
a Weekly joulinal of practical information, art, science, mecilanics, Chemistry, ani manufactures.

the wooden frame and model skeleton.

the form covered with excelsior.

the wooden form ready for fadding out.

the clay covered form.

THE MOUNTING COMPLETED.

THE AMERICAN MUSEUM OF NATURAL HISTORY-MOUNTING THE ELEPHANT "TIP."-[See page 441.]

\%rientific gmerican.

ESTABLISHED 1845.
MUNN \& CO.. Editors and Proprietors. published weekly at
No. 361 BROADWAY. NEW YORK.

terms for the sientific american.

 Established 1876)

1ts. 11d , postage prepaid.
Building Edition of Scientific

 'Readers are specially requested to notify the publishers in case of
failure. delay. or irregularity in receipo of papers.
NEW YORK, SATU RDAY, DECEM BER 19, 1896.

TABLE UF CONTENTS OF
SCIENIIFIC AMERICAN SUPPLEMENT

No. 1094

THE PRESIDENT'S MESSAGE.

The dignified conservatism, the studied moderation of the President's message, is what is most needed at the present juncture in our national affairs. Many of he troubles with which the country is oppressed hav sprung from over-speculation and an unfortunate dis position to boost the wheels of progress by artificia means, legislative or otherwise. In the race for wealth and population many sections of the country have overrun themselves, and they are only now enjoying slow recovery. In a certain degree, this is true of the business of the country at large, and what it now needs above everything else is that it should be letalone and, if we may use the phrase, that nature may be given a chance to assert itself. Our credit is only now beginning to recover from the collapse of 1893. Quick as the wheels of credit are to stop, they are always slow to move again. Its inertia is hard to overcome, and it forward movement may be checked in a single day.
It is possible that the trade of the country has suf fered from overmuch legislation; that the change from pillar to post, the perpetual seesaw from one policy to another, is largely answerable for the present stagna tion. We need a rest-at least from legislation of the radical and sweeping kind. The expediency of letting matters run as they are for a while, if only for the sake of rest, is suggested by the encouraging figures showing our volume of trade during the fiscal year ending June 30, 1896, when our imports increased over those of the previous year more than $\$ 6,500,000$, and the value of the domestic products exported and marketed abroad is nearly $\$ 70,000,000$ greater than that of the preceding year.
This is certainly a very remarkable and encouraging showing, and it is fully in line with the conservative spirit of his address that the President should implicitly suggest that for the present at least legislation affecting our foreign trade relations should be left in statu quo.
In this connection we would suggest that the most effective means for opening foreign markets and establishing active commercial relations is that which we
outlined in a recent issue, and which is now being carried out by the National Association of Manufac turers. This organization, it will be remembered, is es tablishing exhibition warehouses for the display and sale of American products of various kinds in the South American states. By hiring suitable exhibition rooms and the appointment of a regular staff of competent salesmen, acquainted with the language and wants of the people, it seeks to familiarize merchants of those countries with such American products as they can purchase to advantage. Here is a practical field o enterprise which can do more for the extension of American trade than whole volumes of legislation. It
is practical, business-like, and, therefore, full of the promise of success.
The tone of the message is equally conservative in matters of foreign policy. In spite of the diplomatic success which has attended the Venezuela negotiations, the subject is dismissed with a modest reference; and while the language in speaking of our relations with the Spanish government is dignified, it deals with the question of the hour in a moderate and conciliatory spirit, which the more rash and impetuous spirits in Congress would do well to carefully consider. The foreign complications of the past year have taught, above all things, the lesson of moderation and the value of sober second thought. It is the exercise of these qualities which has brought us to the threshold of a permanent arbitration tribunal with the other great branch of the English speaking race; and also saved us from a step in relation to Cuba which recent developments show would have been decidedly premature With a sound financial policy assured and confidence restored there is nothing to prevent our entering upon a new era of prosperity equal to if not greater than the and collapse of 1893.

THE UNDERGROUND TROLLEY AND THE THIRD RAIL IN ELECTRIC TRACTION

Two powerful transportation companies which have been carrying out experiments in electric traction have recently taken steps to extend their electrical equipment to new divisions of their systems. The New York, New Haven and Hartford Railroad Company, whose trial of the third rail system on the Nantasket line has been closely watched by the electrical world, is intending to lay a third rail at various points on its property during the coming year, and it is officially announced that con struction of a three rail electrical equipment on the line between New Britain and Hartford, via Berlin, is as sured. The other installation is to be made by the Met ropolitan. Traction Company of New York, who have decided to adopt mechanical motive power in place of horses on the Fourth Avenue and Sixth and Eighth Avenue lines in this city. The change will affect forty-three miles of the existing lines.
The Metropolitan Company is one of those which has it is also the owner of the Broadway cable road and the electric underground trolley road on Lenox

Avenue; the compressed air experiments having been carried out on the last named branch. The company carried out on the last named branch. The company performance of these three forms of mechanical traction and there is food for thought in the fact that in the meeting of the directorsin which it was determined to nake the above mentioned change the weight of opinion was in favor of using the electric trolley in preference to the cable or compressed air. The underground cable was rejected on the ground of its great first cost as compared with the underground trolley, the amount of excavation, concreting and iron work being consid rably less for the electrical conduit. The only ques tion on which the company had any fears for the trolley was in regard to its ability to stand the hard est of winter service, especially when there was an ac cumulation of snow or slush. The behavior of the Lenox Avenue line during the severe snowstorms of last winter, however, was very satisfactory, the car being run with practically no interruption.
In view of its cheaper first cost and uniform success in operation, it is not surprising that the underground trolley is to be chosen in preference to the cable for the new equipment, but that it should have competed suc cessfully against the Hoadly compressed air motors is a act which will surprise those people who have been impressed with the claims of economy which have been made by the company for the recent application of com pressed air. The present costly experiments-there are ve compressed air motors in operation and two mor shortly to be so-were not undertaken until the engineers of the company had made an exhaustive examina tion on the spot of the various self-contained motors, gas, oil, and compressed air, in European cities. The test is particularly valuable for purposes of comparison, because the conditions are precisely the same for both ystems, the compressed air cars being run over the track of the underground trolley line. The electric and the compressor plants, moreover, are located under the same roof and probably use the same fuel, all the conditions ndeed being excellent for a comparative test. If the air motors are as satisfactory as is claimed, the Fourth and Sixth Avenue lines would furnish an excellent opportu nity to use them on a large scale; and the fact that the rolley line is to be put in suggests that the old difficul ties, which years ago baffled the designers of compressed air motors, have yet to be overcome
The announcement that the New Haven Railroad is intending to make a further application of electricity to its steam roads will be taken as evidence that the present Nantasket electric line has given better result than the steam-equipped road. If this be the case, lectric traction has taken another step in the direction of its application to the trunk roads of the country, and this goal for which electrical engineers are striving is brought within measurable distance.
At a recent discussion of electric traction under steam railway conditions, at the American Institute, New York, Mr. Charles K. Stearns stated that the chief ob ject in view in equipping this line was to demonstrat that an electrically equipped road could be operated as satisfactorily in regard to the facility of handling arge numbers of passengers on time as a steam road and that it could was proved beyond a doubt. The ine has now been in operation for two seasons. In 1895 there were 6.86 miles of double track equipped with special trolley wire, and the train schedule called or 150 trains a day. In 1896 there was the same length of trolley line and 3.64 additional miles of double track equipped with the third rail, over which 68 trains on an average were run per day. According to the table, showing the operation of the power stations during July, 1895 and 1896, the average electrical horse powe per hour was 245 in 1895 and 3491 in 1896, the corre ponding consumption of coal per electrical hors power hour being 4.24 pounds for 1895 and 2.99 pounds or 1896. The difference is partly accounted for by the fact that the engines were run non-condensing in the ormer year and condensing in 1896.
Another much talked of substitution of electric for steam traction is that which has just commenced ope ration on the Brooklyn Bridge. In place of the switching engines at each end of the road, one car in every train is equipped with an electric motor, and handles the train from the time the cable is dropped before entering the station until it is picked up again on the re turn journey. A third rail is used, which is placed on the outside of the track, and is laid continuously across the bridge, electric traction being used for the whole trip during the hours of lighter travel at night and in case of slipping of the cable. It is not used during the day because it is considered that the regular head way is maintained with more certainty and the danger of collision reduced by using the cable. Thu ar the work of the electric motors at the terminal has been a pronounced success. The headway has been reduced to an extent which makes it evident that the forty-five second interval will be attained when all the terminal switching tracks are utilized The absence of the exasperating jolts which accom pany the coupling on and starting of steam locomo ives is very noticeable.
The success of the New Haven trials raises the questio:
as to when we may look for the application of electricity to the heavy and fast traffic on our trunk roads. The most that can be said is that they give additiona cause to hope that the inherent difficulties of the problem are not insurmountable. The third rail system of transmission gives promise of a reduction in the first cost of transmission, and the possibilities of economy in the use of the al
put to a practical test
On the other hand, we must bear in mind, with re gard to the New Haven trials, that it is a far step from comparatively light local traffic at moderate speeds to the fast, long distance runs with heavy trains, which are being made with increasing frequency and at ac celerating speeds by our leading roads.

ARMORED TORPEDO BOATS.

Naval experts, in writing the history and pointing the lessons of the late war between China and Japan, have complained of the scarcity of results having any practical value to the student of naval warfare. This was chiefly due to the incapability or cowardice of the Chinese and to the unprepared state of their navy, which was both undermanned and short of ammunition. In cases where the Chinese did stand by their guns and fight their ships with any show of courage, as in the case of the two battleships which bore the brunt of the Japanese onslaught at the Yalu, the lessons of the war are numerous and valuable.
In the main it is to the Japanese that we must turn for object lessons, and thanks to their skill and pluck, they are many and valuable, particularly in those operations of the war in which the torpedo boat was engaged. One of the notable features of the various attacks made by these little craft was the performance of a special type of boat named the Kotaka, which differed from the ordinary torpedo boat in having armor protection. She was built about eleven years ago by Messrs. Yarrow \& Company, of London, and embodied some novel ideas, the chief of which was the application of an extra thickness of plating to protect the en gines and boilers. The Kotaka was selected to lead two important and hazardous torpedo attacks, and whereas the unarmored boats suffered severely from the rapid fire guns of the enemy, the Kotaka came through with comparatively little damage. The occur rence was significant, and it has again directed atten tion to the question of giving armor protection to tor pedo boats. The Santa Fe , which we illustrate in our SUPPLEMENT of this week, is one of four armored torpedo boat destroyers which the builders of the Ko taka have in hand for the Argentine Republic. The value of armor to a torpedo boat is unquestioned, and it would be placed upon every craft of this kind were it not for the fact that its weight reduces the speed by at least a knot, and speed is the absolutely essential qual ity in a torpedo boat or a destroyer. On the other hand, it is reasonable to argue that as between a 27 knot boat unarmored and a 26 knot boat with armor, the chance of running through the belt of fire and getting home a torpedo are in favor, and strongly so, of the slightly slower but protected boat.
In making her rush upon a battleship she is, it is true, one twenty-seventh longer under fire; but against this it must be admitted that she has a fifty per cent better chance to keep all but the heavy rapid fire shells out of her engine and boiler rooms and preserve her machinery intact until she shall have run in close enough to launch her torpedo.

Torpedo boat attack is largely in the nature of a for lorn hope. It is a gamble against chance, in which enormous risks are run for an enormously valuable stake. The little craft will probably be discovered by the time she is within half a mile of the ship, and if she makes the dash at full speed, it will take her about a minute to run in within firing distance. During this time she will be advancing in the teeth of a terrific fir from six pounder and one pounder rapid fire guns and from the machine guns. The darkness of the night, the excitement and haste of the gunners and the smallness of the target will cause most of these shells to miss the mark; but the hail of bullets from the gatlings and maxims will be a more deadly peril, and should these guns be once trained full upon the torpedo boat, they would tear their way through the thin plating like paper and probably with fatal effect.
It is likely that the machine gun will prove to be the most effective weapon in stopping a torpedo attack. It pours out a stream of bullets so dense that it may be likened to the rush of water from a nozzle, and when it strikes upon dirt, sand or a body of water, it causes a continuous splash, which enables the gunner very quickly to bring the stream to bear upon the target. In the confusion of a night attack and by the uncertain electric light, the machine gun fire will probably be the first to find the mark, and when once the leaden stream is playing upon a torpedo boat it will be easy to keep it there. If, then, by a slight sacrifice of speed a torpedo boat can be rendered secure against machine gun fire, good yolicy would seem to suggest that the sacrifice be made.
The cubove considerations show that speed is a rela tive term-that is, its value is relative. It is a quality
which may easily be overrated. Of all the elements which go to make up a warship, whether great or small,
it is the most showy and attractive ; and rightly or it is the most showy and attractive; and rightly or
wrongly, it has come to be the element to which most importance is attached. In a torpedo boat or a torpedo boat destroyer speed is, of course, of the first importance; but even here, as we have shown, its value may be largel.
the ship.
the ship.
The half inch armor of the Santa Fe would, of course be penetrable by the one and the six pounder shells, but it would prove sufficient to stop the murderous hail of bullets from the machine guns. The effect of armor protection upon the crew of a torpedo boat would be to contribute to that coolness and nerve which are indis pensable to a successful attack. There is no branch of the service which is so full of hardship, even in time of peace, as that which places a man beneath the hatches of a torpedo boat ; and if in the supreme moment of at tack the wearied crew felt that they were sheltered from the most deadly fire of the enemy, they would do better work than if they dashed in with certain death staring them in the face.

Notes from the Report of the Secretary of the Interior.
We gather from the annual report of the Secretary of the Interior that the actual public domain is now $1,849,072,537$ acres. There are still vacant more than $600,000,000$ acres, not including Alaska. Up to June o this year the total amount of land disposed of was $946,000,000$ acres. Of this vast area, $326,000,000$ acres have been disposed of since 1883 , or within thirteen ears. Since the passage of the Homestead Act, in 1862, 162,892,032 acres have been taken up by settlers There have been distributed in the form of land grant to railroads $83,784,705$ acres, and $1,945,045$ acres have been patented to wagon roads. There are yet due to railroads and wagon roads under their various grants $114,736,639$ acres. The four national parks aggregate in area $3,272,960$ acres. The total area of the Indian reservations is $84,418,562$ acres and of military reserva tions $1,397,691$ acres. The secretary recommends the waste land "should be taken up by actual settlers, to whom every encouragement should be extended if they are of a character to assimilate with our people and become valuable citizens. Our law makers, however,
might well consider the question seriously before dismight well consider the question seriously before dis-
posing of any more large areas of the public domain. If the rate of disposition of the last thirteen years is continued for thirteen years to come, there will be little of the public domain outside of Alaska remaining in the possession of the government at the expiration of that time."
The secretary strongly recommends to Congress that provision should be made for reclaiming the vast stretches of arid land which occur in the Western States. He is of the opinion that $100,000,000$ out of the total $500,000,000$ acres of arid land might be reclaimed by systematic irrigation. He also urges that steps be taken for the preservation of our public parks, a question which cannot be too urgently brought before the notice of Congress.
On the question of pensions, we learn that there are now about 970,678 persons on the pension list, who draw about $\$ 140.000,000$ per year. The object of the department, says the secretary, "has been to consti tute the pension list a roll of honor," rather than to aim at any special economy, and it has sought to defeat the designs of impostors and at the same time to give
full heed to the claims of the truly deserving. The otal sum disbursed by the government and the cost o disbursing it during the last thirty-one years is $\$ 2,034$, 817,769.16. What this sum really amounts to is evident when we learn that it is short only $\$ 346,712,525$ of being equal to the high-water mark of the interest-bearing public debt.
With regard to the present standing of the Indians, we learn that they now occupy $85,000,000$ acres of land and the secretary urges that they should be guarded rom becoming victimized by unscrupulous speculators He recommends that three citizens, two of them civil ians of different political parties and one an army officer, should constitute a commission to conduct the affairs of the Indian Bureau. There has been no out break or disturbance of any kind during the year. An earnest effort is being made to render the Indians inde pendent and self-supporting. The appropriation for he entire Indian service, for the year 1897, is $\$ 7,189,496$ The total Indian population of the United States, without including the New York Indians and the five civilized tribes, is 177,235 , among which there are 38,000 children eligible for the schools. During the year ther were 293 Indian schools, with an average attendance of 19,121 out of an enrollment of 23,393 pupils. This does not include the pupils among the five civilized tribes or the Indians of New York.
On the subject of bond-aided railroads the secretary draws attention to the fact that the Central Pacific Railroad is in default to the government, and he states that on January 1 next $\$ 2,432,000$ additional of its indebtedness, together with thirty years' interest there-
on, will fall due and must be redeemed by the govern-
ment. The secretary points out that Section 5 of the Act of 1862 provides that on the refusal or failure of a company to redeem its bonds, the Secretary of the Treasury may take possession of all lands which at the time of said default shall remain in the ownership of the company.
With regard to the Nicaragua Canal, the secretary points out that the act chartering the company requires it to make a report on the first Monday in December of each year to the Secretary of the Interior. A prelim inary statement by the company shows that no work has been done since August, 1893. The Maritime Canal Company entered into a contract with the Nica ragua Canal Construction Company for the construc tion of the canal, but the latter company became finan cially embarrassed in August, 1893, and subsequently made an assignment of its construction contract and all its assets to the Nicaragua Company, a corporation chartered by the State of Vermont. The latter company "has not yet found itself in a position to resum the work of construction under its contract."
The secretary recommends, in reference to our na tional parks, that liberal appropriations be made for the completion of the road system, and that an experi enced landscape architect be appointed whose skill and taste would enable him to design a comprehensive and harmonious plan for the improvement of the parks. He considers that it is undesirable that works of art should be created in the parks, but that modern ingenuity should be exercised in promoting the comfort and facility of the sightseers. It is also recommended that all private land within the limits of these parks should be acquired by the government.

The Scientific American Supplement

Occasional inquiries from our subscribers as to what is the relationship existing between the Supplement and the Scientific American suggest that this would be a timely occasion to give some account of the rigin and present scope and purpose of the younge publication.
The Supplement dates from the year of the Philadelphia Centennial Exhibition, 1876. The pages of the Cientific American proved quiteinadequate to contain as full a treatment of this national event as the ditors desired to give, and it was determined to start a sort of "overflow" publication, which should appear simultaneously with the regular journal, and carry such matter as was crowded out of its columns. Th Supplement, as the new paper was called, served also for the publication of longer and more technical papers than were considered available for the SCIENTIFIC American. The demand for the paper was so great and it proved so popular, that at the close of the Exposition it naturally occurred to the proprietors that here was a permanent field of usefulness for such a publication, a conviction which was strengthened by equests from many of its subscribers that its issue should not be stopped. The decision to continue the SUPPLEMENT as a regular weekly publication has been justified by its increasing popularity and by the high character of its readers.
In order to fully meet the varied tastes of the many readers of the Scientific American, it is necessary that the articles should be limited in space, and it is therefore not possible, however great may be their intrinsic interest or however valuable their contents rom a scientific standpoint, to publish in its columns ong or continued articles.
Nor is it possible in this pape. - to furnish space for the proceedings and discussions on the papers read at the meetings of the numerous scientific, engineering, electri al and other associations which frequently assemble in his country and abroad.
But the Scientific American Supplement is de voted not only to the publication of the proceedings of these various associations, but every issue contains de scriptions, accompanied with illustrations, of important engineering and mechanical work going on in Europe as well as at home, and every weekly issue contains several columns of miscellaneous items, embracing elec ricity, engineering, new inventions, recipes; in fact, s varied are the subjects summarized which appear in these columns, that one year's numbers of the SUPPLE MENT comprise a year book of facts on all subjects ap propriate to a paper devoted as this is to the higher branches of scientific thought.
The Scientific American is principally confined to the industrial development of this country, but in the Supplement this work is extended and reviews the latest and most important scientific achievements of Europe and elsewhere. The Supplement extends and amplifies the work of the parent paper, and those readers of the Scientific American who wish to re ceive the complete work can procure the SUPPLEMENT under the favorable conditions of our combined rates. published elsewhere, even though their subscription for the parent paper has already been paid.

Prof. Ramsey, after a series of exhaustive experiments, reports that there is every reason to believe that the elements helium and argon are non-valent; that is, are incapable of forming compounds.

THE PERFECTED DURYEA CARRIAGE.

Motor carriages are now occupying great attention both in Europe and America, and we may look for excellent results as the consequence of this interest. Inventors, in this country at least, have been heavily handicapped by lack of funds to carry out the expensive experiments which are requisite to the perfecting of the carriage. In England there appears to be now no lack of capital, but a sad lack of practical carriages. We have already illustrated the principal carriages of domestic origin and we now present an engraving of the Duryea motor wagon, which made an exceedingly creditable run in the recent inaugural trip from London to Brighton on November 14. The Duryea carriage won the first prize in the Times-Herald race in 1895 and also the prize in the Cosmopolitan race on Decoration Day, 1896. The run to Brighton was not a race, but "go-as-you-please" run, still the time was taken, and once started the vehicles tried to pass one another, so that it was virtually a race in spite of all efforts to make it a procession. Out of fifty entries only some thirty carriages materialized, and many of them were left oy the wayside between London and Brighton, to the great delight of writers for some of the dailies and weeklies, who now had a new object of ridicule. That some of the carriages greatly exceeded the legal limit of twelve miles an hour is shown by the time in which a Bollee car covered the entire distance, which was two hours thirty minutes.
The Duryea carriages were late entries and were placed at the rear of the procession. While in the city it was not possible to turn out and pass the vehicles, but once in the open country the American carriage began to pull past carriage after carriage until they reached Reigate (22 miles) 30 minutes ahead of the next similar vehicle. Here lunch was served, and some o the carriages kept right on without waiting, which accounts for the remarkable time shown in some of the published reports; this has been the cause of much misunderstanding. When the procession reformed, the Duryea carriage again forged ahead and reached Brighton forty minutes in advance, making a total gain of seventy minutes in about four hours. The road were very heavy on account of the rain. It is said that the Duryea wagons were the only ones which were turned over to stable boys to be cleaned off with a hose the other carriages, having exposed parts, had to be wiped off like a locomotive.
The Duryea carriage was described in the Scientific American for November 9, 1895. Various improve ments have been introduced since that time, such as decrease of weight, an accurate adjustment of the explosive mixture, an improved muffler and arrangement for starting. While ordinary stove gasoline or naphtha is used, the motors can be quickly adjusted to use kerosene or other hydrocarbon.

Heat of Flowers. Herr G. Kraus has investigated (Annales Jard. Bot. Bui tenzorg, 1896) the extent and purpose of the rise of temperature at the time of flowering of various species of Acaceæ, Cycadeæ, and Palmæ. In Ceratozamia longifo lia he found thiso lia he found this ele vation to take place only in the daytime, the maximum at tained being $38.5^{\circ} \mathrm{C}$., or 11% above that of the air. Similar results were obtained with Macrozamia. In the Acaceæ examined the period of maxi mum elevation is more variable, but it is never in the night In this order the sea of the elevation of temperature is n ot the reproductive or gans themselves, but the club-shaped ap pendix to the inflor escence and it is ac scence, and by ac companied by a ra pid consumption of tarch and sugar All the plants in which this phenome on occurs are ento mophilous, and Dr Stahl sees in it a
contrivance for attracting insects to assist in pollina tion.

MPROVED BALL BEARING FOR BICYCLE HUBS

A ball bearing of simple and durable construction designed to reduce friction to a minimum, and wel

STEPHENS' FRICTIONLESS BICYCLE HUBS.
adapted for use on bicycles and other vehicles and ma chines, is shown in the accompanying illustration, and has been patented by Harry A. Stephens, of Missoula Montana. Fig. 1 is a sectional view of a bicycle hub on which the improvement is applied; Fig. 3 being an ex erior view of the hub, and Fig. 2 representing a novel form of bearing ring employed between the outer and inner sets of ball bearings. The stationary axle is engaged by members of the fork resting with their inne faces on nuts, whose inner faces abut against washers resting on annular flanges formed on ring-shaped bearings screwing into the ends of the hub, carrying the spokes of the wheel. The washers thus close the bear ings and prevent access of dust to the inside of the hub. On the inner surfaces of each of the exterior bearings is a ball seat engaged by an outer row of balls held in a peripheral groove of an annulus or bearing ring, shown in Fig. 2, which also has an internal annular groove engaged by a second row of balls fitted onto a seat formed by the shoulder connecting the middle large portion of the axle with the outer reduced end. The ring interposed between the two rows of balls does not come in contact with any of the other parts of the
device, and should a ball break in one of the rows, the other bearing would still be operative, so as not to interfere, at least for a time, with the progress of the rider. In the ordinary ball bearings, the difference in length between the outer and inner bearings causes a partial sliding of the balls, which is obviated in this case by the freely moving bearing ring, whereby the friction is reduced to a minimum.

The Destruction of Sodom and Gomorrah.
The destruction of the oldest seats of civilization and culture in the Jordan Valley and the Dead Sea dis tricts, namely, that of the four cities of Sodom, Gomor rah, Admah, and Zeboim, is one of the fixed facts of earliest tradition, and for the critical geologist the phe nomenon presents no difficulty, as far as it can be traced at all. The tragedy was caused by a sudden break of the valley basin in the southern part of the Dead Sea, resulting in the sinking of the soil, a phenomenon which, without any doubt, was in intimate connection with a catastrophe in nature, or an earthquake accompanied by such a sinking of the soil along one or more rents in the earth, whereby these cities were destroyed or "overturned," so that the Salt Sea now occupies their territory. The view that this sea did not exist at all before this catastrophe, or that the Jordan before this period flowed into the Mediterranean Sea, contradicts throughout all geological and natural science teachings concerning the formation of this whole region.

That the Pentapolis at one time wa situated in the southern part of the Dead Sea, which is now called Sebcha, is proved also, among other things, by the probable location at this place of Zoar, the place which escaped destruction in the days of Lot ; in accordance, too, with the writers of antiquity and of the middle ages, including the Arabian geographers. As yet nothing certain can be determined concerning the location of the four other cities, viz., Sodom, Go morrah, Admah, and Zeboim, of which names only that of Sodom, in Djebel Usdum, is found reflected in any place in these precincts. And even apart from geo logical and geographical reasons, this seems to be the natural thing, as the book of Genesis represents thes places as having been thoroughly destroyed withou leaving any trace or remnant behind. The fact that now these districts are a dreary waste, and by the Arabian geographer Mukaddasi called a "hill," is no evidence that in earlier times this was not different nd this valley not really a vision of paradise.-Dr Max Blanckenhorn.

The New York Aquarium.

The New York Aquarium was formally opened on December 9, and on December 10 it was thrown open to the public, and for hours the crowd was so great that the visitors had to stand in line, 14,000 persons seeing the collection during the day. The dingy old buildin which was formerly used for the reception of emigrants, ha been completely transformed. Only the seven pools and the thirty-two wall tanks are in use There is at present no exhibition in the galleries, but in time its fifty-six tanks will be stocked. The aquarium was de scribed in the Scten tific Ambrican for December 15, 1894 It is open daily ex cept Sundays and Mondays. Dr. T. H. Mondays. Dr. T. tendent.

The first use of Niagara's power was made in 1725 , a pri mitive sawmill being operated. Nothin more was done in this line until 1842 when Augustus Por ter conceived the plan of hydraulio the nals, and in 1861 was completed. The Cataract Construction Company, from whose plant power has just been delivered in Buffalo, was incorporated in 1889.

THE AMERICAN MUSEUM OF NATURAL HISTORY-ITS wood to place a water color drawing illustrating the Frank M. Chapman, assistant curator; Jchn Rowley, COLLECTIONS AND WORK-THE MOUNTING OF THE ELEPHANT " TIP." safe to say that comparatively few New Yorkers have an adequate idea of the American Museum of Natural History, which is one of New York's most notable institutions. It was founded over 20 years ago, the original law under which its charter was acquired being passed tion is such that in the nearly 150,000 square feet of floor space, the majority of which is now at the command of the institution, barely adequate room is found for the display of the riches of the collections. Mineralogy, geology, paleontology, botany, natural history, in all its divisions, and anthropology, are the heads under which the many collections may be grouped.
In addition to what may be termed the natu ral increase of the ral increase of the specimens, many celebrated collec tions have been bought or pre sented from time to time. Thus, under vertebrate paleontology, the famous Cope colection of fossil mammals of North America North America as recently been purchased, repre senting an expenditure of nearly $\$ 16,000$. This is but an indication of the work. From many exploring and collecting ex peditions, all or part of the finds are contributed to re contributed to Froun expedition rom expeditions o Peru, Hondu as, Sumatra and Mexico, many uniquesamples have been received. The Peary Relief Expedition of 1894 greatly enriched the departuent of mammals and birds.
The department of anthropology, covering in its cases the cliff cases the cifis of Utah, the South America Indians, mound specimens from Ohio and Kentucky and objects rom British Co rom British Columbianis of ing feature of the work is the department of puble school teachers and the public in general. botany are in special request
special interest and richness. Another very interest- art confronts the visitor as he enters the building, struction under the curatorship of Prof. Ticknor. Here numerous lectures on travel and exploration and on subjects connected with the exhibition are given to the

The library now numbers upward of 30,000 volumes and many maps. Books treating of forestry and

Among the mineralogical specimens some samples of minerals are quite unique, from size and perfection. The Jesup collection of North American woods has at last received a permanent lodgment. It is proposed now over each of the beautifully mounted specimens of

The assertion that those who live in a city of ten know least about its institutions has become a truism. It is in 1871. To the original building addition after ad dition has been added, a new lecture hall has been built, and to-day the richness and extent of the collec

istribution, with printed technical data

We illustrate the outside of the building. Since this view was taken the west wing has been nearly completed, which alone represents an expenditure of nearly $\$ 350,000$. An idea of the system of arranging the col lections can be obtained from the view showing the hall of paleontology. Natural history is particularly well illustrated in taxidermic specimens in the world of nammals, birds and reptiles. One of the trophies of this department is the mounted skin of the elephant Tip, which impressive example of the taxidermist's

THE AMERICAN MUSEUM OF NATURAL HISTORY-THE MAIN BUILDING.

THE AMERICAN MUSEUM OF NATURAL HISTORY-HALL OF PALEONTOLOGY

 and of whose preparation a description is given below.
The president of the museum is Mr. Morris K. Jesup. The working staff of the institution includes the following names:
Department of Public Instruction.-Prof. Albert S. Bickmore, curator.
Departments of Geology, Mineralogy, Conchology and Marine Invertebrate Zoology-Prof. R. P. Whitfield, curator; L. P. Gratacap and Edmund O. Hovey, assistant curators.
Departments of Mammalogy, Ornithology, Herpetology and Ichthyology.-Prof. J. A. Allen, curator ;
determined on and the death of Tip himself was of potassium cyanide was administered to him, on May 11, 1893, which killed him, at the age of twenty-three years. He was of good dimensions, 9 feet 6 inches in height and 11 feet long.
It is quite usual to use some of the bones of the original skeleton in mounting animals. In Tip's case, however, the skeleton was preserved for separate mounting. Immediately after his death the skin was removed and all the flesh was dissected from the bones, and the skin after paring down was put in tan liquor. The bones were carefully prepared for mounting en squelette. For the taxidermic figure a wooden skull
and wooden leg bones were made in general facsimile of corresponding members of his frame. A profile board of heavy plank was cut out, representing the longitudinal section of the great body. It was sustained by four iron bars fastened by iron straps to its sides. Close to the bars were mounted the representative of the leg bones. This stage of operation is shown in Fig. 1. The wooden skull was attached to the profile board, and a pair of tusks from another elephant were attached to the wooden skull. This gave the extemporized skeleton in part. To the profile board curved ribs were now attached, and over these laths were nailed closely together so as to give the general contour of the body. A similar process was applied to the legs, they being brought to a cylindrical shape by laths running up and down, nailed to a framework surrounding the iron supporting bars and wooden leg bones. From the skull depended a profile board representing the longitudinal section of the trunk. This marked the second stage in the operation, and is shown in Fig. 2.
The next step was to cover the laths with excelsior tied, tacked or glued on, according to the circumstances Now constant reference was made to the photographs of the living Tip and to measurements. The skin meanwhile had been lying in the tan liquor for a year. It was scraped and pared down to a manageable thickness and was now tried on the excelsior covered elephant. This resulted in indicating the necessity for adding excelsior in some places and in taking it away in others. The skin was repeatedly tried on and the excelsior added or removed until the manikin was made to exactly fit the skin, which for ease of manipulation had been cut into three pieces. The excelsior covered core is shown in Fig. 3.
When this fitting of the manikin was complete a thick coating of modeling clay was applied all over the surface until the clay manikin, shown in Fig. 4, resulted
The skin was now slung up and placed over the model, and was sewn in place with wire. Fig. 5 shows the work in progress. The trunk board had been padded out to give the approximately cylindrical section. Glass eyes were put in position, the eyes being constructed with great care to reproduce the colors of the true elephant's eye. After the tanning the skin was no longer the natural color. By the use of paint, varnish and some finishing touches, the proper color was restored to it and the true appearance of an elephant given to the whole, as shown in the final cut, Fig. 6. It now forms one of the most attractive objects in the museum, and represents a very complete embodiment of the art of taxidermy.
The use of clay and of the elastic excelsior gives the taxidermist great facilities in reproducing all the natural features of an animal. The modern school of taxidermy is specially well illustrated in the American Museum of Natural History. Thus, taking as example the walrus or the rhinoceros, it will be found that in both of these animals the large wrinkles or folds of the skin are very characteristic features. The modern school of taxidermy takes full cognizance of them, and often many hours and days of work are devoted to the final life-giving touches and reproduction of minute features. The stuffed animal is no longer a mounted skin; it is the reproduction of the animal itself, upon which every resource at the taxidermist's command is lavished.

Recent Patent and Trade Mark Decisions. Osgood Dredge Company v. Met. Dredging Company
(U. S. C. C. A., 1st Cir.), 75 Fed., 670.

Combinations and Aggregations.-The general rule of law is that the conception of a combination which merely brings together two or more functions to be availed of independent of each other is an aggregation and not a combination, and there is no invention in it.

Dredging Machines.-The Osgood patent, No. 257,888, for a dredging machine having a boom attached to operate either a scoop for hard soils, or a "clam shell" bucket for soft soils, has been held void as to clainus 1 and 3 because it is a mere aggregation and not a combination.

Validity of a Patent as Affected by Prior Declarations of Defendant.-The fact that the defendant by advertisements and other publications has maintained the patentability of machines of the same general character as that for which he is charged with infring ing is entitled to little weight in determining the validity of the patent, because whether the patent is valid or void is a matter of public concern and neither the inventor nor the infringer can be permitted to substitute his own opinions for the judgment of the court which represents the public.

Expert Testimony.-An expert witness in a patent case has no right to answer any mixed question of law and fact, and it was improper for the expert to state as his opinion that a certain alleged invention belonged to that class of inventions described by the term " new article of manufacture."

A Court Declaring a Patent Void on its Own Motion. -Becanse the court represents the public, and the validity of the patents is a matter of some public con cern, a court has a right on its own motion to adjudge
a patent invalid even if the question is not raised by the parties to the case.
Blount Manufacturing Company v. Bardsley (D. S. C. C. A., 2 d Cir.), 75 Fed., 674.

Interpretation of Claims.-Where certain claims of a patent described a shaft as connected with a piston " to operate the same," and "to operate the same and be operated thereby," but failed to show how the connection was made, it was held that the connection was not necessarily an attachment incapable of separation, but such a relation of parts as would produce simultaneousness of motion between the shaft and piston, and, therefore, such claims cover a cam connection.
Door Checks.-The Blount patent, No. 289,380, door checks, having a liquid regulating cylinder separated from the actuating spring and having a bypass, has been held valid and the second claim restricted to the combination shown, and his patent, No. 485,357 , for a door check and closer, has been held valid and claims 2 and 3 restricted to the specific combinations described.
American Soda Fountain Company v. Green (U. S. C. C., Pa.), 75 Fed., 680

What Constitutes a Combination.-A patent cannot be declared void because it is not a combination when the object to be attained by the apparatus would not be accomplished except by the mutual relation and the co-operation of the various parts.
Soda Water Fountains.-The Whitting patent, No. 414,279 , has been held valid.
Long v. Polk Manufacturing Company (U. S. C. C. A., 1st Cir.), 75 Fed., 835.
Effect on Patent of New Functions.-The discovery of new uses or functions of a patented device has no effect upon the patent regardless of what the patentee may have claimed in the patent to be the functions and advantages of his invention, for the patent is on the mechanism. The discovery of a new function, therefore, cannot be used to give the patent a breadth not shown on its face.
Road Vehicles.-The Long patent, No. 281,091, for an mproved steering head for road vehicles has been con strued and limited.
Beach v. Inman (U. S. C. C., N. Y.), 75 Fed., 940
Effect of Prior Decisions. - When a patentee has ob tained a final decree after years of arduous litigation, sustaining the broad claims of his patent, such decree should protect him against all intruders who seek to use the actual invention by making changes in form to avoid the claims and specification; the specification and claims are not to be scanned with a hostile eye after uch decision.
Paper Bag Machine.-The Buck reissue, No. 11,167, or a machine to attach stays to the corners of paper boxes as to its first two claims is again sustained and is infringed by a machine having only differences of form and in substance
Ex parte Ernest (Commissioner's Decision), 76 O. G., 1417.

Amendment to Drawing.-If the examiner thinks the proposed amendment to a drawing involves new matter, the change in the drawings should not be allowed to be made until not only the question of new matter has been finally determined but whether the claims based thereon will be allowable, so that all questions may be settled at once on appeal.
Rewriting the Specification.-Although an application may be confused and informal, yet if the claims can be understood from the description and drawings, action should be taken on the merits.
Ex parte Stern (Commissioner's Decision), 76 O. G. 1417.

Entering Amendment to Application.-Where an amendment to an application for a patent cancels some claims and amends others, the examiner cannot admit the amendment so far as it relates to the cancellation of claims and refuse to admit it so far as it relates to the amendment of claims, but must either enter or reject the amendment as a whole, so as to enable al questions to be settled by appeal.
Ex parte McFarlane (Commissioner's Decision), 76 O. G. 1418.

Dispute as to Ownership of Patent.-The Patent Office is not the proper place to dispute the ownership of a patent, for it has no judicial functions for the de termination of private rights, and where the title is dis puted the patent should be granted to the inventor leaving the question to be determined by the courts.
Pell v. Pierpoint (Commissioner's Decision), 76 O. G. 1573.

The Question of Novelty in an Interference Case.Where the question of priority has been decided with out the suspension of an interference proceeding, the question of patentability of a claim involved in the in terference will be considered ex parte and not inter partes by the primary examiner.
Ex parte Grosselin (Commissioner's Decision), 76 O. G. 1573.

Affidavit against Foreign Patent.-Where a foreign patent is cited against an application, an affidavit to
overcome such patent must state facts showing that
the invention was completed in this country before the date of the foreign patent.
Drawbaugh v. Seymour (U. S. C. C. A., D. C.), 77 O. G., 813.

Telephone.-The applications of Daniel Drawbaugh, No. 111,554, filed 1883, and No. 536,530, filed 1884, have been rejected on the ground that Drawbaugh was not the inventor.
Affidavit Against Foreign Patent.-An affidavit to overcome a foreign patent cited against an application must not fail to state facts as to the time and circumstances of the conception of the invention and its development to completion prior to the filing date of the cords.
The Burden of Proof in an Application for a Patent. -In an application for a patent the burden is on the applicant to show that all the conditions and provisions of the law have been fully complied with where by the inventor is justly entitled to a patent under the law and that the invention is sufficiently useful and important to justify the issue of the patent.
Rejection on Grounds not Specified. - The Commissioner is the head of the Patent Office, and has the power to grant or withhold a patent, and if there be any reasonable ground within his knowledge why a patent should not issue, whether a specific objection be raised by the examiner or not, it is his duty to refuse the patent, and it is not necessary that a duly certified transcript record of the decision of a federal court be filed in the Patent Office in order to render it competent for the office to take notice thereof
Cushman v. Lines (Commissioner's Decision), 77 O. G., 153.

Design for Oil Cans.-A slight and apparently immaterial difference in the appearance and design of oil cans is patentable.

Experiments on Animals and on Man

Thiersch's experiments on cholera, which caused the death of fourteen mice and proved that cholera is communicated by swallowing particles of cholera discharge, have been an important factor in the sanitary legislation of every civilized country.
Two of the London water companies experimented with cholera polluted water upon 500,000 people, causing the death of 3,476 human beings in 1853-54. This is the popular accidental experiment which antivivisection writers tell us to wait for, and which they say is sent by Providence to teach men physiology. Thiersch made the same experiment upon fifty-six mice, the con ditions being accurately determined and scientifically controlled, and with the death of fourteen mice gave the world more exact information about the contagion of cholera than all the cnolera epidemics recorded in history. This is the scientific experiment which we are told should not be made.
The antiseptic method, which we owe in so great a measure to the vivisectional experiments of Joseph Lister, is past all reasonable controversy and we may refer to it here. It has come to be used in hospitals generally, and has reduced mortality from surgica operations to one-tenth of what it was before. Any one who has seen even a few cases of antiseptic surgery wil readily agree with Dr. Keen when he says: "Sir Joseph Lister has done more to save human life and diminish human suffering than any other man of the last fifty years." Still, Lister was obliged to leave England to continue experiment in his merciful work after the passage of the restrictive law in 1876
In the Tubingen Hospital died from amputation be fore introduction of Lister's method and after :

	Per cent.	nt.
Of lower limb.	43^{5}	$8 \cdot 2$
Of apper limb.	$30 \cdot 6$	$2 \cdot 9$

-Appletons' Popular Science Monthly

A Word to Mall Subscribers.

At the end of every year a great many subscriptions to the various Scientific American publications expire.
The bills for 1897 for the Scientific American, the Scientific American Supplement, and the Build ing Edition of the Scientific American are now being mailed to those whose subscriptions come to an end with the year. Responding promptly to the invitation to renew saves removing the name from ou subscription books, and secures without interruption the reception of the paper by the subscriber.

PRICES.
The Scientific American (weekly), one year.................... $\$ 8.00$
Supplement to the Scientific American (weekly), one year.....
Building Edition of the Scientific American (monthly), one
year....... ...
ExportEdition of the Scientific American (monthy, in Spanish
and English), one year..................................... 8.00
COMBINED RATES.
The Scientific American and Supplement..................... 87.00
The Scientific American and Building Edition.. 5.00 Building Edition.......................... 9.00
This includes postage, which we pay. Remit by postal or express money order or check to order of postal or express money order or check to
Munn \& Company, 361 Broadway, New York.

Sarrespondence.

again the Nest Building Fishes.

To the Editor of the Scientific American :
In the Scientific American of November 28, Charles F. Gilbert criticises an article on the nest building fishes which appeared in your issue of August 1. Mr. Gilbert has evidently reference to some other fish than the Paradise fish spoken of in your issue of August 1. He will find an absolutely correct article, with an absolutely correct illustration of the nest building Paradise fish of India (Macropodus venustus), on page 95 of the "Amateur Aquarist," by Mark Samuel, the late aquarist of Columbia College, published by the Baker Taylor Company, 5 East Sixteenth Street, New York; and he will also find an illustrated article on the n building stickleback on page 99 of the same work.
The fish Mr. Gilbert refers to he says builds no nes but the Paradise fish does build a nest made of bub bles on the surface of the water. The fish that Mr. Gilbert speaks of he says attains a weight of twenty pounds. The adult Paradise fish measures only five nches in length.
I would like to correct a few errors in the otherwise excellent article of August 1, which refers to the real Paradise fish. As I have raised these fish for five years, and have made a constant study of their every action, my observations correspond exactly with those of Mark Samuel in the "Amateur Aquarist." The female never makes the nest. The whole process of making the nest and caring for the young is done by the male. Instead of the eggs hatching in five days, they hatch in about thirty-six hours.
Any one can raise these fish with a very little care in an ordinary small aquarium, and they are a most interesting fish, especially during the breeding season, when they change their various brilliant colors and extend their tail and fins in a very much more beautiful manner than any other fish known.

Charles H. Loomis.

'The Commercial Value of Ideas.

In his lecture before the League for Political Education, at the Berkeley Lyceum, on "The Commercial Value of Ideas," Mr. Clarence Cook described a fancied visit to Parnassus, where he met Fortune riding down on her "wheel," in a bicycling costume that had been modeled upon the antique, and recalling the statue of the huntress Diana. Questioned upon her mission, Fortune said that she was carrying gifts from the muses to the men and women of the world. "You seem to be very lightly laden," said the questioner. have all I can carry," she replied; "for my load is made up of ideas, suggestions, and even a few happy guesses. As she sped down the mountainside she called back "I never carry money with me, but only the means by which to make it."
From this suggestion the lecturer pointed out some ideas from which have been made fortune and fame He found all the muses actively engaged in businessParnassus turned into a workshop. All were busy in teaching men how to extract money from sculpture, from the writings of history, from the dreams of poetry, and even from the divine graces of the Muses' dance. Clio said that she had taught Herodotus to write history, and although his books were filled with "vain imaginings," they still had "a good sale."
Plato, he said, had called the boy " the most fearful wild beast living." Occasionally, however, the boy proves of great usefulness. Thousands of idle boys had sat lazily by their mothers' fires and seen kettle lids bobbing up and down; thousands of men, also, had seen it ; but it was reserved for the boy Watt to inves tigate cause. and give to the world the steam engine.
Another little boy, tired of holding the skein of yarn for his mother, devised the reel, so that he could go out to play. Another, turning a crank and seeing other boys at play, looked about for some way to have his work done so that he could go out in the fields. He noticed another crank, moving simultaneously with his. He attached a wire from the other crank to his to play, leaving behind him a blessing to mankind.
'We are apt to consider Nebuchadnezzar a tiresom old fellow, and he was certainly addicted to strang ways in his old age, but he first conceived the idea of canalization. Pharaoh-Necho also had the idea of canals, and first suggested the cutting of a canal through the Isthmus of Suez. In those days they had no newspapers to tell people what to do, but they had what fulfilled this function of the newspaper-the oracle. Pharaoh-Necho went, therefore, to the oracle, and it gave him exactly the same reason for not cutting the Suez Canal that the papers give now for America's not cutting a canal across Nicaragua. It said: "You are working for the barbarians." The idea was that the canal would benefit the people of the Mediterranean
more than it would Egypt. We are afraid of helping some one else, but the canal will have to be cut some time. Pharaoh-Necho's plan was afterward utilized by De Lesseps, and brought him fame and fortune.
"Long ago there were three toysin China with which
those people played for centuries. They were little wooden blocks, on which figures and characters were cut; a little toy machine which had a needle that, when moved about, always turned to the north, and which the Chinese found useful in sailing up and down their coasts, and the last was the firecracker. These toys are still so used in China, and would never have been of any great service to mankind if they had not been brought to Europe, where the crude ideas they embodied were fertilized by the ideas of thinkers, and then they revolutionized the world. From the little blocks of wood came the printing press; from the curious little toy of Chinese junk sailors came the mariner's compass, and from the firecrackers were evolved the cannons that battered down the feudal walls of Europe."

World's Debts Increasing.

Whether it be a good or a bad thing for the nations, there is no room to doubt that the debts of the world
are growing steadily. In 1875 it was computed that they stood at $£ 4,750,000,000$, as compared with a round $£ 4,200,000,000$ two years earlier. On the basis of figures, many of which have been obtained by us at first hand, and are likely on that account to be more accurate than some of the wild guesses to which certain irresponsible statisticians have treated us, we ourselves estimate that the indebtedness of the world to-day stands at $£ 5,800,000,000$. As probably everyone knows, France has the doubtful distinction of being the country which has the largest debt. The latest figures put the total at something like $£ 1,200,000,000$, which is nearly double the debt-£660,000,000-of Great Britain, which ranks as second on the list. Russia follows with a total of $£ 575,000,000$, and insignificant Italy comes fourth with $£ 506,000,000$-that is, if we count as sepa rate items the joint debt of Austria-Hungary and the individual debts of the two portions of the nation. The joint debt stood, in 1895, at $£ 275,990,000$; while the debt of Austria alone was $£ 122,678,600$, and that of Hungary alone $£ 207,729,000$, or $£ 606,397,600$ in all. The United States debt amounts to $£ 339,000,000$, and that of Spain-exclusive of the more recent loans in prose cution of the war in Cuba-at $£ 279,000,000$. In the ollowing statement we give a comparison for 1875 and 1895 of the indebtedness of the nations which now owe or did then owe, $£ 100,000,000$ or over :

Conntry.	1875. (Estimated.)
France.	£900,000 000
Great Britain.............	780,000,000
Russia .	340,000,000
Italy...........	890,000,000
United States.	440,000,000
Spain.,	375,000,000
Austria-Hungary.	350,000,000
Germany.	200,000,000
Australasia	46,000,000
Turkey.	185,000,000
Portugal.	69,000,000
India	130,000,000
Brazil.	94,000,000
Egypt.	75,000,000

In spite of the substantial reduction of the English merican, Spanish and German debts, there is a ne ncrease for the fourteen nations in the twenty years o $£ 848,000,000$. It may be added that in 1885 these same twelve nations owed $£ 4,140,000,000$, made up thus
France, $£ 998,000,000$; Great Britain, $£ 740,000,000$; Italy, $£ 455,000,000$; Russia, $£ 381,000,000$; United States, $£ 379$, 000,000; Spain, £270,000,000; India, £127,000,000; Turkey $£ 127,000,000$; Australasia, $£ 98,000,000$; and Portugal $£ 83,000,000$. In the years $1875-85$ there was on this showing a net reduction of about $£ 15,000,000$ on the in debtedness of the nations enumerated; but the whole world's obligations in 1885 represented an increase on 875, our calculations giving a total for the former of early $£ 4,900,000,000$. Among the minor debtors, Bel gium has increased its obligations from $£ 71,000,000$, in 1875 , to $£ 91,000,000$, in 1895 , and in the same time the debt of the Netherlands has gone up from $£ 80,000,000$ o $£ 92,500,000$, and that of Canada from $£ 30,000,000$ to $£ 51,300,000$. The Greek debt stands at $£ 32,984,000$ and that of Mexico at $£ 32,720,000$ (as against $£ 63,500,000$ in 1875); while among the new borrowers must be reck oned Japan, which now owes $£ 47,300,000$, and the Ar entine Republic, which owes about $£ 74,000,000$. Fo the small borrowers - Bulgaria, Denmark, Norway Sweden, Chile, Peru, Servia, etc.-we have allowed $£ 150,000,000$, which is probably only two-thirds of the actual obligations of these nations.
The sum paid annually as interest on the world's debts approximates to $£ 230,000,000$. Twenty years ago the total was about $£ 200,000,000$, and the increase o only $£ 30,000,000$ with a capital addition of more than $£ 1,000,000,000$ is explained by the fact that money now is heaper, provided credits are good, than it was in 1875 when on some of its loans England was paying $31 / 4$ pe cent, India, 4 per cent, Holland 41/4 per cent, Canada $41 / 2$ per cent, France, Russia, and Brazil 5 per cent, Italy and Portugal 6 per cent, Hungary 71/2 per cent, Egyp 8 per cent, Turkey and Peru 10 per cent, Spain 15 pe cent, and Mexico 18 per ceat. France, of course, pays
out the largest sum of money every year in the way of
interest, the total running to about $£ 3 \tilde{\pi}, 000,000$, or 19 s . 8d. per head of the population. Great Britain's disbursement is $£ 24,540,000$, or 12 s .9 d . per head. Russia pays out a little more, $£ 24,726,000$, or 4 s . 11 d . per head. Austria-Hungary, on the joint and special debts, pays out $£ 37,190,000$ a year, and the average per capita expenditure on the joint debt is 4 s . 10 d ., on the special Austrian debt 10s. 10d., and on the special Hungarian debt 15s. The annual charge in ltaly amounts to $£ 23,450,000$, which works out at the rate of 15 s . 1d. per head. Spain pays nearly $£ 11,300,000$ interest an nually, or 13s. 1d. per head. Though the capital itself is a large item, the charge per annum in the United States is no more than 1s. 9d. per head. In Uruguay, on the other hand, it runs to as much as $£ 12 \mathrm{~s} .6 \mathrm{~d}$. per head. Burdett says that in Peru this per capita charge runs to $£ 13$ s., but there must be something wrong with Burdett's figures. In Portugal the amount is 15 s . 10 d Burdett's figures. In Portugal the amount is 15s. 10d
perhead, and in Egypt 11s. 10d. per head. In Germany it is no more than 1 s . 4 d .
Can any one say offhand what is the aggregate debt of all the English possessions in all parts of the globe We will give the total-it is $£ 1,097,166,600$. Aîter the mother country, India has the heaviest debt ; the total being, as we have seen, $£ 127,600,000$. Then comes New South Wales with $£ 58,225,000$, Canada with $£ 51,288,000$ (net), Victoria with $£ 47,937,300$, New Zealand with $£ 39,635,000$, Queensland with $£ 30,639,500$, Cape Colony with $£ 27,675,178$, and South Australia with $£ 23,100,000$. St. Helena brings up the rear with a modest $£ 5,408$. Pall Mall Gazette.

Breparation of Sulphide.

In some recen.t experiments with phosphorographic plates the writer had occasion to use some pure barium sulphide. As this could not at the time be obtained from any of the Chicago firms dealing in chemicals, I decided to prepare it for myself.
Solutions of pure barium sulphide ($\mathrm{Ba} \mathrm{Cl} \mathrm{Cl}_{2}$) and sodi um hydrate $(\mathrm{Na}(\mathrm{OH})$ were mixed in molecular propor ions so as to obtain barium hydrate $\left(\mathrm{Ba}(\mathrm{OH})_{2}\right)$ and sodium chloride (Na Cl). Hydrogen sulphide gas, pre pared and washed in the usual manner, was then passed through the concentrated solution, throwing down the barium sulphide as a flocculent sparingly soluble precipitate, leaving only sodium chloride in solution. The complete reaction is
$\mathrm{Ba} \mathrm{Cl} 2+2 \mathrm{Na}(\mathrm{OH})+\mathrm{H}_{2} \mathrm{~S}=\mathrm{BaS}+2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O}$.
The precipitate was collected on a filter, sparingly washed with cold water, and thoroughly dried in a team bath. Although barium sulphide is, as is well nown, ordinarily strongly phosphorescent it showed when prepared in this way, only the faintest traces of phosphorescence even after exposure to bright sunlight or several hours. Somewhat nonplussed by this dis covery, of which I could find no mention in any of the covery, of which I could find no mention ins instry which consulted, idermined to works on chemistry which I consulted, I determined to
try some of the same material prepared in the ordinary try some of the same material prepared in the ordinary
way (by fusing together barium carbonate and sul phur). This, although not as strongly luminous as the powdered blende (perhaps because of impurities), wa airly satisfactory. It then occurred to me that the phosphorescent property might be due to the action of the high heat employed in the dry process of prepara tion, and that the precipitated material might similarly be rendered luminous by heating. An experiment with a small fragment of the dried precipitate, which was placed in a small porcelain crucible and heated over a gas blowpipe, showed this to be the case
The power of phosphorescing depended to some degree on the degree of heat applied and the length of the heating.
These experiments are of interest as indicating that barium sulphide may exist in two molecular states, chemically identical but physically different. It will be interesting to determine whether this change is accompanied by corresponding changes in other phy sical properties, as in the case of fluorspar, lepidolite and some other substances which become phosphores cent when only moderately heated.
As soon as time permits, further experiments will be made on this and other interesting questions which have presented themselves.-F. L. O. Wadsworth, in the Astrophysical Journal.

Air in the London Underground Railway.
The analysis showed that the amount of oxygen in ome air taken between Gower Street and King's Cross London] was only 20.60 per 100 parts by volume, while in the worst courts of London it was never found lower than 2086, says Health News. Pure air contains 20.94 per cent of oxygen. And with diminution of oxygen there was a proportionate increase of carbonic acid gas. The normal quantity is 0.037 in 100 parts, but Dr. Angus Smith (whose analysis we are quoting) found that in one of the Metropolitan Railway tunnels the carbonic acid gas was 0.388 per cent; this is excessively high when we take into consideration Prof. Petten koper's assertion that whenever the carbonic gas in the atmosphere exceeds 0.100 per cent the air is too much polluted to be breathed with safety to health.

LOGGING IN THE SIERRA NEVADA MOUNTAINS, CALIFORNIA.

Notable among the many natural wonders of western America are the forests of giant trees which cover

LOGGING IN THE SIERRA NEVADAS-GENERAL VIEW OF CAMP.

the lower slopes of the Rocky, the Sierra Nevada and |mills, the lumber being swept down by the water at a the Cascade Mountains. To an eastern traveler there great velocity. When the timber had all been cut off is no feature of the country lying between the Pacific Ocean and the first named range which creates so strong an. impression of novelty as the size and character of the forest timber. The oak, the maple, the elm and a dozen other varieties which are familiar to residents in the countiy (a;t of the Alleghanies cease to form a feature of the landscape; and as the train climbs the eastern slopes of the Great Divide, he catches his first glimpse of the giant trees of the West, the rounded outline and dense foliage of the eastern trees giving place to the tall, tapering, sentinel-like forms of the redwood of California and the pine and fir of Oregon and Washington. The finest specimens are to be found in the large groves, where the trees are massed in close array, their huge trunks from 30 feet thick at the butt, rising perfectly plumb, and without a limb, for from 175 to 250 feet, to the first branches, many of which are thick enough to form a massive tree in themselves. The largest specimens of the California trees are found in the famous groves of Mariposa and Calaveras, where si)ecimens of the Sequoia gigantea, with a diameter of 30 feet at the butt, were not uncommon when the grove was first discovered , and the heights were estimated at from 275 to 400 feet.
The accompanying views were taken at the logging camp of the Sanger Lumber Company, situated on the western slope of the Sierra Nevada Mountains, in at an elevation of 5,000 feet above sea level, and the busy whirr of the band saw, which is used in preference to two circular saws cutting from above and from below, is heard day and night continuously, the night work being carried on by electric light. The mills cut
in the vicinity of the mills, it was necessary to go up to
a higher belt-for which purpose some nine miles of a higher belt-for which p
mountain railroad were built. After skirting the base of the higher range for five miles; the road is carried up the side of the mountains on a srade of 30 mountains on a grade of 30 per cent, or 1,584 feet to the
mile. A powerful hoisting plant is situated at the top of this grade, and trains of three cars are drawn up at a time with a $11 / 2$ inch wire cable.
After communication with a belt of timber has been established, these noble trees, many of which have been standing over thousand years begin to fall beneath the ax and the cross-cut saw. A deep cut is made on the side of the tree toward which it is to fall (as can be seen to the left in the accompanying cut showing the donkey engine), and the trea is then sawn through from
the opposite side. The "falling" of a 250 foot tree is a thrilling sight, never to be forgotten. The first warn-
ing is given by the cracking of the fibers, as the saw od that holds the tree up. The top of the tree is seen to move slowly across the clouds, and the giant bends slowly to its fall. With an angry "swish" and an increasing momentum it de momentum it de scribes a giant quarter circle to the ground, its two or three hundred tons of weight making the earth tremble as from an earthquake shock. The logs, as will be seen from the illustration, are of unusual size, the majority of them running from 5 to 16 feet in diameter: ${ }^{\text {i For con- }}$ venience of handling, all of the logs over 8 feet in diameter are blasted into sec-

logging in the sierra netadas-a twelve foot log.

LOGGING IN THE SIERRA NEVADAS-PORTABLE DONKEY ENGINE HAULING LOGS.
chant fleet includes 114 vessels of over 1,000 tons, chiefly steamers of British or German build. The American nerchant fleet in the Pacific numbers 119 vessels of this size. The Tosa, the largest of Japanese merchant steel teamships, measures 5,789 gross tons, and was built in England in 1892. The largest American steamship on the Pacific, the City of Peking, measures 5,080 gros tons and was built in 1874 on the Delaware. The larg est steel steamship built in Japan is the Suma, of 1,502 tons, built at Nagasaki in 1895.
The Nippon Yusen Kaisha, the chief Japanese steamship line, which has recently made Seattle one of its terminal ports, owns fifty-one steamers of 94,000 tons. The Pacific Mail Line employs fifteen steamers of 43,000 tons on the Pacific. Since 1890 twenty shipyards have been established in Japan and forty were established in the previous decade. Of the ten remaining yards in the previous decade. Of the ten remaining yards
the oldest dates back to 1659 . The stone drydock at Nagasaki is 438 feet long and 26 ieet draught. The Newport News drydock is 609 feet long and 26 feet draught. The Cramp basin dock is 428 feet long and 21 feet draught.
The Japanese subsidy law, which went into effect in October, gives to shipbuilders a bounty of $\$ 10$ per gross ton on steel vessels over 1,000 tons, and $\$ 2.50$ per horse power.

Prize Monographs on Kites.

It is announced that in view of the fact that a number of monographs on kites have been received in competition for the Chanute prize of $\$ 100$ offered through the Boston Aeronautical Society, since a circular announcing the postponement of the award was issued, the society has decided to limit the time for receiving monographs to January 1, 1897. The award will be made as soon after that as possible.

One of the most interesting papers read at the recent celebration in Boston of the fiftieth anniversary of the first administration of ether in a surgical operation was that by Dr. John Ashhurst, of Philadelphia, ration was that by Dr. John Ashhurst, of Philadeiphia, vividly recalls the horrors of those days when the surgeon's knife was an object of far greater terror than now, and inflicted untold tortures upon the conscious patient
"A study of the condition of surgery before the days of anesthesia," said Dr. Ashhurst, "reveals on the one hand a picture of heroic boldness and masterly selfcontrol on the part of the surgeon, and on the other a ghastly panorama, sometimes of stoic fortitude and endurance, sometimes of abject terror and humilia tion -but always of agonizing wretchedness and painon the part of the unhappy victim who required the surgéon's aid
"The 'pitilessness' which Ceicus urged as an essential trait in the operative surgeon was, before the days of anæsthesia, a feature in the surgeon's career which impressed wery strongly the public generally as well as those immediately connected with the operation. It is interesting to recall that Sir James Simpson, of Edinburgh, shortly after beginning his professional studies, was so affected by 'seeing the terrible agony of a poor Highland woman under amputation of the breast,'
ages a constant effort to diminish the terrors of operations and a continuous reprobation of the distressful, not to say cruel, modes of practice adopted by preceding generations. And yet the time is not very far distant from ours when they lopped off a limb by striking it violently with a heavy knife; that time when they knew neither how to stop nor how to prevent hemor rhage but by burning the part whence the blood jetted with boiling oil or the red hot iron; that time when surgeons armed themselves at every moment with pincers, with burning cauteries and with instruments, the representations even of which cause terror.

The belief that operations might be rendered pain less appears to have been present in the minds of sur eons from the earliest periods. Witness the accounts of the Memphis stone, described by Dioscorides and Pliny, which by steeping in vinegar was made to give forth the fumes of carbonic acid ; and of the mandra gora, employed, according to Theodoric, when mixed with other narcotics, by inhalation, and causing a sleep from which the patient could only be aroused by the fumes of vinegar. So profound was the stupor in duced by this drug that Bodin assures us that under its influence a man submitted without consciousness to a painful operation and continued to sleep for severa days thereafter.

Vigo speaks of the whole body being 'brought asleep by the smelling of a sponge wherein opium is,'
with vital current-how often have I dreaded that some unfortunate struggle of the patient would deviate the knife a little from its proper course, and that I, who fain would be the deliverer, should involuntarily become the executioner, seeing my patient perish in my hands by the most appalling form of death! Had he been insensible I should have felt no alarm.'
"Coming down to the days more immediately pre ceding the date of the great discovery, we find that opium and alcohol were the only agents which con tinued to be regarded as of practical value in diminish ing the pain of operations, though the attendant dis advantages of their employment were, of course, recog nized. Meanwhile, facts were accumulating, the sig nificance of which we now plainly recognize, but which excited no attention
"Sir Humphry Davy, in the early days of the nine teenth century, suggested the use of nitrous oxide gas as an anæsthetic in minor operations, and it was the custom of some of our medical schools-at the Univer sity of Pennsylvania, for one-for students to breathe 'laughing gas,' as it was then called, for diversion But yet-and yet-surgeons went on, in every country cutting and burning, and patients went on writhing and screaming, until the 16th day of October, in the year 1846, in the Massachusetts General Hospital, Dr John C. Warren painlessly removed a tumor from man who had been previously etherized by Dr. Wil

LOGGING IN THE SIERRA NEVADAS-A THREE CYLINDERED MOUNTAIN LOCOMOTIVE.

that he resolved to abandon a medical career and seek other occupation; happily his intention was recon sidered, and he returned to his studies, asking himsel Can anything be done to make operations less painful ' $?$ ' and, as every one knows, in less than twenty years became a high priest of anæsthesia, and the in troducer into surgical and obstetrical practice of ether's reat rival, chloroform
' No braver or more gallant gentleman ever lived than Admiral Viscount Nelson, and after his right elbow had been shattered by a French bullet in the assault at Teneriffe he manifested the utmost courage refusing to be taken to the nearest ship lest the sight of his injury should alarm the wife of a fellow officer whose own fate was uncertain, and when his own ship was reached he climbed up its side without assistance, saying: 'Tell the surgeon to make haste and get his instruments. I know I must lose my right arm, so the sooner it is off the better.' 'He underwent the ampu tation,' we learn from a private letter of one of his mid shipmen, 'with the same firmness and courage that have always marked his character.' And yet so pain fully was he affected by the coldness of the operator's knife that when next going into action at the famous battle of the Nile he gave standing orders to his sur geons that hot water should always be kept in readi ness during an engagement, so that if another opera tion should be required he might at least have th poor comfort of being eut with warm instruments.
"On the side of the surgeon we find throughout the
but warns his readers that the practice is dangerous, because the use of opium is sometmes followed by gangrene. In his work on ' Natural Magic,' Baptista Porta speaks of a volatile drug kept in leaden vessels which produced sleep when applied to the nostris, and Perrin suggested that this may actually have been ether or some other of our modern anæsthetic agents.
"Mental preoccupation was sometimes sought as means of preventing pain. Richard Wiseman found that soldiers dreaded the loss of a limb much less if it were removed immediately, while they were 'in the heat of the fight,' than if the operation were postponed until the next day; 'wherefore,' he says, 'cut it of quickly, while the soldier is heated and in mettle;' and Renauldin recalls the case of the amiable Dolomieu who, exposed to the pangs of starvation in a Neapoli tan dungeon, measurably alleviated his own distress by engaging in the composition of a treatise on min eralogy; while his unfortunate servant and fellow prisoner, who had not the same intellectual resources, was hungry enough for both
But the presence of pain was not the only evil dreaded by our predecessors in attempting importan operations; the great risk of fatal accident from some involuntary movement of the patient was constantly present to the mind of the conscientious surgeon. 'How often,' says Dr. Valentine Mott, 'when operating in some deep, dark wound, along the course of some great vein, with thin walls alternately distended and flaccid
liam T. G. Morton, and surgical anæsthesia became the priceless heritage of the civilized world."

Captain Deasy's Expedition to Thibet.
Captain H. H. P. Deasy, of the Sixteenth Queen's Lancers, left England some time ago for a journey across Thibet from west to east, says the London Times. He intends on the way to throw soldered-up tins containing parchment notices in English and French into the tributaries of the Tsanpo and into the other large rivers which he may meet with, in the hope that some of them may be picked up far down stream, possibly in the Brahmaputra, Salween, and Mekong, and thus help to solve the vexed problem of the origin and connections of these rivers. The notices will be consecutively numbered, and the tins in which they will be inclosed will have a brass label soldered on the outside, bearing the words "Please open this" in English and French, and Captain Deasy's name. The parchment inside bears the request that it be forwarded without delay to the Royal Geographical Society, London, with as accurate a statement as possible as to where it was picked up. Captain Deasy is trying to render an important service to geographical knowledge, and it is hoped that the officials, English and French, in the neighborhood of the rivers alluded to may be able to arrange for a lookout, so that the tins may be secured and the parchment delivered to the proper quarter.

Power in Woodworking.

Prof. O. G. Dodge recently made a series of tests in the Navy Yard at Washington to determine the power required by wood working machinery. The work done is the heaviest that will be required of these particular machines:
Circular ripsaw, 28 inches diameter; speed, 1,200 revolutions per minute, or 8,800 lineal feet per minute. Arbor pulley $51 / 4$ inches diameter by $81 / 2$ inch face; hand feed; motor belted to saw shaft : Motor and saw, idle, $3 \cdot 4$ e. h. p.; ripping seasoned heart oak, $75 / 8$ inches thick, feed 10 feet per minute, $19 \cdot 3$ e. h. p.
Circular ripsaw, 24 inches diameter; speed, 1,500 revolutions per minute, or 9,429 lineal feet per minute; hand feed; motor belted direct to 7 inch pulley on saw shaft : Motor driving saw, idle, $3 \cdot 2 \mathrm{e} . \mathrm{h} . \mathrm{p}$. ; ripping seasoned heart oak, 6 inches thick, 10 feet per minute, $12.8 \mathrm{e} . \mathrm{h} . \mathrm{p} . ;$ ripping seasoned white pine, $61 / 2$ inches thick, 15 feet per minute, $9 \cdot 4 \mathrm{e} . \mathrm{h} . \mathrm{p} . ;$ ripping seasoned yellow pine, 2 inches thick, 45 feet per minute, 10.7 e. h. p.

Circular ripsaw, 14 inches diameter; speed, 2,200 revolutions per minute, or 8,067 lineal feet per minute arbor pulley, 3 inches diameter, 5 inch face; hand feed; motor belted to saw shaft: Motor, idle, 0.96 e. h. p.; motor and saw, idle, $2 \cdot 7$ e. h. p.; ripping seasoned heart oak, $31 / 2$ inches thick, 12 feet per minute, 6.3 e. h. p.

Circular ripsaw, 12 inches diameter; speed, 2,200 revolutions per minute, or 6,914 lineal feet per minute ; hand feed; belt pulley $31 / 2$ inches diameter and 3 inch face; motor belted direct to $31 / 2$ inch pulley on saw shaft : saw set to wabble for cutting grooves: Motor, idle, 0.96 e. h. p.; driving saw idle, $2.2 \mathrm{e} . \mathrm{h} . \mathrm{p}$; cutting groove in seasoned walnut, $3 / 8 \times 1 / 8$ inch, 12 feet per minute, 3.6 e . h. p.
Bandsaw, pulleys 72 inches diameter; speed, 160 revolutions per minute, or 3,017 lineal feet per minute; belt pulley 30 inches diameter, 8 inch face; power feed; motor belted to saw shaft: Motor and saw, idle, $12 \cdot 1$ e. h. p.; ripping seasoned ash $103 / 4$ inches thick, feed 6 feet per minute, $16 \cdot 1 \mathrm{e} . \mathrm{h}$. p.; ripping seasoned white pine, $161 / 2$ inches thick, feed 10 feet per minute, $16 \cdot 1$ e. h. p.; ripping yellow pine, 12 inches thick, 20 feet per minute, $18 \cdot 8$ e. h . p.
Bandsaw, pulleys 42 inches diameter ; speed, 350 revolutions per minute, or 3,850 lineal feet per minute; belt pulley 16 inches diameter, 5 inch face; hand feed; thotor belted to saw shaft: Motor, idle, 0.96 e. h. p.; motor and saw, idle, 2.9 e h . p.; ripping seasoned oak, 12 inches thick, feed 3 feet per minute, $5.7 \mathrm{e} . \mathrm{h}$. p.; cross cutting seasoned oak, 8 inches thick, feed 5 feet per minute, $5 \cdot 7 \mathrm{e} . \mathrm{h}$. p.; ripping live oak, 10 inches thick, feed 3.2 feet per minute, $5 \cdot 7$ e. h. p.
Bandsaw, pulleys 28 inches diameter; speed, 480 revolutions per minute, or 3,520 lineal feet per minute ; belt pulley 12 inches diameter, $31 / 2$ inch face; hand feed; motor belted to saw shaft : Motor, idle, 0.96 e. h. p.; motor and saw, idle, 1.7 e h . p.; ripping seasoned oak, 3 inches thick, feed $21 / 2$ feet per minute, $2 \cdot 3 \mathrm{e} \mathrm{h} . \mathrm{p}$. ripping seasoned pine, 3 inches thick, feed 4 feet per minute, $2 \cdot 3 \mathrm{e} . \mathrm{h}$. p.; cross cut seasoned oak, $31 / 4$ inches thick, feed 4 feet per minute, $2 \cdot 3 \mathrm{e} . \mathrm{h}$. p.
Daniel's planer, machine bed 2 feet 5 inches by 21 feet 6 inches; belt pulley, 13 inches diameter by $5 \frac{1}{4}$ inch face ; speed, 350 revolutions per minute; speed of cutting edges of tool, 10,400 feet per minute; power feed, 12 feet per minute; motor belted to countershaft: Motor, idle, 0.96 e. h. p.; driving machine, idle, 3.9 e. h. p.; planing seasoned oak, cut $\frac{3}{18}$ inch deep by 20 inches wide, 12 feet per minute, $6.2 \mathrm{e} . \mathrm{h} . \mathrm{p}$

Hand cylinder planer or jointer, size of machine, 24 inches; belt pulley, 4 inches diameter, 5 inch face; speed, 3,200 revolutions per minute ; speed of cutting edge of tool, 4,000 feet per minute; hand feed ; motor belted to shaft of tool : Motor, idle, 0.96 e h. p.; driving machine, idle, 2.40 e. h. p.; planing white pine, cut $0 \cdot 11$ inch deep by 18 inches wide, 25 feet per minute, 4.80 e. h. p.

Cylinder planer, size of machine, 24 inches; belt pulley, 5 inches diameter, 5 inch face; 2,250 revolutions per niinute; speed of cutting edges of tool, 3,105 feet per minute ; power feed; motor belted to shaft of tool Motor, idle, 0.96 e. h. p.; driving machine, idle, 2.40 e. h. p.; planing pine, cut $\frac{1}{18}$ inch deep, 18 inches wide, 11 feet per minute, 3.6 e. h. p.; planing oak, cut $\frac{1}{18}$ inch deep, $61 / 2$ inches wide, 11 feet per minute, $3.6 \mathrm{e} . \mathrm{h} . \mathrm{p}$.

Boring machine, speed of bit, 375 revolutions per minute; hand feed; motor belted to bit shaft; Motor idle, $0.96 \mathrm{e} . \mathrm{h} . \mathrm{p}$. ; driving machine, idle, 1.7 e h . p. boring 4 inch hole in seasoned oak, $9 \frac{8}{6}$ feet per minute, 2.3 e. h. p.

Boring machine, belt pulley 8 inches diameter, 3 inch face; speed, 750 revolutions per minute; hand feed motor belted to machine shaft: Motor, idle, 0.96 e. h. p. driving machine, idle, $1.9 \mathrm{e} . \mathrm{h} . \mathrm{p}$. ; boring 1 inch hole in oak, feed $33 / 4$ inches in 5 seconds, 2.2 e. h. p.; boring $15 / 8$ inch hole in oak, feed 1 inch in 7 seconds, $2 \cdot 2 \mathrm{e} . \mathrm{h}$. p.
Pattern maker's lathe, speed 888 revolutions per min ute; motor belted direct to lathe: Motor, idle, 0.96 e. h. p.; driving lathe, idle, $2 \mathrm{e} . \mathrm{h} . \mathrm{p}$.; turning seasone poplar, 12 inches diameter, $1 / 2$ inch cut, $3.2 \mathrm{e} . \mathrm{h}$. p.

Carver and moulder, speed of tool, 5,236 revolution
per minute ; motor belted direct to tool shaft: Motor, idle, $0.96 \mathrm{e} . \mathrm{h} . \mathrm{p}$.; driving tool, idle, $2.8 \mathrm{e} . \mathrm{h} . \mathrm{p} . ;$ cutting groove, circular sector, 2 inchès wide, $3 / 4$ inch deep, $31 / 2$ feet per minute, in white pine, 3.9 e. h. p.-American Woodworker.

THE EIFFEL TANDEM.

Besides the bicycles, tricycles, etc., which are intended purely for sport, there are several noteworthy machines that make a practical application of the chief advantage of the cycle-its speed. These machines now serve various purposes in practical life, among which might be mentioned those used in the army, the quadricycle of the fire department, etc., the usefulness of which has been proved.
Now a new construction in the form of a tandem makes its appearance in America. It is called the Eiffel tandem and is a real curiosity. As will be seen in the accompanying engraving, the lower part of this gro-

the emfel tandem

tesque vehicle-the oddity of which cannot be fully ap preciated from the cut-consists of a strong bicycle, on which is built a frame of hollow iron rods that is about 20 feet high. On the top of this frame is a saddle with handle bars and treadles, the motion of which is transmitted by chains to the corresponding lower parts of the bicycle. The chief difficulty with which the riders have to contend is to keep the machine balanced, as will be easily understood from a glance at theillustration, but it must also be very difficult for the upper rider to reach his seat, which cannot be a very safe one. It is not easy to guess the use for which this strange machine is intended, but it would seem that the rider must be placed in this elevated position to enable him to reconnoiter the ground. We are indebted to Der Stein der Weisen for the above particulars.

In the Pabst brewery, at Milwaukee, is a machine which corks, wires and caps 16,000 bottles per day auto matically.

Dr. Nansen is to deliver an address at the meeting of the Royal Geographical Society on February 8 next, and as he is already a gold medalist of the society, a special medal will be presented to him, an honor which was also conferred on Mr. H. M. Stanley, M.P
Turin is going to hold an Italian exhibition in 1898. It will include the work of Italians abroad and of the Catholic missions. There will also be an international exhibition of electric appliances and of machinery. Among the special features will be athletic games and a review of comic art.
The Pharmaceutische Zeitung publishes analyses of the principal commercial brands of saccharin, says the Pharmaceutical Era

100 parts of

\because saccharin.	v. Heyden.	Fahlberg.	Bayer.	Monnet
Moistore.	$0 \cdot 8$	$0 \cdot 26$	$0 \cdot 19$	0.05
Ash.	0.098	$0 \cdot 08$	$1 \cdot 63$	0.04
Para compoan	$0 \cdot 00$	0.37	$0 \cdot 00$	0.00
Saccharin (true).	99:82	9931	98.18	$99 \cdot 9$

Another small planet has been detected on a photographic plate taken by Herr G. Witt, of the Urania Observatory, Berlin, October 8. It was observed the following evening with the 12 inch refractor, and, if all the recent discoveries are verified, will reckon as No. 424. The small planet, No. 324, discovered by Dr. J. Palisa on February 25, 1892, has been named Bamberga, to commemorate the meeting of the German Astronomical Society at Bamberg.
M. E. Villari recently contributed to the Paris Academy of Sciences some observations on the property of discharging electrified conductors, produced in gases by the X rays and by electric sparks. It was shown that a gas confined in a tube, and exposed to the X rays acquires rapidly the power of discharging an electrified disk, and keeps this property for some time. The passage of a series of sparks from a coil strengthened by a condenser confers the same property on a gas, says Nature.
Prof. D. G. Elliot, the leader of the Field Colum bian Museum of Chicago Expedition, has arrived home. Speaking of the results of his expedition into Somaliland, Prof. Elliot said: "I have obtained a very extensive collection, chiefly of the large mammals-probably the most complete ever brought out of any country by one party. No fewer than fifty-eight cases and barrels were shipped direct from Aden to Chicago. I obtained, moreover, over 300 specimens of birds, fish, insects and reptiles."
C. E. Stromeyer describes in Nature a method by which he was able to make mercury float on water. A few drops of mercury, half an ounce of water and a pinch of red lead, red oxide, vermilion or other red powder were shaken together in a small cylindrical bottle. A few small globules of mercury were then found floating together at the center of the water surface. By repeated shaking a small dish-about threeeighths inch in diameter and one-sixteenth inch deepwas formed, consisting of a large number of mercury globules, and this floated on the water in the same position. The dish did not disappear if allowed to rest, and always reformed after shaking the bottle.
Almer the Swiss mountain guide's seventieth birth day has just been celebrated at Grindelwald. He is the hero of over two hundred first ascents, including the Wetterhorn, the Schreckhorn, the Eiger and the Moench on the Wengern Alp. It is said that he is the only man that ever came down alive from the last peak. He has repeatedly climbed the Jungfrau, and all the peaks of the Oberland, the Valais, the Grisons, and of Savoy. The tops of some of the Aiguilles of Mont Blanc and of the dolomites of Dauphine he alone has reached He has five sons, all well-known guides, who have been employed in climbs in the Caucasus and the Himalayas. His career ended ten years ago, when he lost all his toes during an ascent of the Jungfrau, in January.
Herr Friedrich Benesch contributes to the Mittheilungen der K. K. Geographischen Gesellschaft in Wien, says Nature, a short description of Pauliny's new method of drawing relief maps, which he says is a great advance on any method now in use, both in respect of accuracy and of ease in execution. The map is in effect a closely contoured map, printed on silver gray paper, the contour lines being white where illuminated by a source of light supposed to be 45° above the western horizon, and black elsewhere Level plateaus and slightly sloping areas are thus represented by the natural gray color of the paper steep declivities toward the west are lightened by the closely drawn white lines, and toward the east corre pondingly darkened ky the black lines, the departure fom the normal gray being greater the closer the lines, i. e., the steeper the slope. The method has th merit of giving a clear idea of steepness derived from the contour lines themselves; and whiie it does no demand the high standard of skill necessary in Leh mann's method of hatching, the confusion produced by the shadows in some modern maps, where the illumination is supposed to come from the horizon, is avoided. Maps illustrating Herr Pauliny's method are to be published in Vienna in the course of th summer.

The Value of India Rubber.

India rubber is in a fair way to become one of the prime necessities of civilization. Numberless human beings, in the class which could not afford wet nurses, owe their lives to the feeding bottle. Everybody knows that in the last five years the use of pneumatic tires for cycles and solid rubber tires for horse vehicles has enormously increased our consumption of this article; but, quite apart from that more obvious fact, India rubber is daily being introduced more and more into all sorts of machinery. Highly competent judges say that if the output could be doubled within a year, so many new applications of the material would instantly arise, that the price would not fall appreciably. As a matter of fact, the export of Para rubber has increased within the last twenty-five years from 5,600 tons to 20,000 tons; and the price fetched by the best quality has risen from 2 s . to 3 s . a pound. It is the one jungle product which society finds indispensable. Hundreds of men have racked their brains to produce a substitute, but none has in the least degree succeeded; and such attempts must be permanently discouraged by the knowledge that India rubber exists in limitless profuion upon known spots of the world's surface which may at any time be made accessible. In any of the swampy equatorial regions, where. vegetation grows rank and sappy, so that a knife will slash through branches as if they were made of cheese, there is pretty certain to occur some one or two of the score of trees which produce rubber. Whole forests of them are known to exist in Central Africa, only waiting to be tapped. But the regions which produce them are precisely the regions most deadly to the white man; and when the rubber is made it has to come to the coast on the heads of negroes, and will not pay the cost of transthe heads of negroes, and will not pay the cost of transport. When an accessible forest is discovered it pays
like a gold mine. A tree was discovered near Lagos like a gold mine. A tree was discovered near Lagos
which was believed to produce rubber; specimens of which was believed to produce rubber; specimens of
bark and foliage went home to Kew, and the authoribark and foliage went home to Kew, and the authori-
ties pronounced it the right thing. In 1895 the export began, and amounted in the year to 2,263 tons, with a value of $£ 270,000$ in round figures.
India rubber would seem to be the one certain source of wealth now locked up in Central Africa, and perhaps the most valuable thing that the region produces or can produce. Ivory is only a fancy article, and palm oil has many substitutes. Gold no doubt exists there, but, in the first place, it is doubtful whether the pure negro can be made into a miner; and in the second, gold is to be got in regions where white men can live. It seems, therefore, as if the special function of the tropics just now was to produce India rubber, which is wanted everywhere and cannot be grown elsewhere. No cultivation is needed; Nature requires of man very little skill, scarcely any exertion, and only a reasonable avoidance of waste. Yet this is asking more than the African negro is at present able to give. The great rubber producing region of the world is the basin of the Amazon, which yields about two-thirds of the entire annual output. The quality of this rubber is immensely superior to all others; the best Para will fetch in England as much as 3s. 6d. a pound ; the worst African goes for under a shilling. Brazil has, of course, an immense advantage in its great waterway ; ocean going steamers run twelve hundred miles up the Amazon, whereas every African river, except the Congo, has a bar at its mouth, and cataracts not far distant from the coast line. On the other hand, the forests in Brazil seem even more impenetrable than in Africa. Not even such roadways as the African man paths can be maintained against the encroachment of the jungle. But the native Brazilian race is incomparably more intelligent than the negro. Their caoutchouc is better prepared, and, what is far more important, they farm the trees as carefully as the Red Indians used to farm the beaver. In Africa the rubber is generally produced, not from a forest tree, as in Brazil, but from the landolphia, which is a climbing shrub. The supply of rubber producing plants in Central Africa is practically inexhaustible, but the number of places where they exist within easy distance of some export station is small, so far as our present knowledge goes. Yet for the present, speculators will probably hasten to be rich, and if they hit upon a forest, will treat it like a mine, anxious simply to take out the maximum at the minimum of cost.
Whether our state, or any other, will ever make this a great branch of its tropical forestry remains to be seen. The Germans, with their usual thoroughness, have a strong scientific staff at the Cameroons. The English, in their usual makeshift way content themselves with sending home to Kew for sug gestions. But the government of India have at least tried an experiment upon the great scale. No private firm, however wealthy, would embark upon the cultivation of India rubber; the trees take a matter of twenty years before they can produce a pennyworth. In addition to that, cultivation must occupy a huge extent of ground of such a nature that no European can enter it during the rainy season, and where the growth is so thick that twenty men might be tapping trees within a
mile of the ranger, and he none the wiser. Neverthemile of the ranger, and he none the wiser. Neverthe-
less, the Indian government have a nursery of Para less, the Indian government have a nursery of Para
rubber trees in Assam, extending over two hundred rubber trees in Assam, extending over two hundred
square miles, which will in time begin to yield; and if any department can control such a farm, the Indian woods and forests will.-Spectator (London).

a novel camera.

The variety in shape and form of miniature cameras that has taken place in the past two or three years is something remarkable. The simple small camera which is the subject of our illustrations, made in the

miniature hand camera-taken apart for loading.
shape of a circular box somewhat smaller than a collar box, is one of the newest forms recently introduced. It is called the "Photake" and is very inexpensive for the amount of work it will do. The camera, as will be seen from the larger engraving, consists of two metal boxes, the upper one sliding over the lower part telescopically. The lower part is provided with round metal eyes on the interior having lateral annular projecting flanges, between which the plates (two inches square) are inserted. The hole at the center of the eyes allows the light from the lens to pass through between two plates to the rear plate. The plates (five of t hem) are readily inserted and removed in the dark room. At the bottom of the lower half are numbers and vertical marks stamped on the periphery to note the position of the plate.
Underneath the lens aperture in the upper portion is a slight mark under which the figures and mark on the lower half coincide when the lower half is rotated to change the position of a plate.
The upper part contains two diverging light-separat ing metal divisions having flexible material on the ends which rub slightly against a plate when the lower magazine portion is revolved. On the outside is a miniature lens held in a short tube by an annular screw cap To clean the lens at any time, the screw cap may be
the finger removed from the lens. For such exposures it is necessary to use a diaphragm in front of the lens such a diaphragm cap will be noticed at the right hand corner of the larger engraving. Having quickly loaded the lower magazine portion, and placed over it the upper part, the camera as shown in the smaller picture is ready for operation. An exposure is made, the lower part is next revolved until No. 2 comes in position under the lens, and the process repeated until the five plates have been exposed.
Thesimplicity of the camera, its compactness, the thorough protection of its working parts, and the facility and certainty with which it may be operated make it especially useful for beginners, or those who know little or nothing about photography.

The Care of Lamps.

In a certain household that I know, says a writer in the Boston Journal of Commerce, the lamps are a source of the greatest delight and comfort, for they are always spotlessly clean and they give a light that could not possibly be better or brighter. The reason for this is that the mistress, instead of depending upon any of her several servants to care for the lamps and clean them, herself bestows upon them the necessary attention. When these receive a thorough cleaning-once every six weeks-the reservoirs and burners are boiled in soda and water and dried before the fire, not on cloths, as these might have lint. The cloths that are used for the daily trimming and dusting are frequently boiled to re move the oil. The shades are polished and the lamps filled every day.
The wicks of lamps will absorb more oil if they are thoroughly dried before putting them in the burners. To prevent the lamp from smoking, soak the wick in vinegar and then dry thoroughly. Occasionally wash ing and boiling the wicks in soap and water, rinsing and drying thoroughly, is also a good plan. Every day the charred portion should be rubbed off with a piece of paper or cloth, and once a week the edge of the wick should be trimmed with a sharp pair of scissors. The wick will burn with an even flame if it be cut straight across and slightly rounded at the sides. The reservoir of a lamp should be kept well filled, but when not in use the wick should be turned down to keep the oi from oozing up between burner and collar, greasing the outside and causing a disagreeable odor. When a lamp is lighted, however, it is best to keep the wick turned up to its full extent to prevent smoking.
To render lamp chimneys less likely to crack they should be put in cold water, which must be brought to the boiling point, after which they should be allowed to cool slowly without removing from the water. Wash the chimneys in ammonia water and wipe dry on sof towels that are free from lint; polish with tissue or newspaper. Rub brown spots with salt or whiting.
Kerosene has always an unpleasant odor, therefore it is better to use the best astral oil for dining room and parlor lamps. Some housekeepers perfume these oils, but this is altogether unnecessary. Never mix two kinds of oil, for the light from such is bad. To make a Iamp burn brightly drop in the reservoir a pinch of salt or camphor.

The Lean Nieat Diet for Dyspeptics.

The truth seems to be that a person subsisting upon a lean meat diet, while he may manifest a greater amoun of strength than upon more natural dietary, and may be unconscious of any abnormal condition, is like a person in a powder magazine-he is in constant dan ger of vital catastrophe, says Medical Progress. Th poison destroying functions of his liver and the poison eliminating capacity of his kidneys are taxed to their utmost to keep the proportion of ptomaines and leucomaines in the tissues down to a point which permits of the performance of the vital functions. The margin of safety which nature has wisely made very large in order to provide for emergencies, is reduced to the narrowest possible limit, so that anything which temporarily interferes with the functions of the liver or the kidneys, or which imposes additional work upon them, may be sufficient to obliterate the safety margin and produce an attack of grave or fatal disease. In vasion of the body by ptomaine producing microbes, such as the typhoid bacillus, the bacillus of diphtheria, the pneumococcus of Friedlander, the shocks resulting from accident, and even the depression of a severe cold may be sufficient to consume the meager emergency capital, and the result is acute inflammation of the kidneys, or death under chloroform, or from shock fol kidneys, or death under chloroform, or
lowing an operation under anæsthesia.

The first street tunnel in Germany has been recently opened to traffic at Stuttgart, Wurtemberg. It has a length of 125 meters (410 feet), and the remarkable width of $201 / 2$ meters (67 feet). By making the ends of the tunnel funnel-shaped, the necessity of lighting it during the day has been avoided. At night the tunne is lighted by electricity. The cost was $\$ 65,000$. Uhland's Wochenschrift-

RECENTLY PATENTED INVENTIONS.

Engineering.

Water Tube Boiler.-Charles Ed gerton, Philadelphia, Pa. This is an improvement in flattened side of a cylindrical drum, two sets of wate tubes being connected with the drum, one for down ward and tbe other for upward circulation. A series of narrow braces is arranged on the inside of the flat por-
tion of the boiler between the tubes, and broad U-shape braces are arranged in the same relation to the drum, but receiving between flanges the tubes for the downwar circulation. The braces are of peculiar shape, are o
one piece of metal without seam or weld, and are one piece of metal without seam or weld, and ar
pressed into shape, their flat surface being very thor oughly stayed without the use of stay bolts. They also serve the purpose of strengthen
nally and in all other directions.
Boiler Furnace.-Dudley D. Fleming, Jersey City, N. J. This furnace is designed to con-
tain many times the volume of fuel now used, and have a reduced grate area, maintaining a slower generation of the gases, by means of a regulated primary air supply and the combination therewith of water vapor. The
combustible hydrogen and carbonic oxide gases are subjected to cors ir a ing them into water and carbonic acid gas, a reactio which is continued to the point of escape in tbe chim ney. The furnace is constructed in a series of sections,
to be alternately charged or cleaned, always maintainin to be alternately charged or cleaned, always maintaining
sufficient heat to ignite the gases in contact with the se sufficient heat to ignite the gases in contact with the se
c.ondary air supply, or, when bituminous coal is used, to condary air supply, or, when bitumin
consume the carbon vapor or smoke.

Railway Appliances.
Car Coupling. - Thomas Fales, Bridgeport, Cal. This invention relates to couplings of the pin and link type, which may be arranged to auto
matically couple meeting cars, the uncoupling being effected from the side, so that the trainmen need not go between the cars. The drawhead has a throat above which is a slot provided with link-holding devices, while movable on a vertical axis in a horizontal recess is an arm with one end projecting into the throat to engage the
top of the link, the other end of the arm extending outtop of the link, the other end of the arm extending out
wardly. The common link and pin coupling may be readily changed into one of the improved form, and cars provided with the old couplings ma
with such as have the improvement.
Metallic Tie. - John S. Mitchell, Greeusborough, Md. This tie comprises two casings,
connected by crossed binding rods and a clamp, each connected by crossed binding rods and a clamp, each
casing having an arched or hemispherical top with downwardly extending flange embedded in the ground. Each casing has in its upper surface a man hole through which
it may be packed with earth, and in the center of its top is a longitudinal recess to receive a strip of hard rubber on which rests the base of the rail, held in position by
amping plate
Controlling Car Gates hrom the Engine.-Seth A. Crone, New York City. According to this improvement one or two lines of pipe connect the plat-
forms of the several cars of a train, with the main air reservoir on the locomotive, where there is a valve under the
control of the engineer, to enable him to control, by means of suitable devices, the gates on each platform, opening those on one side while the others remain closed. Each of the gates may be readily opened and closed by an attendant on the car. The improvement is designed to be especially advantageous on elevated railroad trains,
although it may be applied to all kinds of gates and althou

Electrical.

Bicycle Electric Light.-Francis E. Mazee, Brooklyn, N. Y. In a suitable casing, secured
to the rear fork of a bicycle frame, according to this imorovement, is a generator whose armature is revolved by a band from a grooved wheel on the hub of the rear wheel of the bicycle, the device adding but very little to the
weight of the bicycle, and generating a light of normal candle power when the rider is going at only a moderate speed, the generator being connected to a lamp on the front fork. The connections a d windings of the two
armature sections are arranged in the same direction, and a simple mechanism is provided whereby the current may be cut off or governed to prevent fluctuations or the burning out of a lamp.
Electric Lamp.-This is a further in-
 eling vehicles that will produce a strong and brilliant
light, and in which the focus may be easily and quickly adjusted. It comprises a metal casing with lens in its forward end, a longitudinally adjustable reflector carrying an incandescent lamp socket, and means for effecting
adjustments and carrying the current to the lamp.
he metal parts are preferably made of aluminum.
Annunciator Drop.--William Schwagerman, Yonkers, N. Y. This is a drop which, in its elevated or normal position, will not be discharged from
its support when the annunciator is subjected to severe or constant jar or violent agitation, as in its elevated position the drop rests on the heads of the armatures
and they form an effective lock. The armature is of the twin type, and so arranged as to automatically pass to
locking engagement with the drop when the latter is locking engagement with the drop when the latter is
raised. When the magnet is energized, it attracts the raised. When the magnet is energized, it attracts
armatures to bring them together and free the drop.

Miscellaneous.

Grain Elevator.-Janies D. Ream and Moses Lewis, Broken Row, Neb. This invention provides a construction deeigned to relieve the buckets of
surplus grain, and to permit of charging the casing with surplus grain without removing the latter from the casing. The elevator bas the usual elevating buckets, and
there are relief clambers on opposite sides of the grain there are relief clambers on opposite sides of the grain
receiving compartment, each chamber having an inlet receiving compartment, each chamber having an inlet
and an outlet gate to connect the interior of the chambers with the casing. The sprocket chains are of novel con.
straction, and may be ran in e
danger of disconnecting the links.
Confectionery Machine. - Simeon . Hicke, Chicago, Ill. This is a machine more espe cially designed for forming wafers or patties in a cheap he machine has chambers for the passage of the oulded articles, there being a main shaft journale of the hopper, a spring moving the plungers in one ther direction. The machine is of simple construction, and arranged to be readily taken apart for cleaning and pairs.
Meter. - John H. Dixon, Marietta, Ohio. This invention relates to meters having flexible outflow of the liquid, and comprises a measuring chamber in which the diaphragm is secured, a valve
controlling the intlow and outflow, and a relescopcontrolling the inflow and outfow, and a telescop-
ing stem connected with the diapbragm, while a lever givm connected with the diaphragm, while a leve
pivotally connected with a member of the stem has a
pear-shaped end engaged by a spring-pressed arm, there being a connection between the lever and the valve rod. By the up and down movement of the telescoping demice to indicate the amount of gas or other floid disharged.
Musical Instrument. - Heury E. Hibsham, New York City. In auto-harps, this invention act to mute the strings. There is a locking device for each series of rows of keys by which, when one or more
keys are manipulated to raise certain levers from certain trings, the levers will be held in their upper position strings, the levers will be held in their upper position
automatically until other keys of the same series are pressed, when the levers held raised will be automati-
cally released, and the levers last raised locked in elevated osition.
Means for Sounding Combs - Alfred Herrling, Jersey City, N. J. In musical instruments using combs to produce the desired tones, this invention provides improved means for sounding the teeth of the combs to produce soft and melodious tones and coming the combs as heretofore. The instrument comprises comb. and reeds or like vibrators having felted or cushoned portions arranged to intermittently engage the teeth of the comb, the vibrators being actuated by pressing on a key which opens a valve connected with an

Manifold Cash Sales Book.-John H. Murphy, New York City. This book has a flexible back with stiffening strip engaged by side arms, which open to permit the entire back to swing downward for
inserting new leaves. The leaves are transversely pernserting new leaves. The leaves are transversely perorated near the midake, a spring pressed bar holding designedito enablea a salesman to quickly and conveniently write out a duplicate sales slip on a doubled-up leaf and
remove it in separate parts from the book, making an remove it in separate parts from the book, making an ntry of each sale.
Washing Machine.- Joseph Lachance, Little Falls, Minn. The body of this machine is in the form of an elongated suds box, within which are
rubbing slatsextending over the sides, bottomand top, and rubbing slats extending over the sides, bottomand top, and
at one side of the inlet opening is a baron which a wringer at one side of the inlet opening is a baron which a wringer
may be fastened. The body is pivotaily supported on a may be fastened. The body is pivotaily supported on a
rack or frame, to which are pivoted oppositely arranged box and are connicted with treadles, and by working the levers the body is rocked, moving the clothes in coutact Spring.-Alexander C. Bell, New Alexndria, Pa. This is an improvement which may be characterized as a " jolt receiver," and is applicable to bug.
gies, carriages, cars, ambulances, bicycles, beds, car and gies, carriages, cars, ambulances, bicycles, beds, car and
school seats, etc. The invention comprises a support to which the springs proper are held, while a lever having sliding connection with the support has rigid arms extending over the springs, links connected with the lever
arms extending through the springs proper. struction obviates a solid center and furnishes a yielding spring bearing at all points.
Pen or Pencil Holder.-Edward G. We readily applied to any article of wearing apparel, without injury to the garment. It is made of a single piece of spring wire bent to form an X-shank, a co'' at the
upper end of each member and pins extending downupper end of each member and pins extending down-
ward at the rear, the wire being also bent at its lower ends into coils. The holaer bas clamping seclonse hold the pen or pencil in upright position, and keepers Stamping Out Cartons, etc.-Ar thur Friedheim, Berlin, Germany. This invention pro-
vides a device for making beveled edged photographic vices a device for making beveled edged photographic
mounts and similar articles, the bevel being made at the same time the cards are cut from the sheet. From a plate attached to a vertically moving plunger or die are pivotally suspended a number of knife holders, the knives
being arranged diagonally so that the cutters incline outbeing arranged diagonally so that the cutters incline out-
wardly, and cut the material obliquely on the descent of wardly, and
the plunger.
She plunger. Charles H. Beer. Jr. (the Charles Manufacturing Company, 317 East 125th Street, New York City). This is a
device for preventing the rattling of window sashes, and consists of a spring rod bent at its middle to form a transverse coil, its terminals being adapted to engage the
upper and lower sashes of a window, while the coil bears against a portion of the window frame. The device is extremely simple and inexpensive, and operates to push the upper eash outward against the outer bead of the
window frame, pushing also the top rail of the inner aginst the lower rail of the top sash
Door Securer and Key Ring Chain. -George F. Bailey, Peabody, Mass. This is a simple
device for readily locking a door in closed position or supporting a key ring chain from a trousers button. An oval plate with elongated opening to hook onto a butto
the striker, and to the other end of the plate is attache
a chain carrying a key ring a d having at its outer end ook. When the plate is placed in position and th ooor closed, the chain is extended around the shank of
the door knob, and the hook is made to engage one of its links, preventing
Trousers Presser and Stretcher. -Robert B. Colley, St. Heliers, Island of Jersey. This evice comprises a pair of preser boards with metal nuts screwing on coupling screws hinged to one set of cross bars and engaging slots in the ends of the other set
of cross bars. The lower board is a single piece, but the of cross bars. The lower board is a single piece, but the apper board is in three separate portions, two narrow a and a long intermediate
Brush Cleaner.-Theodore L. Harow, Gardner, Mass. This is a device adapted to haped that both sides of the brush and one of its cal edges may be cleaned simultaneously by simply
drawing the brush through a portion of the cleap The device is preferably made of a single piece of round wire, to fit in a groove at the bottom of the neck of the bottle, and comprises two loops connected by a cross bar
there being downwardly extending parallel cleaning se here being downwardly extending parallel cleaning sec-
tions at one side of the cross bar and a bowed section in he same plane as the loop.
Vending Device.-George O. Ranson Portland, Oregon. This is a device in which the re ceptacle represents a human face with eye and mouth
openings. there being movable eyeballs and detachable teeth, the latter connected with the eyeballs and with ackages of merchandise, so that as a tooth is drawn the on the detachment of a package of merchandise, the latter being drawn through the mouth opening. The
device is designed to afford amusement to children while device is designed to
Mucilage Bottle.-Stephen O. Tres ott, Pittsburg, Kansas. This is a bottle designed to with a brue mucliage in such a manner as to dispense cilage with , aneat nicty either in a apply line broad band. The body of the bottle is of rubber or similar material, and has a wedgelike tip to act as a substitute for a brush, with an outlet for the passage of the nucilage when the body is compressed
Photographic Plate Holder. Matthias Flammang, Newark, N. J., and Frank Moniot, New York City. This is a holder which enables the operator to accurately adjust the screen relatively to the be photographed, and comprises a main frame adapted oreceive a negative auxiliary frame movable toward and from the negative and having inclined slots, ping suxiliary in the main frame engaging the slots of the ing holders for a screen plate. The shifting de vices for the screen plate extend through the frame to the out-
side. side.
Neck Strap for Horses.-Reuben F. Newman, Manasquan, N. J. This is a strap having a portion to extend around the neck of a horse, with a stead of the ordinary ring and snap hook attachment there is a ring at one end of the neck portion, and the forms a stop for the movement of the ring in one direction, whlle a spring stop limits the movement of the ring in the opposite direction, the hitching portion being wholly separated from the ring.
Making Aluminate.-Dmitry A. Peniakoff, Huy, Belgium. This invention is for a process for producing alkaline aluminates and chlorine by heatalkaline sulphate a d sulphuret, the sulphurous acid gas obtained being mixed with oxygen and then brought in alkaline sulphate. The whole process is very simple, and has also been patented in many foreign countries.
Bicycle Skirt.-Julius N. Lewinson, New York City. This is an improvement in divided kirts and trousers combined, according to which the
rear portion of the skirt is so made that it may, for a portion of the distance from the waistband down, be readily opened, and when the opening is closed an apron will cover the skirt opening, so that the skirt at the
back upper portion will have the appearance of an orinary walking skirt
Awning.-Charles A. and Willia.m E. Metzger, Rutland, Vt. This invention provides simple and inexpensive means for hanging an awning, the
hanging devices not being removed when the awning hanging devices not being removed when the awniog 18
disconnected from its support. The devices do not detract from the appearance of the awning, and when the latter is drawn up its folds do not interiere with the pulleg through which the draw rope pasees. The invention also provides hangers especially adapted for attach-
ment to a rod used as a support for the awning, the ment to a rod used as a support for the awning, the
hangers being attachable at any point on the rod and dily attached or removed.
Fish Net IIffing Device.-John W Atwood, Malden, Mass. This is a lifting machine for taking up nets, trawls, or set lines or ropes, and consists
principally of a revoluble drum carrying at its periphery clamps adapted to engage the net or line and release it after drawing it a suitable distance. Each clamp consists of an elastic block whose top is engaged by an ad Jastable plate, while a movable block directly opposite i
actuated by a lever pivoted on the drum. 'The dram carrying shaft is revolved by an engine or other motor and a revolving brush remo
clamps as soon as they open.

Plumb Slipport.-Juhn H. Weir, New York City. This is a device for the use of masons, car
penters, ete, to permit of quickly lowering the bob without mparting to it a swinging motion. Within a suitable casing adapred to be held in one hand, and having at its lower end a log to which one end of the cord
is attached, are two outwardly springing arms having
inner bent perforated portions through which the return
portion of the cord is passed, the pressing inward on the arms by the thumb and finger bringing the perforations in line and permitting the cord to run freely, while the cord
Vehicle Running Gear.-Benjamin F. Haldeman, Pittsburg, Pa. For farm, coal and similar
wagons, this invention provides a substitute for the rigid wagons, this invention provides a substitute for the rigid
each ordi arily used to connect the front and rear axles. tis particularly applicable to wagone having a rear
platform spring, and consists of an inverted U-shaped lever and links connected with the rear axle and fifth wheel, a spring rigidly secured to the fifth wheel being exibly connected at its rear end with the lever. The mprovement is self-adjusting to the load a
Gate.-Albert Davison, Belvidere, Ill. This is a farm gate which may be' readily lifted to set and such adjustment may be easily effected without detaching any of the operating parts, the bolt seats permitting its latching and unlatching at different vertical down the gate are arranged to operate without opening or shutting it, facilitating the work of farmers in sepaGate Latch.-- William J. Hays, Decaur, Ill. In combination with a gate having a vertical bar and a keeper at its free edge, according to this improvement, are two latches pivoted to the ends of the bar
and projecting beyond the front end of the gate to engage the strikes, while a lever piroted at its lower end to verhangs end of the lower latch carries a pin which end of the lever engaging a cross wire to lock the two

Roller Skate.-George T. Bond, Topeka, Kansas. The skate, according to this improvement, is made with a single roller, some six inches high ment, is made whath a single roller, some six inches having a hub, wire spokes and a
or theren
pneumatic tire pneumatic tire. A supporting frame with side uprights,
braces and leg strap are designed to give efficient support braces and leg strap are designed to give efficient support
to the leg and ankle of the skater, the improved skate to the leg and ankle of the skater, the in
being adapted for general out-of-door use.
Fruit Drifr. - Arthur B. Shearer, Arroyo Grande, Cal. According to this invention, a main compartment is provided with end doors and a of the track a condensing wall or partition cooled by a water spray and a blast of cool air, while a fan forces hot air from a heater or furuace across the track space and its fruit laden cars against the condenser wall. A
blower is provided for withdrawing the arr from the drying chamber and returning it to the furnace. The cars are provided with a horizontally turning rack
Bedstead Joint.-Daniel D. Curtis, Sidney Center, N. Y. This is a bed rail fastener de-
signed to be very secure and without vertical or lateral motion, taking also the weight of the rail from the It is preferably made of metal, and has rear openings or apertures and forward heoks to enter sockets in the
head and foot boards, and the bottom of the body is head and foot boards, and the bottom of the body is
provided with two or more horizontal flanges, which provided with two or more horizontal flanges, which
are preferably integral with the body and struck up therefrom.
Folding Cot. - David T. Helprin, New York City. This is a cot which folds, not only in
the direction of its sides, but also in the direction of its the direction of its sides, but also in the direction of its
ends, by which it may be made to occupy a small space ends, by which it may be made to occupy a small space
in storing it, but may be readily brought fully out into in storing it, but may be readily brought fully out into
rigid position as a cot. The frame consists of side bars having a hinge connection, and with sockets at their
outer extremities, the legs being pivotally attached to the Lauter extremities, the legs being pivotally attached to the socket portions, while cross bars have heads arranged to
enter the sockets and engage with the legs, the bed secenter the sockets and engage with the legs, the bed sec-
tion being attached to the cross bars and sections of the the bed being cut away opposite the
Non - Refillable Bottle. - Dolph Edwards, Sanford, Fla. To provide a bottle which cannot be reflled without partially destroying it, accord-
ing to this invention, the neck of the bottle is made with ing to this invention, the neck of the bottle is made with
an internal circumferential groove, to which leads a per foration from the exterior. The neck is long enough to receive a lower sealing plug, and an upper securing plug, the latter having a groove coinciding with the in ternal groove of the neck and permitting of the insertion of a key of wire or other suitable material in the coincident grooves to lock the securing plug in place. By
forcing the wire entirely in, so that it cannot be withforcing the wire entirely in, so that it cannot be with-
drawn, the contents of the bottle cannot be obtained without breaking off the neck at a circularly grooved portion between the two plugs, aithough, by leaving the portion between the cwo plags, ald
key with a protruing portion, it may be withgrawn
and the sealing plug removed, allowing the bottle to be and the sealing plug remo
used as an ordinary bottle

Designs.

Lady's Collar.-David Kisch, New ork City. This design is fora collar open at the back, and with two opposite side portions having angular fron nding a gular lower edge
Soap Dish or Holder.-Edward L. Snyder, Brooklyn, N. Y. This dish has a top which
slopes downward from its margin to a central opening slopes downward from its margin to a central opening
communicating with an enlarged space below, there be ing an end opening in the body of the dish to this

Picture Frame.-Alfred J. Ripley, Long Branch, N. J. This is a frame made with a sur chips, and having also a depression simulating a "kitty" opening.
Notr.-Copies of any of the above patents will be furnished by Munn \& Co. for 10 cents each. Please
send name of the patentee, title of invention, and date of this paper.

$\mathcal{P B u s i n e s s}^{\text {and }}$ Personal.

The charge for insertion under this nead is one Doilar a iine
for eaci insertion: aoour eionit wordis to a iine. davert tisements must de recivec at puolication office as eariv a

Marine Iron Works. Cbicago. Catalogue free
For mining engines. J. S. Mundy. Newark, N. J. "U. S." metal polish. Indianapolis. Samples free. Presses \& Dies. Ferracute Mach. Co., Brigeton. N. J. Well Drill Prospecting Macb'y, Loomis Co., Tiffn, o Handle \& Spoke Mchy. Ober Lathe Co.,Chagrin Falls, 0 Have your patented machinery made by c. J. Pransard, Troy, N. Y.
Screw machines, milling machines, and drill presses,
The Garvin Mach. Co., Spring \& Varick Sts., New Fork Concrete Houses - cheaper than brick, superior
stone. "Ransome." 757 Monadnock Block, Cbicago.
Machinery manufacturers, attention! Concrete an mortar mixing mills. Exclusive rights for sale. "Ran some," 757 Monadnock, Cbicago.
The celebrated "Hornsby-A kroyd" Patent Safety Oil
Engine is built by the De La Vergne Refrigerating MaEngine is built by the De La Vergne Refrigerating Ma
chine Company. Foot of East 138th Street, New York The best book for electricians and beginners in ele tricity is "Experimental Science," by Geo. M. Hopkins.
By mail. $\$ 4$. Munn \& Co., publishers, 361 Broadway, N. Y. Machine Shop Aritbmetic gives just the information a mechanic needs and in sucb plain language that any
ar , rentice can understand it. 50 . post paid. 2c. stamps taken. Practical Pub. Co., 72 Maple A V ., E. Orange, N.J.
 new other Books for sale by Mun
New York. Free on application

HINTS TO CORRESPONDENTS Names and Addrems must accompany all letters
or no attention will be paid thereto. This is for ous information and not for publication.
seirerenter or former articles or answers should
give date of paper and page or number of question give date of paper and page or number of question.
nqirires not answered gen reasonable time should
be repeated correspondents will bear in mind the seope answers require not a lilttear research, and
though we endeavor to reply to all either by lette though we endeavor to reply to all either by lette
or in this department. each must take his turn. or in this department. each must take his turn.
in ers wishing to purchase any article not advertised
in our columns will be furnished with addresees of in our columns will be furnished with addresses of
houses manufacturing or carrying the same. perponal rather than general interest cannot be cientitic Anbrican sinplements referred to may be had at the office. Price 10 cents each.
iools. referred to promptly supplied on receipt
price.
in erals sent for examination should be distinctly
marked or labeled.
(7052) D. L. S. says: In Scientific American of October 31, 1896, Notes and Queries size is and bow made, or where it can be obtained. How is good sizing made? A. 1. (Oil size.) Drying or boiled oil thickened with yellow ocher or calcined red ocher
and carefully reduced to the utmost smoothness bygrind ng. It is thinned with oil of turpentive. Improves b age. Used for oil gilding. 2. (Water size.) Parchment risinglass size mixed with finely ground yellow ocher. Used in burnished or distemper gilding. 3. Place boiled oil in a stone pot and place on a gentle fire, and allow fre to it, and let it burn until it is thick, then put on the over to extinguish the flames. Strain through silk and hin with turpentine.
(7053) L. J. H. says : Please give through he columns of the Scientific American a formula for The Pharmacist recommends the following as a proved recipe : Take 1 ounce of Russian isinglass, cut it in small pieces, and bruise well, in order to separate the fibers hen add 6 ounces of warm water, and leave it in a warm place that the isinglass may dissolve, which will require from 34 to 48 hours. Evaporate this to about 3 ounces. when this 18 ready, transfer the isinglass from the evap rating dish to a tin can (an empty ether can will be ound convenient), heat both solutions, and add the masic solution to the isinglass in suall quantities at a time, haking the can violently after each addition. Wbile pp in $1 / 6$ ounce biquid through musin cloth and pu nd articles auch es. it have been in use for years.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

December 1, 1896,

AND EACH BEARING THAT DATE.

Abdominal supporter, W oolfolk \& Ney Accumulator or secondary battery, F. W. Wiliermann.	
${ }_{\text {Air }}$ Air compmpres	
Annunciator drop, w. Sch wager	
Anode for	
Amy	
tery krid and machine for producing same, \mathbf{A}.	

Brace. See Chair brace.
Bracidig machine A. . . .
Brass...
Brake. Seabicycle brake.

Brush, Fi f. Lo.
 Buried alive apparatus for savink people, M

Cburra, A. A. Asher.
Churn. Harper $\&$ Sith

 combluation abie, © Wi bitiford....

Couphag. Se Car coupling. Thill couping.
Crant pin
current

cutter.

Fence tool. wire, L. W OMton
Fence, Wire,
Fence, wire, E . M: Wheraberger.

185

572,283
$: 52,433$

529,49
ำํํํํํ
皐

572,343 572.180 522,465 572.510 57212

\square

-

,

DESIITNS

TRADE MARES. Asbegtos cement for frishing walls, J. B. King \&

2HDertisements.
ORDINARY RATES.
Inaide Page, each insertion -. 75 cents a line BF For some cach inses of Adion-.--81.00 a lin
Hipher rates are requised. The above are charges per agate line-about elight
Tords per Mine. This
ind is sice sows the widh of the line. nd is set in agate type. Engravings may head adve

WOOD or MIETEL WORKERS
 SEND For Catalogote A-Wood-working Machinery. SENECA FALLS MFG. COMPATY

AMERICAN PATENTS. - AN INTER

"My Well and what came out of it. "Your Well and what will come out of it
Pohlé Air Lift Pump
The Ingersoll-Sergeant Drill Co.

EMERY WHEEL MACHINERY UNIVERSAL MACHINE

Will grind straight or taper, sot
 MACH
HAIN DRAW BENCH For mathap steel

or all Sha sizes. Hub Roller Bearing
 NO WEAR NO FRICTION. Rolls Accarately Guided
They Save Power, Oil, Time They are the Best! Try them The Ball Bearing Co. 12 Watson St, Bosing Co.
Trite for Prices.
Physical and School Apparatus

GALVANOMETERS

 STANDARD, SINE, TANGENT, GALVANOTETERSE. 8. Ritchie \& Sons, Brookline, Mass

X Ray Apparatus
ARMSTRONG'S * PIPE * THREADING
 CUTTING- AfF MACHINES Both Hand and Pouerich

The Van Norman • Universal Bench Lathe.

Lat he, Milling Machine
crew Cutter and Universal
rinder in one toin
est toon made for
est kine
Measorind etc., and supplies of all
kinds for Architects, En 9n]f($\begin{aligned} & \text { men. } \\ & \text { Frost \& Adams Co. } \\ & \text { Established in } 1848 .\end{aligned}$ Estabisued in 1848.
CoSTIII,
Bis, MASS.

ONE CENT Per Hour Is Cheap.

 Marine Vador knsine Co.., Jerses Ciss. $\mathrm{N} . \mathrm{J}$ The Modern ice yacht. - by

 The Bartley Direct Running Saw Mill

 The Kent Battery Motor or Dynamo

DYNAMOS FOR ELECTRIC LIGHTING.

The Edison Phonographic News A PHONOGRAPH or A KINETOSCOPE

DORMAN'S

VULGANIZERS

 Eight-inch precision. with cutter miling and gear
 The Rivett Lathe The Rivett Lathe Boston, Mass., U. S. A.
Adopted by䨣
 We mates furnished or CoMPLETE CRUSHING PLANTS Gates Iron Works, Dept. C. 650 Eiston Av. Chicago, Ili THE ORNAMENTAL IRON INDUS

N"OS WE UNDERSELL ALL!

 happened. Catalogue free.
OHIO ELECTRIC WORKS, $11 \begin{gathered}\text { S. Water St. } \\ \text { Cleveland }\end{gathered}$
Experimental \& Model Work

$$
\begin{aligned}
& \text { rcuiars \& advicefree. Gardam \& Son, } 96 \text { John St.,N.Y. } \\
& \hline \text { CATALOGUES FREE TO ANY ADDRESS }
\end{aligned}
$$

TrANSITS AND LEVELING instrumpnts. AdJUETABLE BENCH LEVEL Sottoms
Size 4in. to 18 in. Price 82.50 to \&8. For book on the leves
Finals ground
grad

How to Build a Home

Those intending to build will find the very best practical sug Architectural Magazine ever published .
"The Scientific American Building Edition.
Each number is illustrated with a colored plate and numerou handsome engravings made direct from photographs of buidungs
together with interior views, toor plans, description, cost, location together with interior views, tioor plans, description, cost, location,
owners' and architects' names and addresses. The illustrations include seashore, southern, colonial and city residences, churches,
schools, public buildings, stables. carriape houses, etc. schools, public buildings, stables. carriage houses, etc.
All who contemplate building, or improving homes of any kind, have in this handsome work an all.
make selections, thus saving time and money.
Published Monthly. Subscriptions $\$ 2.50$ a Year. Single Copies 25 Cents.

MECHANICAL n QURVEYINB DRAWING $A^{N} \int_{\text {TAUGHT BY MALI }}$

ACETYLENE APPARATUS.-ACETYlene number of the SCIFNTIFIC AMERIC,
MENT, describing, with full illustrations, the most

(2)

ON A STILL HUNT The up-to-atate sportsman needs for
success, personal comfort and protec-
tion the IDE EAO HUNTING SHOE.

 ZENTMAYER'S - MICROSCOPES

 J. ZENTMAYER,
211 South

AN EXCELLENT HOLIDAY GIFT FOR OLD OR YOUNG.

Experimental Science

By GEO. M. HOPKINS.
17th Edition Revised and Enlarged,

840 pages, 782 fine cuts, substantially and beautifully bound. Price in cloth, by mail $\$ 4$. Half morocco, $\$ 5$
This splendid work is up to the times. It gives young and old something worthy of thought. It has influenced thousands of men in the choice of a career. It will give anyone, young or old, information that will enable him to comprehend the great improvements of the day. It furuishes sug. gestions for hours of instructive recreation.

Send for illustrated circular and
MUNN \& CO., Publishers, Office of the
SCIENTIFIC AMERICAN, BROADWAY, - NEW YORK.

The Indenenenent．
 NEW YORK．
 ＊＊＊
 TEE INDEPENDENT for 49 years has bee iligious－literary newspaper of the world． It has new，distinctive and attractive
 Family－Dewspaper worthy the patronare of all thinking，intelligent people． lts name indicates its character．It is independent． Relliglously，it is undenominational．Popendent maintaing the honor of the country，the integrity our currency，the supremacy of law，and the rights of
 For \＆Intelligent \＆People Euerywhere

for all the members of intelligent households．

Tmportant E Features．

It has，aside from its literary features，special depart ments edited by the best writers，thinkers，and special
ists，some of them of surpassing interest to a compara Ive few，others important and valuable intellectually and financially to nearly everybody．These depart eeligious Intelligence，Biblical Rese Mantary，Missions， school，Financial，Insurance，Work Indoors and Out

Survey＝of ：the＝TVJorld． Every week the notable events occurring the world
over are placed clearly before the reader．No one on has time to read all of the current poblicatlons oreign and domestic；but every one wants to know the vents bappening in the whole world，which people ives each week the gist of important events for the carrent week．It is really one of the
and important features of any periodical．

Subscription， $\mathbf{\$ 3 . 0 0}$ a Year；or at that rate for any part of a year．
＂Trial Trip，＂One Month， 25 Cente Specimen Copies free．

THE INDEPENDENT，
 Draper＇s Recording Thermometer in ink a correct and continuous recora
in
on
on gis．Hoospitals，Clubss，，chools，Gree tries $\begin{aligned} & \text { where temperature } 18 \text { an timpor } \\ & \text { tant factor．} \\ & \text { LTPWrite for particular }\end{aligned}$
 $\$ 5000$ Weorer casd for simple laeas．pitantad M． WOODEN TANKS For Ralloradif yilis san Manquatories．
 Cbe Scientific \neq merican PUBLICATIONS FOR 1897

The prices of the diferent pubications in the United
States，Canada，and Mexico are as follows： RATES BY MAIL．
$\begin{array}{ll}\text { Scilentific American（weekliy），one sear，} \\ \text { Sclentific American Supplement（weekiy），one year．} & 83.00 \\ 5.00\end{array}$ Export Edition of the Sclentific American（month－ Building Edition of the Scientific American 2.00

（monthly）， COMBINED RATES Sclentific American and Supplement， Scientific American and Building Edition， | Scientifice American，the Supplement，and Building |
| :--- |
| Edition， |
| $\mathbf{8 . 0 0}$ | Terms to Foreign Countries． The yearly subscription prices of scientifc Amer

publications to forelgn countries are as follows：

sclentinc American（weekiy）， | 84.00 | 216 |
| :---: | :---: |
| 6.00 | 16 |
| 0 | 1.0 |

Scientiff A merican Supplement（weekly）
Building Eaition of the（monthly）
Export Edition of the Scientifle Amer－
ician（monthly）in Spanish and Enz－
lish（
Combined Rates to Foreig Scientific American and Supplement，－
Scientifici American and Building Edi－
tion， Scientift American，Scientific American
Supplement，and Building Edition，－ $: 6.50 \quad 16$ IT Proportionate Rates for Six Month
The above rates include postare，which we pay．Re
mit by postal or express money orcee，or draft to orderot

Has an Automatic Platen Lit An AutomaticSwitch for ribbon movement，feeding both ways Automatic Lever Locks

Alignment that is positively permanent Compared with the Hartford，no other machine is up－to－date We solicit cash trade and can give such customers A GAIN
$\mathbf{5 0 \%}$ over what is offered by competing houses in our line THE HARTFORD TYPEWRITER CO．， 1 LAUREL ST．，HARTFORD，CONN．U．S．A．

 Mil Pypuritir EXCHANGE， $1 \frac{1}{\frac{1}{2}}$ Barclay St．，New York 156 Adams St．，Chicago 38 Court Sq．，Boston． 818 Wyandotte Street，Kansas City，Mo． | We will save you from 10 to $\begin{array}{l}50 \text { ．per cent．on Typewriters } \\ \text { of all makes．} \\ \text { Sena for Catalogue．}\end{array}$ |
| :--- | he is tuell Posted culbo Knows it HIll but such people are few．They know the most who

study in the best way－by the thethod which retains in the mind the most of the matter read and studied．A systematic arrangement of ideas as they are imbibed

WHEREWITHAL

is 81 Book that educates accurately，immediately，pro－ and attractive light that insidiously sinks into the brain．It is the greatest aid to rapid and clear under
standing that the world has ever standing that the world has ever seen．It opens up new ind．Send $2 c$ stidsof thought even to the educated

WHEREWITHAL BOOK CO．

 Bourse BuIEDING，PHILADELPHIA，PA

A Perfect Typewriter Does The Beautiful W of the Yost＂is Unequaled．＊ ITS Send for Calalogue

Yost Writing Machine Co．

\(\begin{gathered}Chambers Street，

New York．\end{gathered}\) | $\mathbf{4 0} \begin{array}{c}\text { Holborn Viaduct } \\ \text { London，Eng．}\end{array}$ |
| :---: |

The free attendant service maintained by the New
York Central at Grand Central station，New York． Yis another example of the care and courtesy by
wbich patrons of this great rallroad are surrounded．

CARIBORUNDUMEW
 Che＂Sbure Sbot＂Detective Camera PRICE ONE DOLLAR．
Complete with Printing and Developing Outfit． His camera is artistically made from handsome wood，highly
日nished．Is perfectly focused by experilenced workenen
Having a finely ground lens，it takes an excellent picture， Having a finely ground lens，
instantaneousis or by time exposure The＂Shure Shot＂does work equal to that of the most
expensive cameras on the market．Makes photorraph $2 x 2$ inches． The entire outant contanins everything n necessary to print and
develop，and also a complete instruction book．
Price $\$ 1.00$. Postage 15 Cents．
ROBERT H．INGERSOLL \＆BRO．

WANTED Patent rights to man foracure

MONITOR INCUBATOR Illustrated Catalogue for stamp．
Medal and DMploma Amardea at the A．F．williams， 61 Race St．，Bristol，ct．
 PHATCH OHICKENS

B4 UYY IICUBATORS Send 6 cents for our fine llus－
trated catalogue and
poultry book． 81
It DES MOINES IICCUBATOB CJ．Box 75．DES MOINES．IA

A．W．PABER
 78 Reade Street，－－Nfw York．N．

Perfect Motor and Battery Outit

REPRESENTATIVES WANTED

FOREMAN BOILER MAKER WANTED First class man mois familiar with marine and station－
ary boiler and iron ship orik．Applcants will state ape．
out

（Uatcomaking a Crade for Young men and dJomen
Parsons＇Tnstitute for ZJatehmakers，Engravers and Opticians in New Quarters． Send for 1897 Catalogue． 111 Bradley Ave．，PEORIA，ILLINOIS
 VFLOX

 GLOSSY or MATT．No dual or rany weather to interfer mith your work

BG：HIE IS DEAD

＂Facts
Worth Knowing＂
 Scientific American， and contributed by 500 of the World＇s Best Think
ers，for the
Household，Workshop，and Farm．

Agrialutural Biliomist

 interestind monthly Farm Gardeen，and Housenold，aper
pubtished．sample con
nished free nopon app EPITOMIST PUB．CO．，Indianapolis，Ind．

䢒

DIXON＇S write the Smaoticest and

 MAGIG LANTERNS WANTED Afo rean zit

弇事 DEAFNES \＆HEAN NoIIES CuRED．

Twelfth Edition Now Ready．
THE SCIENTIFIC AMERICAN
CYCLOPEDIA OF
Receipts，Notes and Queries
12，500 RECEIPTS． 708 PAGES．

world；the information given being of the highest
value，arranged and condensed in concise form， onvenient for ready use．Almost every inquiry
hat can be thought of，relating to formula ure that can be thought of，relating to formule used
in the variousmanufacturing industries，will here
be found answered． Those who are engaged in almost any branch
of industry will find in this book much that is of practical value in their respective call
ings．Those who are in search of independent business or employment，relating to the home
manufacture of salable articles，will find in it
hundreds of most excellent suggestions． Send for descriptive circular．
MUNN \＆CO．，Publishers， 36I Broadway，New York．
Phocrtisements
OHDINARY RATES.
Inside Page, each insertion--7.5 cents a line
 Highker vates are reyuired.
The above are chares per agate line-about eight
words pertine. This notice shows the width of the line. and is set in arate type. Engravings may head adverment. as the letter press. Advertisements must be
received at Publication Onfice as early as Thursday
wurnin ato appar in the following weeks insue

Cribune a Bicycle

Tested and True.

The Easient Running Wheel in the World. the black mfg. Co., ERIE, PA.

PHOTOGRAPHIC SIMPLICITY .

EASTMAN KODAK CO.

ONLY PRACTICAL MAGAZINE CAMERA.

SUNART'S
"VENI, VIDI VICI," SUNART FOLDINGS nd for Illustrated Cata-
logue-2 cent stamp.
SLNART Photo co ROCHESTER, N.

THE NEW LIGHT

Chestnu.tst.., Inc.,

To Those Intending Building

To insure a perfect and permanent finish on all natural interior woodwork the use of the WHEELER PATENT WOOD FILLER is essential. It leaves the wood pores transparent AN OUTSIDE PAINT that outlasts lead and oil paints, is BREINIG'S LITHOGEN SILI CATE PAINT, especially adapted for buildings exposed to salt air.
Architects and owners, in their own interests, should see their specifcations carried out in full, and examine bills
forthe articles specifled before accepting work as satisfactory.
References-Most of the leading architects throughout the U. S. THE BRIDGEPORT WOOD FINISHING CO., New Milford, Conn.

"WOLVERINE" GAS $a^{N D}$ GASOLINE

Small Motors for Hll Purboses

 BOSTON MOTORR
Bonton, Mass, U.,

SCIENTIFIC A MERICAN SUPPLE-

Special Machinery, Dies and Tools

Sub Press Dies

 A SPECIALTY.
GEO. M. GRISWOLD, 183 st. John St.,

PORTAB R:ilway-

The FAIRBANKS - MORSE
 GAS and GASOLINE ENGINES, STEAM PUMPS, FRICTION QLUTCH PUULEYS.

This Companr owns LettersPatent No. $463, j \dot{\sigma} 9$, granted to Emule Berliner November if, iS9r, for a combined Telegraph and Telephrone, covering all forms of
Micropinone Transmitters or contact Telepinones.

NOW IS THE TIME TO SUBSCRIBE

Salinine Minices

EStablished 1845.
The most popular Scientific Paper in the World The Scientific American has been issued every week by the present publishers for a period of over fifty years. It is the only Journal published in this country which is devoted to a general treatment of the devel opment of the sciences, arts and manufact ures. Each issue is embellished with nu merous illustrations showing great engi neering works, the most recent inventions in bicycles and motor carriages, new forms of machinery, photography, the latest addi tions to the navy, new guns, locomotives etc., sixteen pages each week. Many of our patrons have been on our subscription books for a period of thirty or forty years. and we often receive letters from old readers stat ing that owing to a careful reading of the paper since boyhood, they owe their success in life more to having had the Scientific American as their constant friend and companion than to any other one cause.
The Scientific American should have a place in every dwelling, shop, office. school or library. Workmen. foremen. engineers superintendents. directors. presidents. officials, merchants. farmers, teachers. lawyers, physicians, clergymen-people in every walk and profession in life, will derive satisfaction and benefit from a regular reading of the Scientific American.
As an instructor for the young it is of peculiar advantage. Try it.-Subscribe for yourself-it will bring you valuable ideas; subscribe for your sons-it will make them manly and self-reliant ; subscribe for your workmen-it will please and assist their labor ; subscribe for your friends-it will be likely to give them a practical lift in life. A yearly subscription to the Scientific American is a most acceptable holiday gift to a son or a friend.
new volume commences january 1 s
Subscription Price,
$\$ 3.00$ a year, or. $\$ 1.50$ for six months.跗 Send your address for a free specimen copy.

MUNN \& CO., Publishers,
361 Broadway, New York.

PRINTING INKS

