Sricutifir American.

ESTABLISHED 1845.
MUNN \& CO.. Editors and Proprietors. poblished weekly at
NO. 361 BRUADWAY, NEW YORE.

TERMS FOR THE SCIENTIFIC AMERICAN. (IStablished 154j.)

 Remit by postal or express money order, or by bank draft or cbeck.
MUNN $\&$ CO., 361 Broadway, corner of Franklin Street, New York.

The scientific American supplement (Entablished 1396)

Building Edition of Scientific American (Established 1585.)

Export Edition of the Scientific American (Estublished 159S)

CO. Reank check. Mase all remittances payabie to order of MUNN

NEW YORK, SATURDAY, NOVEMBER 14, 1896.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 1089
For the Week Ending November 14, 1896.

the increased confidence in business circles.
There is a growing feeling that the tide of our com mercial fortunes has turned and that the ebb which set in three or four years ago has brought us to a low water mark from which we shall see a flow of steady prosperity. As we go to press there are pleasant tidings of industrial establishinents being started on full time, of others which have been long silent resounding with the busy hum of activity. Wholesale houses are sending out their travelers and conditional orders are being set in execution. One can hear a great sigh of national re lief go up that the tremendous tension of the past few months is over, and there is a very distinct quickening of the national pulse and a general spirit of expectancy of good times to come.
How far these hopes are justified, how early will be their fulfillment, we do not undertake to say; but we wish to remind our readers that if the good times are to be permanent they must come in a natural way, and not as the result of any artificial arid therefore evan escent stimulus. There is a tendency in the daily pres to push the thing along faster than is natural or ex pedient. The sick man must learn to walk beiore he can run. The credit of the country has been prostrated even to the point of death, and we must not expec that it will recover its full strength and virility in a day. Indeed, the past commercial history of the country shows that recovery is very slow; and it takes very little to give the patient a serious relapse. If we refer back to a period of which the present is strongly sug gestive-the year 1873-it was not until the year 1880 that the country had fully recovered from its depres sion ; and while we do not for a moment suppose that prosperity will be so belated in the present case, we do not believe that we are going to move at a bound from the oneestreme to the other. Nor would it be desira ble. "Boom times" are in some respects very bad times. Better a steady, legitimate growth than a hasty, artifi cially prompted; hothouse sprouting.
The nation has been learning valuable lessons dur ing the last few years of depression, and we shall do well to make the present hour of restored confidenc a starting point for a fresh growth in wealth and powe whose motto shall be "make haste slowly."

the revoring of the cyanide patents.

Elsewhere in this issue we republish a statemen

 which appeared in the New York Sun regarding the recent canceling of the cyanide patents by the High Court of the Transvaal Republic. The news will come as a great surprise to the mining world at large, and there will not be a corner of the earth where refractory gold is recovered by this very successful process-and it is at work in every quarter of the globe-where the revoking of these patents in the Transvaal gold fields will not produce a decided sensationThe Sun is of the opinion that the result of this de cision will be that "nowhere in the world will the users of the process continue to pay royalties, but will fight and overthrow the patents everywhere," and that the ruling of the Transvaal court "will result in im mense additions to the world's stock of gold within few years." We think, however, that this is overesti mating the weight which a judgment of the Boer court will carry, especially when it is remembered that the parties who will be most seriously hurt by the decision are Utlanders and Englishmen. Not that we think
the Boer court would intentionally give a decision at variance with the evidence; but in a suit of such mag nitude as this we think that, in view of the recent strained relations of the Transvaal Republic, the mining companies of the United States and Australia wil accept with some reserve the recent decision at Pre toria.
Moreover, there are certain historical aspects of the case which would make us hesitate to believe that the Transvaal judginent will be repeated in this and other countries. If this delicate and highly scientific pro cess was elaborated before the year 1866, it was years ahead of its time, and appeared before there was any urgent demand for it. It is only in comparatively re cent years that the attention and efforts of the mining world in general have been directed to the working of very low grade ores. In the earlier periods, prior to 1866, gold mining was carried on in the rich alluvia deposits and in the workings which lay comparatively near the surface. The "free gold" apparatus-the pan rocker, battery plates, etc.-gave place to the various chlorinating chemical processes for working refractor ores, long after the period in question; and it was not until the year 1890 that Mr. Macarthur, in a paper read before the Society of Chemical Industry, described the steps by which he had arrived at his tinal invention of the cyanide process, the announcement being made at a time when the mining world was ripe for it, and looking eagerly for a solvent of gold which would hav more affinity for gold than for the sulphides, and for method of recovering the gold from the solution. The story of the discovery of this process, as told by Mr. Macarthur, shows that, whether there had been a pre ious discovery by another party or not, the final re it in this case was arrived at as the result of p tient search carried out on scientific lines.

The contest over the validity of the cyanide patents raises again that old question as to who should be the beneficiary of a valuable invention: the party who outlines a device and never puts it into working shapeperhaps because he does not realize its value, or perhaps because he is indifferent to it-or the man who produces the same invention as the result of an intelligent effort to fill a public want, and having proved his theory, labors until he embodies the theory in a machine or a process of real commercial value.

Howe held his sewing machine patents by the decision of Judge Sprague as being an inventor of the latter type ; and the world at large honors Bessemer, but has forgotten Kelly.
We cannot agree with the writer in the Sun that the anluling of the cyanide patents would "result in in mense additions to the world's stock of gold within a few years; "for behind such a statement lies the as sumption that the present output is limited by the ex istence of the patents. So far from this being the case the cyanide process has greatly increased the output of gold by enabling the miners to recover millions of ounces which were formerly rebellious against any ex isting form of treatment. The removal of the royaltie would increase the mine owners' dividends by the amount of the royalties, but it would have no effect upon the output.
In this respect these patents, like all patents, have had a stimulating effect upon industry; they have recovered for the use of commerce and the arts million the precious metal, which, but for the patents of Mr Macarthur, would now be lying in the tail heaps

ANOTHER COMPARISON OF UNITED STATES AND BRITISH RAILROADS.

In a recent issue we drew attention to a comparison of American and British railroads by the Engineer, in which the editor reached the consoling conclusion that as regards the construction of their track, English ngineers have nothing to learn from American prac tice. We now notice that Engineering has recentl made an interesting comparison of English and Ameri can roads based upon the Board of Trade returns and Poor's Manual, which is marked by a candor and im partiality which the Engineer would do well to emulate when speaking on matters pertaining to this country.
During the past year 270 miles were added to the total mileage of the British railways, as against 1,628 miles in America. This Engineering considers to be relatively greater for Great Britain "when the repective area and necessities of the two countries are considered ;" but we think that, if the more just basis of the respective area and population per square mile be taken, it will be found that the 1,628 miles is rela tively greater than it appears. There is no doubt but that, during the years of prosperity previous to 1893 , the railroads were built faster than the necessities of the country called for them, and during the past few years there has been but little demanu for fresh con struction. The efforts of the management have been directed to betterment and repairs, and a large amount of capital has been expended in relaying the track with heavier rail, replacing wooden bridges with stee and stone structures and building better stations and ards.
In a comparison of capitalization we show to advan age. In the Eastern States contiguous to and includ ng New York this amounts to $\$ 125,000$ per mile; in he Pacific States it varies from $\$ 50,000$ to $\$ 60,000$ pe wile, whereas in Great Britain it is as high as $\$ 236,400$ per mile. These high figures for Great Britain are to be put down to the very costly nature of the construc tion, especially in the large cities, which boast of mag nificent terminal stations, approached by high leve iaducts which have been built at a large cost fo land and damages. As an offset to the high capitalization of British roads it is pointed out that they earn 3.95 per cent on their liabilities, as against 2.94 per cent earned in the United States.
It is pointed out that, while the cost of construction f British roads is double that of the United States their receipts per mile of railroad are " more than thre times greater- $\$ 19,220$, against $\$ 6,170$." At first sigh his is a comparison which will be more satisfactory to British railroad interests than to our own; but, as Engineering very fairly points out,these receipts are the mallest for the United States and the largest for Grea Britain for many years past. Our contemporary fur thermore says: "Of course the conditions in the two countries are so very different that no very useful deduc tion can be made from comparison of the results," and in the case in point this is specially true. There are ong stretches-many thousands of miles-of railroad in America which are merely connecting links between habitable and cultivable districts, which are laid over barren deserts, and which contribute practically noth ing to the per mile earnings of the roads. There is nothing of the kind in England, and in any compari son on a basis of average per mile earnings we must ecessarily stand at a great disadvantage
In the United States one-fourth of the receipts come from passenger traffic ; in Great Britan, one-half. It is claimed that "British railways work more economi-
cally; 56 per cent of the gross receipts being absorbed ration directly from Byzantine sources. Thus it was in Stenpes, as against 70.37 per cent in the United States." This is explained by the fact that " much of the gross revenue in the States goes in commissions and equivalents." In Great Britain the net receipts per mile are $\$ 8,500$ and in the United States $\$ 1,830$ per mile It is in the record of freight traffic that the United States shows the most impressive figures, the largest, indeed, on record. There were $7633 / 4$ mullion tons handled against 334 million tons in Great Britain. Each ton in the United States was hauled on an average 116 miles at 0.839 cent per ton, and the receipts per freight train mile were larger in this country, being $\$ 1.57$ against $\$ 1.44 \%$ in Great Britain. This agrees with the well understood fact that our system of handling freight in long cars keeps down the ratio of nonpaying to paying load as compared with the English system of using short four-wheeled trucks. Then moreover, the train crew expenses are lighter as the re sult of employing more powerful engines to haul heav ier trains. The American locomotive is earning $\$ 29,000$ -a result obtained by dividing the receipts by the number of locomotives-and the British locomotive earns $\$ 22,500$. Against this it is pointed out that Great Britain has a larger stock for the length of its lines the United States having one locomotive for each $4 \cdot$ miles of line and Great Britain one for each 1.13 miles. But it is to be borne in mind that the long stretches of comparatively unproductive road that occur in the Western States call for a light locomotive service, and thus materially reduce the number in service per mile in any comparison with such a thickly settled countr as Great Britain
The return to capital was 2.94 per cent in the United States and 3.95 per cent in Great Britain. The bonded debt in this country, however, called for about $41 / 4$ per cent, and so the average dividend on share capital was but 1.59 per cent. In 1883 it was 2.75 per cent. On the other side of the water the holders of ordinary the other side of the water the holders
shares received an average of 3.80 per cent.
In a general way it may be said that it is early as yet to judge of the productiveness of American railroads, especially in the West and South, where they have been built in anticipation of the growth of these countries in population and manufactures. It was wise to call a halt; and during the few years' breathing spell
which we are sure to see there will undoubtedly be a which we are sure to see there will undoubtedly be a of American railroads.

Prof. Goodyear's Discoveries.

Prof. William H. Goodyear is well known as a writer on art topics, and he has recently made a series of re markable discoveries of the utmost importance regard ing the medizval buildings of Italy. In 1870 Mr . Goodyear began his researches and later embodied the results in an essay. His attention was first attracted to the subject of curves and other refinements in mediæval architecture by noting the slope of the first cor nice of the Pisa cathedral. Such phenomena had been noticed, but were laid to the settling of the building.
"Not knowing," he says, "what the slope in th city looking at the walls and buildings. Finally city looking at the walls and buildings. Finally 1 came across a little church known as San Stefano
Outside the Walls, and I noticed a cornice with large arches at one end and constantly diminishing one toward the other. It occurred to me that I should go inside that building. I did so, and found a tremendous scheme of dropping arches-all in a little village church that is never visited by foreigners. It gave me the hint that something of the kind was going on in Pisa cathedral."
Mr. Goodyear at once saw that the phenomena could not be accounted for by the settling of the founda tions. He determined to visit Byzantine and Roman esque edifices in other parts of Italy, to ascertain if these architectural peculiarities were confined to Pisa.
In 1895 he led the Brooklyn Institute Survey to Italy, In 1895 he led the Brooklyn Institute Survey to Italy,
and the conclusions he arrived at after a prolonged series of the closest and most accurate investigations and surveys were that
"The mediæval builders used curved lines, leaning façades, bulging cornices, the dropped arch, rising pavements and convergence of walls, with somewhat different effects as demanded by the time and the occathe eye by playing on the sense of perspective. Of the fine lords and ladies, the substantial burghers and their wives, and the laboring folk who passed in and out of church doors, few, if any, knew that 'things were not what they seemed'; that the mighty proportions of the edifice and the dim vastness of the interior could be attributed to the Brobdignagian tricks of the architect, and that where reverence was deepest and awe most profound, their illusion was doing its most perfect work. Yet such was the case. Moreover, this art of perspective building was not the invention of the Christian centuries, though Christian builders may
have carried it to a high degree of development. It has not been found markedly in Gothic structures. It reached its acme in the Romanesque, and particularly
in that portion of the Romanesque which drew inspi-
some measure the child of the Greek style, that style which gives us the curvilinear refinements of the Par thenon and the subtleties of the Temple of Theseus And to go back to the mother of civilization, it would seem that the Greeks themselves owed their knowledg of the style to the Egyptians, who, on the other hand appear in certain instances to have transmitted it direct to Italy."
The result of Mr. Goodyear's researches is being pubished in the Architectural Record, of New York. He had the rare honor to be invited to go to the Liverpoo meeting of the British Association for the Advance ment of Science, as the guest of the Association. He took with him the entire Brooklyn Institute exhibit o photographs and surveys, which were placed on exhi bition in Liverpool. The six hundred and twenty-five photographs are very interesting, showing curves in plan and elevation in many medieval and some Ren aissance buildings. The photographs read in connec tion with drawings, giving the floor plan and elevation make a most interesting and important showing and with Mr. Goodyear's studies would make a splendia monograph. He has delivered a series of lectures on his discoveries since he

Brooklyn Institute.

The Production of Pulque in Mexico.
The United States consul-general at the city of Mexco says, in his last report, that it is impossible to separate in thought the average Mexican and pulque. No drink has a stronger hold on any nation than this on the Mexicans, and by Mexican is meant all classe in Mexico other than the Spaniards. Pulque is not the drink of the Spaniard or those of Spanish descent they drink champagne, claret, sherry, and other im ported wines. Among the peons, men, women, and children drink pulque with the same freedom that water is used in Europe. The pulque plant is indigen ous to Mexico, often growing wild on the uplands where-for months and years at times-no rain falls and it is also largely cultivated in the most carefu manner on the llanos de Apam, a large area of plains lying about 60 miles from the city of Mexico. In Spain a plant is found, called pita, somewhat akin to the pulque plant, or Mexican maguey, yet differing so distinct genus. The juices of the pita are unused in Spain, which fact plainly separates it from the family of plants in Mexico. The plants are transplanted when of plants in Mexico. The plants are transplanted when
two or three years of age with much care, then culti vated in fields especially prepared for this purpose Nature requires the plant to be "milked" when the Nature requires the plant to be "milked" when the
liquid is ready to flow, else the superfluity of juices will cause the growth of a large stem from the center of the plant, shooting up some 15 or 20 feet, putting out branches at the top, which blossom in a cluster of yel owish flowers. These branches are symmetrical, and pulque is first extracted-before the process of fermen tation sets in-it is sweet and scentless, and in this state is preferred by beginners. The fermentation state is preferred by beginners. The fermentation expedite the process, a little madre pulque is added, which hastens the chemical change. At times its fer mentation is retarded by a cold spell at the vats, which prevents its transport to the city for a day or two.
The city of Mexico has a population, it is said, of 350 . The city of Mexico has a population, it is said, of 350 , 000 , and at least 250,000 of these use pulque, in prefer hat 75000 er or any other drink. It haily in that city. The stock must be renewed daily, or else it be comes dead and insipid, though, it is said, a certain powder has been discovered which will prolong its life through the second day. The liquid ferments rapidly and strongly, and the casks are left uncorked to prevent explosion. The plant grows eight years before matur-
ity, when the liquid is extracted. In the growth ity, when the liquid is extracted. In the growth of the plant, a central bulb is formed for its coming juices. This is scooped out, leaving a cavity large enough to hold a few quarts. This cavity is made in the bottom and middle of the plant. The juice exudes into this cavity, and it is taken out daily by being sucked into a ong necked gourd, on the siphon principle, by the Indian laborers, and then poured into the tubs and then removed to the vats. The outlay on each plant p to maturity is calculated generally at about 8 s ., and the return is from 30 s. to $£ 2$, according to the size of the plant. Its producing life is about five months, and each plant is supposed to yield from 125 to 160 gallons of liquid within that time. The immense fields within a radius of 75 miles of the city of Mexico are planted and cultivated with great care and precision, as there is nothing grown in Mexico that pays better than pulqueFields of it present an attractive appearance, planted in almost geometrical regularity, extending almost beyond the vision, until the rows seem to concentrate n one plant and into one point at the extreme end The plants are wholly independent of rain and storm that as much as $\$ 1,000$ a day are paid for carriage on the special trains for transporting this liquid into the the special trains for transporting this liquid into the
city of Mexico. The tax on pulque is collected at gar-
thas or gates, before its admission to the city, and then the liquid is distributed in the barricas and pigskins on pecial carts held in readiness for that purpose. Con ul Crittenden says that nothing presents a more idiculous appearance than one of these pig or hog kins containing about 20 gallons, when being take round and through the city, the legs sticking out full to the toes of liquid. This is a convenient mode of hand ling the pulque, as, by simply removing a string from one of the feet, the contents are drawn out. The cul ure of the maguey in the republic of Mexico is unques tionably increasing very largely; but it would be a mistake to draw the conclusion that arable land is therefore withdrawn from the cultivation of cereals and vegetables. Careful observation will convince every one that the haciendado only plants the maguey in arge areas, where nothing else will grow ; and nothin is more common than fringes of maguey, like hedges, round fields of wheat and corn; but where the whol expanse of land is covered with maguey it is becaus the soil is too poor to produce anything else. The principal regions for the cultivation of the maguey are he arid limestone chain of hills; and here, in man places, the hole for the insertion of the young plant is made with a sort of crowbar with a sharp point, used principally in the extraction of tepatate, the chief building material of the Mexican capital. It is used to aid the young plant by inserting some good soil into the hole. These young plants are suckers, which the mature maguey throws out on all sides, and which have to be removed before the heart is tapped for the sweet sap, which is the agua miel, or honey water o the pulque.
When the laborersdraw the sweet sap with their rude siphons, made either of a gourd or a calabash and a hollow horn tip, they discharge the contents into a pig or goat skin swinging at their backs. The agua miel at this stage is like green water in appearance. Some carbonic acid is formed, and it becomes milky, and resembles in taste very good cider. The amount of carbonic acid contained is so great, and the decomposition so remarkably rapid, that in a few hours it would become vinegar, if not closely watched. To prevent this, the pulque dulce, or sweet pulque, is poured into a tinnacal-an ox hide strapped to a square wooden rame, and capable of holding a considerable amount of the liquid. These tinnacals are of various sizes to meet the emergencies of the situation. To the sweet pulque is added an equal proportion of milk, and then a slight dose of infusion of rennet. This is not enough to coagulate it, but sufficient to induce a slight amount of putrescence, as in cheese. The putrid odor and flavor of pulque, as sold in the pulquerias, is due to the rennet alone; for the belief that this is caused by the flavor of the pig skin, in which it is brought to market, is entirely without foundation. From the tinnacal it is poured into hogsheads, by means of pigskins, and it is transferred to the barrels of the vendors from the hogsheads of the haciendado by means of the same skins. In both instances the pulque remains in the skin barely more than a few seconds or minutes before the transfer. The rennet added in the tinnacal is the real cause of the putrid flavorand taste of pulque, and this is removed in private families by means of a chemical substance of a perfectly innocuous character, and some housekeepers add white sugar, and others the juice of oranges. It is a regrettable fact that, in the pulque shops, the beverage is made intoxicating to a maddening degree by the addition of marihuana. The government has made, and is making, every effort to stop the sale of this noxious compound. Consul Crittenden says that the number of deaths from fights in pulquerias in Mexico is incredible. Those whom the poison does not madden it stupefies, and in every great festival, particularly when there are public displays of fireworks, the police have hundreds of persons to look fter, who are absolutely helpless from drinking drugged pulque. The leaves of the pulque plant are long and pointed, with prickles along the edge. Sometimes these leaves are very large, and the bunches of them, springing from the common stock, are enormous. The bruised leaves are made into a common paper-rather a tough, stiff, and hard paper-and they are also used in their natural state as a protecting thatch for the roofs of the common huts or houses occupied by the peons. A kind of thread is also made from the fibrous texture of the leaves, and a rough needle and pin are made from the thorn, and from the root a cheap and palatable food is made. It is not, therefore, a matter of surprise that the peon class think very highly of the pulque plant in Mexico.

According to Die Natur, elaborate arrangements are being made in Portugal to celebrate the 400th anniversary of Vasco da Gama's discovery of the sea route to India. The 8th, 9th and 10th of July, 1897, are to be made national holidays and a number of expositions and congresses are to be held at Lisbon, including agriculture, ethnography, fisheries and hydrography. The event will also be celebrated by the Geographical Society of Vienna, before which an address will be made by Prof. Wilh. Tomaschek.

