an adtomatic vending machine.
A slot machine designed to afford unusual facilities for vending a wide variety of articles, particularly such as are commonly supplied in elongated sized packages, is shown in the accompanying illustration, and has been patented by Charles W. Gold smith, of New York. It is now being introduced in many places throughout the city. As shown in the illustration, the machine is arranged to deliver stamped envelopes and note paper of different kinds, various samples of which are shown in the vertical glass-covered case at the rear, the top of the machine casing being formed for use as a desk. The mer chandise receptacle, as shown in the smal view, is sustained centrally in the casing, and projections therefrom form bearings for rock shafts which operate frames to deliver the goods, a single package at a time, the mechan ism being set in operation by a lever, an arm of which projects into an orifice of the coinway.
When the merchandise with which the machine is supplied has been exhausted, a stop lever comes automatically into operation to close the end of the coinway and prevent the insertion of additional coins. The machine, as manufactured, is easily operated, and does not seem liable to get out of order. The merchandise to be delivered, on the insertion of the proper coin, drops from the central recepta cle through a guide, falling upon a chute, by means of which it is passed out through the delivery opening.

## RECENT OBSERVATIONS OF MARS.

-An American astroncmer wishes to speak to you, sir. There are two visitors, and here are their cards:
"Percival Lowell."-"Alvan Clark."
-Ask them to walk in.
-I am highly delighted to meet you, Mr. Lowell. We are familiar in France with your
splendid work. Have you come to see a little of Europe?
-I arrived this morning at Saint Lazare station and shall be off again from Lyons station.
-What, so soon? The Americans are always meteors!
-I am going to the Sahara to find out whether there is a particle of atmosphere that is perfectly calm; but, in the first place, I am anxious to show you what we have already accomplished upon our Arizona Mountains. It was vour work upon the planet Mars that gave us the impetus; but we no longer agree with you. You will utter a loud protest, perhaps ?
-On the contrary, dear sir. You well know that I am looking for progress only, and no one was as happy as I to see you dedicate a special observatory to our friend the planet Mars. You know that independent


GOLDSMITH'S COIN CONTROLLED VENDING APPARATUS.

- Mars transits at about thirty-eight million miles, but you have diminished its distance to forty-eight thousand miles, and even a little less. That is five times nearer than the moon seen by the naked eye And you have seen . . .? I believe you in ad
vance.
-No; you are much too academical, and, I shall dare to say, timorous. You are afraid to cut loose from the leading strings of the school
-Do you think so? Ask the astronomers of the Institute what they think of it.
-You are stopping by the way
--That is in order to afford you the pleasure of going further.
-Well! the famous canals, you know. Of these you have but 79 upon your map, while we have 183 , that is to say, 104 new ones. Several are as fine as hairs. And your lakes! We have 45 of these, almost all of which are ex actly round. And as for the changes that you have described, they are not inundations.
-What then?
-All that is vegetation.
-And our seas?
-Prairies.
-And our lakes?
- O ises.
_. "However," added the able observer, "I also have written a book about Mars, and have brought you the proof sheets of it, along with an impression of the new map. You will conclude, as I do, that these are not seas here since they are traversed by the so-called anals."
And Mr. Lowell unfolded before myeyes the map that is reproduced herewith.
- This is very remarkable. But are you sure of the accuracy of your observations? At the limit of visibility, one may be the victim of illusions, and even afterward see again what he thought he saw the first time.
You know as well as I that the dumbel figure, for example, drawn by Cassini two centuries ago does not exist, anil yet every one thought he saw it.
- Mr. Pickering and Mr. Douglass, like myself, are perfectly sure. And now we confidently submit our observations to the criticism of astronomers. I call your attention especially to the geometrical pattern of the canals. See these meeting points. This arrange ment is intentional and is for the express purpose of draining off the water.
The conversation between Mr. Lowell, Mr. Clark and myself upon this interesting subject expanded. I was not far from admitting (and I have already written) that we do not truly see the canals. All those who


NEW PLANISPHERE OF THE PLANET MARS.


FOUR TELESCOPIC ASPECTS OF THE PLANET MARS.
have had the unspeakable pleasure of traveling in a balloon and of hovering at a certain height over rivers have remarked that the latter are reduced to a mere thread, but that their course is admirably traced by the verdant valley that they water, the meadows outlining such course on both sides. One day, at six o'clock in the morning, while I was at an altitude of 8,000 feet above the Rhine at Cologne, 1 was much surprised at the tenuity of the river, which was scarcely visible as a green thread in the center of its meadow, which, likewise green, was elongated like a ribbon from south to north. I had the same impression one day in passing over Orleans at an altitude of 10,800 feet above the Loire, when the water was even invisible, and it was the bottom of yellow sand that was seen like a central thread of the strip of meadow land. In the canals of Mars, it is also the product of the water that we see; the vegetation and not the canals themselves.
As for the seas, we ask time to reflect until the month of December, when the planet will return to us, in obe dience to the laws of attraction, and permit observers to confirm the lines of this new map. If these dark lines really traverse the seas as they do the continents, we shall be led to modify our interpretation and to no longer consider them as stretches of water.
Nevertheless, there is water upon this neighboring globe. The most evident proof of this is in the snow that extends all around the poles as faras to a latitude that corresponds to that of St. Petersburg, and sometimes eveu to that of Paris, and which, u nder the rays of the summer sun, melt almost completely. This melting of the cireumpolar snow is much more complete upon Mars than upon the earth; doubtless because the seasons, which are analogous to ours, are twice as long. None of it remains except at one point -not at the geographical pole, but at the pole of cold, at 210 miles from the former. Whence is this wate derived, and what becomes of it?

We know what becomes of it. It fills the canals and is distributed over the entire surface of the continents for the irrigation of the dry land. It never, or scarcely ever, rains upon Mars. Fine weather is perpetual there. There are no clouds, no rains, no springs, no brooks and no rivers. The circulation of the water takes place in an entirely different manner from that in which it does here.
According to these recent observations, the water derived from the melting of the snow in summer gives rise in the first place to the dark spots that we take for seas, that supply the fields and meadows, and perhaps the
woods, the tone of which varies with the seasons. woods, the tone of which varies with the seasons.
Then it is sent by the geometrical network of rectilinThen it is sent by the geometrical net
ear canals to the most desert steppes.

The series of disks arranged in echelons at the intersections of the canals represent purposely created oases fed by these waters.
We know that upon this neighboring world a man weighing here 165 pounds would weigh but 52 , that the density of substances is much less there than here, that the atmosphere is very light there, and that the conditions of life there all differ very sensibly from our own. It is probable that the human kind, whatever it may be as regards form, is more advanced than our own (Mars being much older than the earth) and much superior in intelligence. Such fraternal unity of organization would seem, moreover, conformable to our theo retical ideas as to our neighbors of the sky.
Optics is rapidly advancing and will continue to advance. Let us not draw conclusions yet; let us wait. But ler us testify to the rapid progress of the
finest and most attractive of all the sciences. We finest and most attractive of all the sciences. We
shall expatiate no further upon this subject. We shall merely add that Mr. Lowell was kind enough to postpone his departure in order to deliver a lecture before the Astronomical Society of France, and that it proved a great success. This session, which was presided over by Mr. Max Cornu, was particularly inter
esting. Do you ask me what the Astronomical Soci ety of France is? It is an association of which all those who love astronomical science may form part, in consideration of ten francs a year, and which, through its monthly bulletin, keeps one posted upon all the progress made in astronomy.
We reproduce herewith four globes representing the planet Mars in its entirety, according to Mr. Lowell's observations. The American astronomer has laid out a planisphere which we likewise reproduce This represents these same globes extended upon plane according to the used in geography for the construction
Camille Flawmarion, in L'Illustration.

Opposition to Inventions.*
One of the most remarkable things in the history of mankind is the opposition to the introuction of inven-
tions and improvements which has existed from the tions and improvements which has existed from the earliest times, and still exists to some extent.
From the time when the earth was believed to be flat, and Galileo was denounced and imprisoned for asserting, in accordance with the theory of Coperni-
cus, that the sun was the center of the planetary sys tem, and that the earth had a diurnal motion of rota-
tion, this opposition to new ideas has existed, and been manifested in the grossest outrages upon, and persecutions of, the originators and advocates of the new ideas. This has been true of inventions and improvewents in the arts and sciences, as well as in gov ernmental and religious improvements or reforms.

Much of this was due to the existence of the prevai ing doctrine of the "divine right" of rulers and the arbitrary power exercised by them, and to the claim of superior wisdom and infallibility made by the then dominant church, supplemented and rer dered possible by the ignorance and helplessness of the masses.
Besides, human nature seems to be subject to the same laws as moving bodies; it moves always in a direct line when once set in motion, unless interfered with by a power sufficient to deflect it from its course. In the arts and sciences, as in politics and religion, men prefer to remain undisturbed, and naturally resent any interference with their settled beliefs and habits. They look with suspicion on new suggestions or ideas, and especially such as, in their ignorance, they think will interfere in any manner with their present inter-
ests; and hence the tendency to continue in the old ruts, and violently oppose improvements or changes, and to denounce inventors as "cranks."
History shows that the great improvements in the arts and sciences have had their development only since free governments have been established, and
general education introduced; and it is where these general education introduced; and it is where these
exist in the greatest perfection that the greatest advance has taken place.
In the United States, where there is the greatest freedom in governmental and religious matters, there has been the greatest advance in inventions. The growth and development of our manufacturing and agricultural interests, which is due to inventions fostered by our patent system more than to any other cause, have been marvelous, and excite the astonish-
ment of the world. Under the benign influence of this system, in a single century, we have grown from a cluster of scattered settlements, mostly along the Atlantic seaboard, with a population of less than $4,000,000$, to a powerful and compact uation of nearly $70,000,000$; have increased our national territory from 830,000 to $3,314,220$ square miles; have subdued the forests and built up the whole country from ocean to ocean; and have built more miles of railroad, and established more post offices, than all other nations nation has, until to-day we do one-third of the world's manufacturing, une-third of its mining, one-fifth of its farming, and possess one-fifth of its wealth.
With such an illustration of the benefits of our pat ent system, one would suppose that opposition to in ventions would long since have ceased; but, unfortunately, while it has greatly diminished with the growth of intelligence and universal education, it still exists. As illustrative of this spirit of opposition, it may be interesting to cite a few instances. When, in 1807, Papin, of France, the inventor of the digester in uni versal use for paper making and many other purposes, and also of the lever safety valve, made a swall steam boat and ran it down the river Fulda, the ignorant boatmen, who, like some of the laboring men of the present day, thought it would injure their business, seized and destroyed it.
So, too, when Jonathan Hulls patented his steamboat in England, in 1736, he was laughed at and ridiculed in every conceivable way.
When Jacquard invented his loom, which was so wonderful that the great Arnout, French minister of said to him: "Are you the man who can do what the Almighty cannot-tie a knot in a stretched string?" there was the strongest opposition to its introduction, culminating in a mob of the silk weavers,
who took it from his house into the streets, broke it who took it from his house into the streets, broke it ap, and burned the fragments.
It was the same with Hargreaves in England, when he invented his spinning jenny in 1763. He was perse buted by his fellow workmen, who seized his machine That invention, with the improvements of Arkwright and Crompton, and the invention of the cotton gin by Whitney, who was outrageously defrauded of his rights, have changed the entire art of pro-
ducing woven fabrics. Indeed, so far as the cotton industry of the world is concerned, they may be said to have created the industry, which to day gives employment to millions, and has so immensely cheap ened the product that it is used the world over.
This opposition to and unbelief in the possibility of the success of in ventions has not been confined to the ignorant alone, but has been shared by many
educated and even great men. When it was proposed to build a railroad in the United States, Chancellor Livingston, one of the greatest men in the State of New York, published a letter in which, as he thought, he demonstrated the utter impossibility of the proposed undertaking. His reasons were, first, that it
would require a massive substructure of masonry the
whole length of the road, and that would be so expen sive that it would not pay; second, the momentum of such a moving body as a train of cars would be so great that the train could not be stopped until it got everal miles past the place; and, third, no one would want to risk his life flying through the air at th ate of 12 or 15 miles an hour.
So, too, Daniel Webster expressed grave doubts as to the possibility of railroads, saying, among other things, the frost on the rails would prevent the train rom moving, or from being stopped, if it did move.
When Murdoch invented or discovered a means for producing illuminating gas, no less a man than Sir Humphry Davy ridiculed the idea of using it for lighting purposes, and said if it was to be used for street lighting, they would have to use the dome of St. Paul's or a gasometer. Sir Walter Scott made clever jokes about "sending light through street pipes," and "lighting London by smoke," but subsequently had his house lighted by it. Wollaston, a scientific man, said "they might as well attempt to light London with a slice from the moon." It is but a few years since the scientists of Europe demonstrated mathe natically that the electric current could not be divided or incandescent lighting, but to-day the contrary is demonstrated by millions of incandescent lights, illuminating every spot where civilized man resides.
But the strangest of all things in this connection is be fact that, even in this enlightened age, there are men who still insist that inventions are injurious. It is not many years since that, in a paper published at the national capital, there was the statement that the steam engine and the sewing machine were two of the greatest curses that ever befell mankind!
It is, moreover, a matter of history that in certain sections of this enlightened land prayers were fervently offered in churches beseeching that the wickedness of the newly invented sewing machine, which, it was supposed, would rob the sewing women of their means of obtaining a living, might become apparent, and its promoters be stricken by a conviction of their wrongdoing in making it, and thus be told by heaven to desist from its manufacture
This spirit of opposition exists to-day to a greater or less extent among the labor unions, whose members, without investigating the subject, are made to believe that labor-saving machinery deprives them of employment, or at least will lessen their wages, just as the silk weavers of Lyons thought in regard to Jacquard's loom, and as the spinners of Lancashire thought in reference to Hargreaves' spinning jenny.
It is no doubt true that, when a new invention is introduced which revolutionizes some particular art or branch of business, it at first decreases the number of persons employed in that particular line; but that is only tewporary, for in a short time the result is a cheapening of the product, a greatly increased de mand for it, because of this cheapening, and then necessarily an increased demand for laborers in that line, and almost universally at increased wages.
The statistics of the country show this to be true beyond the possibility of question. The records of the Labor Bureau show that from 1860 to 1880, the most prolific period in this country of inventions, and the most intensified in all directions of their introduction the population increased 59.51 per cent, while in the same period the number of persons employed in all occupations-manufacturing, agriculture, domestic service and everything-increased 109.87 per cent ; and in the decade frow 1870 to 1880 the population increased 30.08 per cent, while the number of persons employed increased 39 per cent.
As shown by the investigation of a committee of the Senate, wages have increased 61 per cent in the United States since 1360 . And, as all know, during that same period the cost to the people of nearly all manufactured articles has been decreased in as great if not a greater ratio. As with manufacturers, so with farming. As a recent writer has well said, "The use of patented machinery has so changed agriculture that there is more propriety in saying that we manufacture crops than in saying that we grow them." And still another writer sayz: "We use implements that cheapen the cost of production, and make the labor f harvesting like the sport of the fairy books."
While most people have the idea that inventions have mainly benefited the manufacturing industries, it is susceptible of demonstration that they have benefited our agricultural industries nearly as much.
In speaking of the condition of the United States, recent English observer says:
'America has for many years enjoyed an amazing degree of prosperity, so much so indeed, that, to use the eloquent words of Edmund Burke, 'generalities, which in all other cases are apt to heighten and raise the subject, have here a tendency to sink it. Fiction lags after truth, invention is unfruitful, and imagination cold and barren.' The United States has 65,000 ,000 people, who spend more on dress than any other people on the face of the earth," and who, he might have added, enjoy more of the comforts of life in all directions than any other people on earth.

