since the decline of coaching One great benefit conferred by wheeling is the agita tion in favor of good roads. This has been of untold value to the country at large.
"The wheel took a holiday to join in the sport and recreation of men, but the yoke of business is upon it and it cannot escape the bondage. It took the race untold ages to capture the magic circle and harness it to human need, and it is too precious for man to give it a long tether." For many years the cycle has been a plaything of man, but the developments of the last

the bictcle of 1896.

During the succeeding twenty-five years (from 1850 to 1875) great advancement was made in the way of de velopment of electrical theories, and the demonstration of the laws that govern electro-magnetic actions. Since 1875 the progress has been more in the direction of practical applications of electric energy than in the expansion of theoretical knowledge, and this is just con rary to the general impression in relation to the sub ject. Any one who has doubts as to the correctness of this statement, however, can have them dispelled by a careful study of the masterly treatise on electricity and magnetism by Prof. James Clerk Maxwell, the first edition of which was published in the early seventies.

