an intare and filter for water systems.

For conveniently filtering large quantities of water and readily cleansing the filtering bed the arrangenient shown in the illustration has been devised by and forms the subject of a patent issued to H. L. Ricks, Eureka, Cal. In an open top casing arranged in the Eureka, Cal. In an open top casing arranged in the by slats resting on cleats, and supporting the filtering material, through which the water passes to a settling basin below. The discharge pipe, connected with a reservoir or pump, and adapted to supply water mains in the usual way, leads from the lower end of the settling basin, where it is provided with a strainer, and in its course through the ground is provided with a check valve, beyond which is a branch pipe leading upward into a tank. The branch pipe has a ball valve where it enters the tank, to prevent any back ward flow of water through this pipe, and the tank is sufficiently elevated to afford the necessary pressure for efficiently flushing the filtering bed. Arranged vertically in the tank is a casing in which is a pipe connected with parallel perforated pipes embedded in the filtering material, and through these pipes, when the tank is nearly filled, water will be discharged with sufficient force to wash the impurities from the filtering material. The tank may be filled by the back flow of water through the discharge pipe, such flow being interrupted and turned into the tank by means of the check valve, or, where the discharge pipe is connected directly with the pump, a tank near the pumping station may be connected with the flushing tank.
Where the discharge pipe is of considerable length, and is higher at certain points, rendering it likely that air will collect in such portions of the pipe, branch vertical pipes are here located, as shown in the small view, there being in each pipe a rubber ball valve designed to exclude the air when back flushing and clear the intake at high places

Fig. 1.-Japanese clock of the eighteenth CENTURY.

Iig. 4.-JAPANESE CLOCKS OF THE EIGHTEENTH AND NINETEENTH CENTURIES̃

JAPANESE CLOCRS AND POCRET SUN DIALS

The Japanese iron clocks of the seventeenth century were cubical in shape, like the European ones of the sixteenth, and differed therefrom only in the engraving of their surfaces and in the disks of their dials, which were usually of metal lacquered in different colors, with the hours gilded. Later on, this form of

RICRS' INTARE AND FILTER.

clock, with the case inclosing the movement, was made entirely of copper and of smaller size. Along with those engraved on the solid surface, there were some made in open work, engraved and of delicate or namentation.
Columns worked on the lathe, engraved and even enameled, ornamented their angles (Fig. 1). Toward the eighteenth century such clocks were placed in cases of various forms, as was done in Europe. The most beautiful were those mounted upon legs, so as to allow the weights to descend (Fig. 2). These were of por celain, wood and lacquer work.
The most common form was a sort of truncated pyrawid, the four sides of which were solid and of natural or lacquered wood, and upon which the clock was placed. Sometimes the latter was inclosed in a was placed. Sometimes the latter was inclosed in a the base of the latter permitted of winding up the weights, which were of copper or lead, and hemispherical, lenticular or cylindrical in shape.

Fig. 2.-CLOCES MOUNTED UPON LEGS. No. 1. Porcelain. No. 2. Lacquer work.

Fif. 5.-JAPANESE POCKET SUN DIAL.

In the pieces mounted upon legs, the weights were often concealed in tassels of the same silk as the cord that sustained them.
There were still other kinds of cases in which the clocks were placed, which in form resembled the Dutch locks of the seventeenth century, and which, like them, were suspended from the wall. They were of wood, and were provided at the sides with pretty little glass doors, and the whole was supported by two brackets (Fig. 3).
In the two kinds of cases that we have just men tioned, apertures were formed at the top, upon three faces, in order that the sound of the bell placed at the upper part of the clock wight be distinctly heard. They were lined internally with some sort of fabric to prevent the entrance of dust
Other forms of clocks, which may be called vertical (Fig.4, No. 1). were absolutely Japanese in the arrange ment of the case and movement. They consisted of a glass case surmounting a very long rectangular body The material was wood. The movement, placed in the case, was entirely open. The decoration consisted in an engraving or chasing of the front pillar plate and in small columns of metal placed at the angles Some of these copver pillar plates were beautiful in design, being in lace-like openwork and finely engraved. Others were chased with the greatest care, and certain of them, even, by masters who were not afraid to sign their names. We own one bearing the afraid to sign their names. We own
name of Kouniyouki (Fig. 4, No. 5).

The vertical cases all bore much resemblance to one another. At the base there was a small drawer. for the reception of the key. These pieces were sus pended from the wall.
The movable cartouches, twelve in number, upon which the hours were engraved, and which constituted the dial, were likewise nearly all of the same form. The dial therefore consisted of these twelve cartouches placed upon the long strip of wood forming the cover of the case that contained the weight, to which latter was fixed a style whose form varied to in finity. This style, mounted upon a rod fixed to the weight, descended in a slot formed near one of the sides of the case, in proportion to the running of the clock work. The twelve metallic cartouches above mentioned were mounted in such a way that they could be regulated by hand conformably to the hour that they were to indicate. The most scientific of the vertica dials were those with lines engraved upon the piece serving as a dial, which, in this case, was of copper.
Upon this plate were engraved twelve vertical line that corresponded to the twelve fortnights of half year. Twenty-four curved lines arranged horizontally

Fig. 3.-JAPANESE WALL CLOCK.

Fio. 6.-JAPANESE POCRET SUN DIAL OF THE EIGHTEENTH CENTURY
indicated, through their intersection with the verti cal ones, the hours and half hours of a day. The hori zontal lines had curves that receded from each other progressively in one direction and approached each other in the other, and this permitted of measuring the difference of the days and nights from each other in length. During six months of the year the hour was read in one direction and during the six other in the opposite direction (Fig. 4, No. 3). In this way were obtained the long and the short hours, according to the season.
The intersection of the curves with the perpendicu lars marking these different hours was indicated by a light, rectilinear bar placed horizontally upon the engraved plate. This was mounted upon the weight and operated like the index of the vertical dials above mentioned. Japanese clocks struck the hour and the half hour, but there was here a curious peculiarity that we shall describe.
The primitive clocks had the European striking train that struck from one to twelve, with or without the halves. Afterward, the Japanese divided their striking trains so that they corresponded with their hours, that is to say, in counting from 9 to 4 without the halves.
Finally, they made the trains in such a way as to strike the halves, as follows : The half hour was sounded alternately by one stroke or two strokes. For example, in order to indicate half past nine, the train struck one; for half past eight, it struck two ; and for half past seven it struck one again, and then two for the following half. This system had one advantage that explains itself. The hours in Japan correspond to two of ours, since only twelve a day are reckoned, in stead of twenty-four. The periods of the hours are sufficiently distant from sunrise to sunset to prevent the single stroke or the two strokes of a half hour from being confounded. They serve, on the contrary, to render precise the half of the hour to which it corre sponds.

In certain clocks of vertical form the Japanese hav conceived the ingenious idea of using a striking train actuated by a spring as a motor for the movement This train includes a pawl which, at every hour and half hour, meets the prolonged rods of the twelv cartouches upon which the hours are engraved and twelve other cartouches that are ornamental, and are interposed between the preceding and indicate the halves. The pawl, lifted by these rods, causes the striking train to operate. The weight of the train is wound up every day to the top of the case that inclose it, and here the square of the remontoir of the spring of the train presents itself opposite an aperture in the dial, and the spring is coiled with the same key that serves to wind up the cord of the clockwork move ment (Fig. 4, Nos. 1 and 2)
We shall explain, according to Kaempfer, how th time of night was announced to the public in Japan.
In certain cities the watchmen did this by striking two wooden cylinders against each other. In others, different instruments were used. Thus, the first hour after sunset was made known by beating a drum ; the second, by beating a gum-gum-an instrument in th form of a large flat basin, which, upon being struck made a loud and piercing noise ; and the third, or midnight, by ringing a bell, or rather by striking it with a stick of wood. Then they began over again for the following hours. The sounder, or awakener, whose duty it was to measure the time, wasthe lowest of th public officers.

The bell that sounded the hours of the day was often that of a temple. It was the rising and setting of the sun especially that was announced with the most care.
Along with mechanical clocks, the Japanese used portable sun dials, some of which had the form of a watchcase (Fig. 5). To the center of one of the halves of the case was fixed a small gnomon, the shadow of which reached the plane surface of the periphery, which latter, according to the Japanese system, was divided into twelve hours. The other half of the case carried in its concavity a magnetized needle, which oscillated freely in the horizontal plane. Beneath this needle there were four characters, which were 90 degrees dis tant from eacb other and designated the four cardina points. The circular plane surface of this half of the case was divided into twelve parts, corresponding to those of the opposite side and marked with the same numbers, but in inverse order. In order to make use of the sun dial, it sufficed to orient it by means of the magnetized needle, and the direction of the shadow of the little style would then permit of estimating the time more or less approximately. Other sun dials con sisted of two hollow disks, one of them containing the compass and the other the style. These two part folded one over the other and entered a case to which they were jointed (Fig. 6). This arrangement is es sentially J"panese. The other form has often been made for Júpan in Holland.
The Japanese have as a proverb: "The style and the disk, despite their great utility, are not as valua ble as an inch of shadow.'
The sun dials of which we have spoken, as well
the clocks that we have described, are manufacture by clockmakers, who are called in. Japanese tok
while their shops are styled to-kei-yo.-La Nature.

AN IMPROVED BIT.

We illustrate the Ford patent bit, a tool which ha been subjected to thorough testing upon differen kinds of wood and which has a distinguishing peculi arity over other bits, which lies in the twist.
Its shape is determined by and defined as that of a ingle concaved twist. This gives it a single cutting edge and a single projecting lip. The thread of the crew point is a continuation of the twist of the upper part, so that one merges into the other. The concave shape of the upper surface of the twist has the effect of drawing the borings toward the center or axis of the bit, thus preventing friction of borings against the sides of the hole, and thereby also preventing chok ing. For this bit, the necessity of constantly with rawing for removing the chips does not exist. The ut shows the self-cleaning action of the tool, and also presents its general shape. The drawing was made rom an actual boring with the bit, the hole being made one-half in each of two separate pieces of wood which were then separated to give the model for the rtist and to show its action.
The bits were tried in different kinds of wood verti al to the grain, diagonal thereto, and in other ways The straightness of the hole was also remarked, and the absence of any tendency to split the wood was a vidence of the good clearance. The screw poin

AN IMPROVED BIT
held its grip very well, no pressure whatever being r uired for the feed, even in end grain boring. The ac tion of the edge is a true cutting one, not a scraping he manufacturers.

mproved Calorimeter

An improved calorimeter, for the application of the method of mixtures in determining specific heats, is described by Mr. F. A. Waterman in the Philosophi cal Magazine. Mr. Hesehus' ingenicus suggestion i acted upon, to maintain the calorimeter, after the in roduction of the heated body, at a constant tempera ure by means of cold water, instead of measuring the ise of temperature of the calorimeter. This arrange ment gets rid of the radiation error, and eliminates the "water equivalent" of the vessel. By dropping the cold water in, stirring is also made unnecessary The method has been placed by Mr. Waterman upon a footing of equality at least with other methods, but his success may te partly due to other improvement The body experimented upon is heated by a coil c wire conveying a current, and surrounded by ice. Th initial temperature of the body may thus be regulated by simply maintaining the current of a certain strength and this temperature can be kept constant for five or six hours together to within $0.1^{\circ} \mathrm{C}$. The body is the plunged into a silver calorimeter surrounded by the bulb of a delicate air thermometer indicating a difference of temperature of $001^{\circ} \mathrm{C}$. The cold water is contained in a copper vessel having the shape of an in verted cone surrounded by ice. In this manner the ce cannot melt away and leave a free space round the vessel. The water dropping arrangement and the elecric heater are mounted on vertical axes in such a manner that they can be quickly swung into position just above the calorimeter. After the heated solid or
to work, at first rapidly, and then slowly, until the body has assumed the original temperature of the calorimeter. For bodies of the same weight and the same initial temperature, the specific heat is then Nature says, simply measured by the amount of ice old water necessary to cool them to the temperatur of the room.

Acetylene for Steam Engines.

The use of acetylene for the production of powe has been suggested several times since it has becom a commercial product : but Dr. A. Frank, of Char ottenburg, has stated its advantages and disadvan tages for the purpose very explicitly in the Journal fu Gasbeleuchtung. Calcium carbide capable of yield ing 90 per cent of the theoretical amount of acetylene which the pure carbide should give is now obtainable rom the works of Bitterfield ; and a very good article also now made at Neuhausen. Dr. Frank suggest hat the carbide furnishes an excellent means of trans porting power (derived from water for instance) to a distance fron the source. He considers Herr Ihering' proposal to compress acetylene to a liquid at a pressur of 50 atmospheres for transportation a less practicabl one than that of conveying the calcium carbide itself He bases this conclusion on the following figures : 6 parts (by weight) of calcium carbide on addition of water should produce 26 parts of acetylene: or 100 pounds of calcium carbide should yield $40 \cdot 62$ pounds f acetylene $=559$ cubic feet at atmospheric pressure The liquefied compressed acetylene weighs 28.15 pounds per cubic foot, or 40.62 pounds occupies $1 \cdot 443$ cubi feet; while the calcium carbide necessary to produce this quantity will have a volume of only 0.722 cubi foot, taking its specific gravity of $2 \cdot 22$. The volume of the calcium carbide is therefore about half that o the acetylene gas it would field, when the latter is stored as a liquid under a pressure of 50 atmospheres The space occupied by the walls of the containing ves sel is, moreover, unconsidered in this comparison of volume. But the commercial production of acetylen from the carbide only gives 90 per cent of the theo retical yield; and therefore 111 pounds of carbide would be required to produce the 40.62 pounds of acetylene, and a space of 0.800 cubic foot would be oc cupied by it. The calcium carbide may be run int cubical or other rectangular blocks; and these may be put into light tins for protection from the air and moisture. The liquefied acetylene, on account of the weight and shape of the containing vessel, needs mor space than the carbide for its storage
The liberation of the acetylene from the roughly powdered carbide may be effected with simple appa atus. It may be observed that recent experiment show that the toxic properties of acetylene have been much overrated. Small mammals can remain for hal an hour in an atmosphere containing 4 per cent of acetylene without perceptibly suffering inconvenience. Slight leakages from the generating apparatus need not, therefore, be regarded as dangerous to the work men. If a comparison of the weight and volume of oal liquefied acetylene and calcium carbide needed to provide power for a 1000 horse marine engine for 25 days is made, the following results

1. Coal. - The 600,000 horse power hours will need at $1 \cdot 543$ pounds per horse power hour, 413 tons of coal, occupying, when well stowed, a space of 14,800 to 5,200 cubic feet
2. Liquid Acetylene.-According to Ihering and Slaby's figures, 0.4 pound nearly is required per hors power hour with large engines, or 106 tons for 600,000 horse power hours. A specific gravity of 0.451 at $0^{\circ} \mathrm{C}$. corresponds to 364 at $35.8^{\circ} \mathrm{C}$. (about the temperatur of the ship's hold) ; and therefore 106 tons would re quire vessels of 9,500 to 10,600 cubic feet capacity and these to be absolutely safe at a pressure of up ward of 50 atmospheres.
3. Calcium Carbide. - The corresponding amount of 90 per cent carbide would be 295 tons, which, at specific qravity of $2 \cdot 22$, would occupy a space of 4,62 cubic feet ; or, allowing for the tins in which the block re stored, about 5,300 cubic feet.
Therefore to supply power for 25 days to a 1,000 hors power engine requires: Good coal, 413 tons, having a volume of 14,800 cubic feet; compressed acetylene 106 tons, having a volume of 9,890 cubic feet; or cal cium carbide, 295 tons, having a volume of 4,770 cubi feet. Moreover, coal needs a boiler which is expensiv both in first cost and in maintenance; while liquid acetylene requires large storage vessels, whereas sim ple apparatus only is needed with the carbide. To one unversed in shipbuilding, it seems that, in the en deavor to find a very concentrated form of fuel to fit war vessels for long journeys, calcium carbide must attract attention. Stationary and locomotive engines on land might also use it, and be independent of foreign petroleum, which has lately also been used for ships' boilers.-Journal of Gas Lighting.

What is claimed to be the largest single pane of lass in the country was received at Hartford. Conn., rom Belgium recently. It is $121 / 2$ feet high, $151 / 2$ feet wide, $1 / 2$ inch thick, and weighs 1,800 pounds.

