pansion is as follows : Steam at 200 pound s is admitted to the $\left.t w_{0}\right) 28 \frac{1}{2}$ inch cylinders, from them it passes to a 55 inch intermediate, then to a 77 inch intermediate, and finally to two 77 inch low pressure cylinders. All the cylinders have a 60 inch stroke.
The condensers have three-quarter inch brass tubes, and are 7 feet 2 inches diameter, and provide a total surface of 26.000 square feet. 'The air pumps and cir culating pumps are of the Worthington type, the same firm providing the feed heater and feed pumps. The feed enters at 210 degrees. The condensers and pumpsare not connected to the wain engines, as in the Paris and New York, but are located separately in the wings of the ship. Balancedpiston valves and Cramps metallic packing are used. This latter consists of cast iron rings compressed by a coil spring. The starting and reversing is effected by means of a separate engine. The crank shaft is 21 inches in diameter and hollow, and the propeller shaft is 19 inches in diamete and is made solid.
There are ten boilers in all, six double-ended and four single.ended. They are all 15 feet $7 \frac{1}{2}$ inches in diameter, and are respectively 20 feet and 10 feet long, the plating being $\frac{9}{16}$ inch thick. They are fitted with Fox's corrugated flues and 234 inch tubes. An interesting feature is the fitting of the tubes with "retarders," which cause the gases to follow a spiral path in the tubs, and so remain longer in contact with their surface. The total grate area and heating surface for all the boilers are respectively 1.144 and 40.300 square feet. They are worked under the system of forced draught invented by Mr. Howden, which, in addition to the economy that it secures, is a positive blessing to the men in the stokehold. which can be left open. This may be considered as a great advance upon the closed stokehold system of forced draught, which, as its name implies, involves the closing up of all openings between the hold and the out side air, the interior of the stokehold being under a constant pressure of air.
In the Howden system, as installed on the St. Paul, the air is drawn by means of fans through heatiug chambers situated at the front end of the boilers where it is heated by the gases from the furnace as they pass to the smoke stacks.
It must be borne in mind that, in addition to the main engines shown in the engraving, there are nu merous auxiliary engines, such as those for driving the electric light dynamos, and the ventilating and refrigerating plants ; not to mention the numerous stean capstans and windlasses, which form part of the equip ment of a moderusteamship.
There are certainly no large marine engines afloat whose performance is being more critically watched than those of the St. Louis and the St. Paul, and the fac that the record-breaking trip of the latter ship was made on a consumption of 310 tons of coal per day shows that they are very economical on fuel.

The Tennessee Centennial.

By proclamation of the governor and in accordance with the patriotic desire of the people of the State June 1 and 2 were public holidays in Tennessee, and Nashville, the capital, was the scene of a series of public demonstrations of rare splendor, initiated and consummated in honor of the one hundredth birthday of the Volunteer State. The United States Marin . Band and five regiments of the United States cavalry artillery and infantry headed the magnificent parade which was of such length that it was two hours and thirty minutes passing a giren point.
The procession moved through the city and rested at the rrounds of the Tennessee Centennial Exposition, which was formally inaugurated in connection with the centennial ceremonies. A striking feature of the occasion was the hoisting to the peak of a flag staff 305 feet high of the flag of the United States, while the Marine Band played the "Star Spangled Bauner" and the thousands of people were cheering. Congressmen, the United States Geological Survey many State and Federal officials, the corps of Wash ington newspaper correspondents, and many promi nent citizens from all parts of the country were present. Six of the great buildings that will fill the central plan of the exposition thus inaugurated are either finished or nearly so, and the construction of the remaining eight will be begun at an early date. To these will be added the countless smialler edifices, and the xposition, cowplete and beautiful in detail and in en semble, will open to the public May 1, 1897, and con tinue six months.

There are in the United States, it is stated, 200,000 machinists, 10,000 tool makers, 25,000 boiler makers, i0,000 pattern makers, 750,000 carpenters and joiners, 200,000 masons and bricklayers, 50,000 contractors and builders, 50,000 plumbers, gas and steam fitters, 150,000 stationary engineers and firemen. 100,00G locomotive envineers and firemen, 50,000 electric railway and light employes. 50.000 cabinet makers, carvers and woodworkers. 50,000 civil, mechanical, electrical, and mining engineers.

srientifir Smmeriam.

ESTABLISHED 1845.
MUNN \& CO.. Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.

TERMS FOR THE SCIENTIFIC AMERICAN. Established 1845.)
 Remit by postal or express money order, or by bank draft or cbeck. MUNN \& Co. 361 Broad way, corner of Franklin Street, Nex York.

The scientific American Supplement (Established 1876.)

Export Edition of the Sciemific American (Established 1878)

MUNN \& CO., Publishers. 361 Broadmay. New York.
diw The safost way to remit is by postal order. express money order
raft or bank check. Make all remittances payable to order ot MUN \& Readers are specially requested to notify the
any failure. delay, or irregularity in receipt of papers.

NEW YORK, SATURDAY, JULY 18, 1896.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 1072
For the Week Ending July 18, 1896

 IIL. MISCELLANEOUS.- Beating the Bounds. - Interesting pres
erration of an old-time cuatom in Enland.-1 ilustration....... The Hunzarian Mille
Selected Formulaz...
Engmenering Notes..
Electrical Notes.

PHOTUGRAPH P,--Color Photography.-Present aspect of color XI. PHVSICS.-The Revolving Vibratinns of Strings.-Interesting
experiments sounds and the motions of sound producing
string-3 illustrations. II. TECHNOLOG Y.-Acetylene as an Illuminant.- Present aspect
ofthe carbide of calcium and acety lene industry in France. 4 il
Iustrations. Bleaching Biood Aibumen....eroduction of coloriess aibumen
139

7138
7138

We had hoped in this issue to announce the winner of the prize for the best essay on the "Progress of Science during the last Fifty Years," but the judges had not finished their examination of the numerous manuscripts at the time of going to press. Attention is called to this jubilee number, which will be one of unusual interest to all desirous of acquiring within small compass a resume of what has been done in the department of science during the past fifty years. The next issue will be about four times the size of an or dinary issue. We hope our readers and friends wil call the attention of their acquaintances to it, in orde that they may apply for the paper in advance and therefore receive the paper without deldy.

THE ARTISTIC ELEMENT IN ENGINEERING WORKS

At a recent meeting of the commissioners of the pro posed new East River Bridge, to join New York and Brooklyn, one of the members, Mr. Salem H. Wales, referring to its architectural features, said: "In thi country this portion of the work has been neglected on almost all of the great bridges that have been built and, whenever any attention has been paid to it, it has usually been considered of so little importance that it has been put in the hands of a draughtsman or some one of little or no artistic ability." Mr. Wales concluded by stating that "at the proper time he would be prepared to present the name of an architect conpetent in every way to treat this matter in collabora petent in every way to treat
Except that we think his condemnation of the ar chitectural, or ornamental, features of our large bridges is too sweeping, we agree with the suggestions of the commissioner, and are of the opinion that there ar many occasions, not merely in bridge building, but in arious other departments of civil engineering, when the engineer and the architect could collaborate to good advantage. The question of the architectura embellishment of engineering work is as old as thes arts themselves. The skillful treatment which mark the remains of those ancient structures which properly belong to the domain of engineering would seem to prove that the engineer and the architect were for merly combined in one individual. This was true o the days of the Roman Empire, as the remains of thei aqueducts and bridges plainly testify ; and in later,me dieval days the daring heights to which the builders of the Gothic cathedrals carried their lovely but fragile aisles and transepts, towers and spires, is clear eridence that beneath the monkish cowl was hidden both the constructive mind of the engineer and the both the conntic perception of the architect
This dual capacity was rendered possible by the ma terials of construction in which the early builders terials of construction in which the early builders
wrought and the comparative simplicity of the problems with which they were confronted. They worked in the primitive materials, wood and stone; the thrust of the arch and the bearing capacity of the column were the most serious questions that occupied the engineer architect of ancient and medieval times; and what these were he had learned from many a bulging wall and crumbling pier. When he raised those monumen tal piles of stone which are the despair of the modern architect, he was hampered by no considerations of mere utility; indeed, the uses to which a structur were to be put were often made subservient to the gen eral architectural effect. Not content with grace and dignity of outline, he would often clothe his completed structure with a rich garment of delicately carved racery, softening the severity of its outlines and add Butauty of detail to the dignity of the general effect But the coming of the age of steel has revolutionized the art of construction in all those departments t which it can be applied; and out of the crude theorie which governed the age of wood and stone have been eveloped the exact scientific mernoas of modern en ineering. The high cost of iron and steel forbade that prodigal use of material which marked the age of ston onstruction-nor was it necessary. The element of a structure was subjected, and an intelligent propor tioning and disposition of the material to meet those tresses.
With the development of the art of steel construc ion, and the increase in the number and complexity of the problems which it involved, the line of demarka tion between the engineer and architect began to grow more distinct, until to-day it is conmon practice for the architect to call in the aid of the engineer to de sign the structural steel work which gives stability to his buildings.
The primary motive-if we mas so speak--of the enineer and the architect is different. The proportions which an engineer gives to a bridge, for instance (since are is the form of construction under consideration), are not primarily, if at all, deternined by any abare determined by certain hard and fast principles of mechanics, which are as unchangeable as the fact that 2 and 2 make 4, or that the whole is greater than its part. It is quite possible that the result will not ap-
peal to the æsthetic sense of the artist; and this is more his misfortune than his fault. To the eye of the engineer, the combination of the straight lines of the bottom, and the curved lines of the top, chord of a truss bridge is strictly beautiful, inasmuch as it expresses in concrete and useful form those unchanging physieal laws on which the equilibrium of the whole universe depends

To a captious critic who called the giant cantilever of the Forth Bridge ungainly, their eminent designer replied that the most lovely column from the Parthenon at Athens, if set up as the smoke stack of an At lantic liner, would be grotesque in the extreme.
The various parts of any properly designedengineering construction are beautiful only so long as in shape and bulk they exactly represent the which they are supposed to perform.

To attempt, for instance, to adorn the simple structural shapesof a modern steel truss with fanciful designs is to belittle its appearance, and turn the expressive and truthful simplicity of their outline into a hollow and meaningless sham. Scrolls and traceries, bosses, shields, and interlacing triangles, which are glorious in a cathedral, are grotesque on a steel bridge.
It is probable that the commissioner above quoted, in suggesting the co-operation of an architect with the engineer of the East River Bridge, had in mind merely the stonework of the piers and approaches; and here we think that there is a legitimate field for the display of architectural skill. Among the many architectural styles, that one should be chosen which wost nearly agrees with the character of the bridgeitself. In most cases however it may be safely laid down that whatever style be adopted, it is scarcely possible for the architect to err upon the side of too great simplicity or severity of design.

THE INTERNATIONAL GEOLOGICAL CONGRESS AT ST. PETERSBURG, AUGUST, 1897.
Professional geologists and all other persons interested in geology will be interested in the announcement which has just been made concerning the plans of the committee of arrangements having in charge the seventh triennial meeting of the International Geological Congress, which will take place in August, 1897, at St. Petersburg, by invitation of the Russian Emperor, A grand programme is proposed by the committee, and no effort is being spared to enable the members of the congress to take advantage of thi unique opportunity to study the geological and topo graphical features of Russia in Europe, the Emperor
himself offering all the visiting geologists free transhimself offering all the visiting geologists free trans-
portation, first class, over the Russian railways, before and after the sessions of the congress, including the excursions.
Membership in the congress is open not only to professional geologists, but also to other persons interested in the science, and may be obtained in accordance with conditions which may be learned by addressing the secretary, whose address is given below. The meeting will extend over eight days, and the sessions will be devoted to discussing general principles of geology and the present state of the science in the effort to bring about harmony among the geologists of the world. Much time will be given to the exposition of
the geological work being done in Russia, especially the geological work being done in Russia, especially
in those regions covered by the excursions. The usual facilities will be given for the display of instruments, maps and books pertaining to geology.
The excursions offered before and after the congress are bewildering in their extent and attractiveness, and only the most meager outline of them can be given here. The principal tour proposed before the meet ings is from Moscow, eastward to the Ural Mountains, crossing that chain and visiting several famous minera and mining localities, including Ekaterinburg and
Tagilsk and returning by way of Perm to Moscow. Tagilsk and returning by way of Perm to Moscow.
Persons especially interested in historical geology will, however, take the excursion into the province of Es thonia, while those who prefer crystalline rocks and glacial geology will spend six or seven days in Finland. A grand excursion which will occupy a month is proposed for the time immediately following the close of the congress in St. Petersburg. After visiting Moscow and its en virons in a body the party will split up into three divisions, one section going by way of tue Donetz valley to the baths of Vladikarkaz, the
second going by the Volga River, and the third by the second going by the Volga River, and the third by the
Dnieper valley to the same rendezvous. Thence the route leads over the Georgian military road to Tiflis, stopping on the way to visit some of the glaciers of the Caucasus Mountains. From Tiflis ia visit will be made to Baku, the headquarters of the petroleum fields of the Caspian Sea, and afterward to Batoum, on the Black Sea, whence ship will be taken for Kertch, where a study of the Crimea will be begun which will end at Sebastopol, where the congress will finally dissolve. Six alternative and supplementary trips are offered in connection with the great tour, for those who are par ticularly interested in mines, in glaciers, in the ascen of Mount Ararat, etc.
Persons expecting to attend the congress are request-
the congress by next October as to which of the excur
sions they propose to take. The president of the con sions they propose to take. The president of the con
gress is A. Karpinsky, director of the geological surve of the Russian empire, and the secretary, to whom al communications should be addressed, is Th. Tscherny schew, St. Petersburg.
The last meeting of the congress was in 1894, at Zu rich, and the one preceding that was at Washington, in 1891, in connection with the American Association for the Advancement of Science and the Geological Society of America.

Steam Road Rollers and Gas Pipes.

The gas companies in England have found that the use of steam road rollers has had a bad effect upon gas pipes under streets. We have not beard this com plaint from gas companies in the United States, says the Engineering Magazine, but it is the practice here at least in the colder parts of the country, to place both water and gas mains deeper in the earth than in England. The trouble has become sufficiently pronounced in England to be made the subject of a paper
by Mr. Norton H. Humphrys, Assoc. M. Inst. C.E., printed in Journal of Gas Lighting, who asseverates that, while the results of steam road rolling may be entirely satisfactory to civil engineers, the gas com panies do not regard them with complaisance. An abstract of this article follows :
On good roads accustomed to carrying a large and heavy ordinary traffic, including four-horse vans and traction engines, and which have been well maintained
and kept in good order, the steam roller does not put itself much in evidence. But, when one of these implements is for the first time put upon a by-street or a country road accustomed to small and light traffic, and which has received but little attention in the way of maintenance, beyond an occasional scrape in unusually wet weather and a sprinkling of stones frow a cart at rare intervals, the gas engineer becomes mors intimately acquainted with "The Luck of Eden Hall" properties possessed by the steam roller than is good for his own comfort or the prosperity of bis undertak ing. Difficulties from drawn services and fractured mains-ranging from the slight crack of a few inches long up to complete severance of the pipe-become
A comparison of gas pipes with water pipes with reference to their respective requirements shows that this is not because water engineers are more thorough in their work, Following on the lines of the usual rule that, if the gas gives a bad light, the company is at fault, it is agreed that, if the gas pipes break, they must be bad pipes; and many members of corporations, etc., arrive at the conclusion that there must be special negligence in putting down, or selecting, the sections or quality of the pipes to be used for the con veyance of gas. So far from getting any sympathy in their misfortune, which has arisen from causes that gas company is blamed for not laying down pipes at a reasonably sufficient depth, or for purchasing cheap stuff of a rotten or gingerbread character. A common argument in support of this view is the fact that pipes. The relations between the shape of the roller, its weight and the mode of using it to the damage done upon the pipes is discussed at length, and the tendency toward using greater weight is deprecated. Water engineers have not been more prudent, nor have they exercised more care or foresight as to possible contingencies. Neither do they generally do their work in a stronger or more substantial manner than do gas engineers. The trouble is simply a natural consequence due to the different natures of the services performed The internal pressures to which the gas service is ex posed is a mere trifle-a matter of a few ounces per square inch. But water pipes are subjected to heavy pressure in low levels, representing a large number of pounds per square inch. Gas pipes in themselves are not interfered with by frost, except as regards it tion of ice in water pipes must be prevented, as it not only stops the supply, but also fractures the pipe. It would be as reasonable to adduce the fact that the main sewers are never injured by the roller as to com pare water pipes with gas pipes.

Life in the Animal Kingdom.
Man lives to all ages, but in the animal kingdom, on the contrary, the duration of life is almost exactly qual for all individuals of the same species. But we can know with exactness the real duration of life only or animals in servitude; we do not know whether it s the same in the savage state. Rabbits and guinea pigs live seven years; squirrels and hares, eight ; cats, nine or ten; dogs, ten or twelve; foxes, fourteen to ixteen ; cattle, fifteen to eighteen; bears and wolves, twenty; the rhinoceros, twenty-five; the ass and the
horse, twenty-five to thirty; the lion, thirty to forty (a lion in the London Zoological Gardens reached the age of seventy years); the camel, forty. The length of life of the elephant is uncertain ; according to Aristotle

Buffon, and Cuvier, it lives two centuries; some authors say even four or five. After his victory over Porus, Alexander consecrated to the sun an elephant that had fought for the Indian monarch, and gave it the name of Ajax; then, liaving attached an inscrip tion to it, he set it at liberty. The animal was found 350 years later. The ancients attribute to the stag a fabulous length of life, but Aristotle observes that what is reported on this subject has no good foundation. . . . Buffon says that the stag takes five or six years to attain full growth and should live seven times this period-that is, thirty-five or forty years.
Though precise observations are wanting, we know that fishes, especially the large species, live a very long time. According to Bacon, eels reach sixty years. Carps have been known to live at least 150 yeare, and they then seemed to Buffon as lively and agile as ordinary carp. Dolphins, sturgeons, a nd sharks live more than a century and attain huge size. Pikes have been seen weighing $1,000 \mathrm{lb}$., which indicates a very ong existence. A pike caught at Kaisers-Lautern in 497 was 19 feet long and weighed 350 lb .; it bore in it gills a copper ring with an inscription stating that it had been put in the pond of Lautern by order of the Emperor Frederick II-that is, 261 years before Whale fishers have exterminated the huge whales of the polar seas; those that were formerly met with were of prodigious dimensions. It is supposed, with some probability, that they live several centuries and that they may even reach an age of 1,000 years. The longevity of fish is attributed to the long duration of the development, to their low temperature, and to their feeble vitality
On the other hand we meet another class of animals whose passions are lively, whose vitality is very active and who still live a long time-we mean birds. But it is not known with any degree of precision how long these live, except that their longevity is great. We see the same swallows returning to their accustomed nest for a considerable number of years. An eagle died at Vienna at the age of 103 years. According to Buffon the life of the crow is 108 years, and no obser vation authorizes us to attribute to it, with Hesiod 1,000 years. A paroquet, brought to Florence in 1633 by the Princess Provere d'Urbin, when she went ther to espouse the Grand Duke Ferdinand, was then at least twenty years old, and lived nearly 100 more. A naturalist whose testimony cannot be doubted, Wil oughby, had certain proof that a goose lived a century; and Buffon did not hesitate to conclude that the swan's life is longer vet; some authors give it wo and even three centuries. Mallerton possessed the keleton of a swan that had lived 307 years. This is quite enough to prove that among the larger animals, and also especially among birds, the duration of life relatively to their bulk and height, is very long : it is, on the contrary, very short with insects; many of these live less than a month, rarely a few years, while the life of the ephemerids is but seven to twelve hours and in this brief space they accomplish the principal functions that nature requires of organized bodies hey are born, reproduce, and die.-Journal d'Hygiene Paris.

Knots Tied by Machinery.
If inventions continue to multiply at the present ate, the day may speedily come when man will have o sit with folded arms while his work and even his pleasures are turned o ut for him by nickel in the slot devices. Science has lately given us a marvel in the shape of a card-counting machine.
Two of the most interesting automata now working within the limits of the United States are those used by the government for counting and tying postal cards into small bundles. These machines were made in Connecticut, and the two are capable of counting 500 , 000 cards in ten hours and wrapping and tying th ame in packages of twenty-five each. In this opera tion the paper is pulled off a drum ioy two long "fingers" which come up from below, and another finger dips in a vat of mucilage and applies itself to the wrapping paper in exactly the right spot. Other parts of the machine twine the paper around the pack of cards and then a "thumb" presses over the spot where the muci lage is, and the package is thrown upon a carry bel ready for delivery.-The Argosy.

The London correspondent of the New York Sun tates that an Antarctic expedition has been arranged for next winter. It will be partly a trading and a cientific enterprise, and will be under the command of Capt. Srend Foyn, of Christiania. W. S. Bruce, of the Ben Nevis Observatory, will have charge of the cientific party, composed of himself and four oth wen. The scientific party will be landed on the Ant arctic continent in Victoria Land in January next, and the vessel will then engage in whale and seal fishing returning to Australia. The following season, in January, 1898, she will return and take off the scien tific party, who hope by then to have obtained know ledge of the fauna, flora, geology, and topography of the Antarcticregion. If found practicable, an attempt will be made to reach the south magnetic pole.

