A Costly Patent

Oue of the Paige typesetting machine patents, re cently issued, "breaks the record" in the history of the patent business for the great bulk and complexity of the patent itself and the intricacy of the machine it covers. It is said that over a million dollars was ex pended on the machiue before the construction of the first one was completed. It has no less than 18,000 separate parts, and does the setting, justifying, and dis tributing of type in a way which would be satisfactory were it not for the cost and complexity of the machine In the development of this invention Mark Twain is reported to have invested nearly $\$ 250,000$.
The first application filed for a patent on it contained 204 sheets of drawings, having over 1,000 separate views. During the eight years the case was pending in the office before allowance, the number of sheets was re duced to 163. When it is remembered that the majorit of patents have only a single sheet of drawings, and that to require as many as ten sheets is an exception. the magnitude of the invention can be understood The fees charged by the Patent Office are uniform for all cases, no matter how complex or how simple- $\$ 15$ on filing the case and $\$ 20$ additional on allowance of the patent.
When this case was filed it was turned over to an examiner who received a salary of $\$ 1,800$, and he spent six weeks in studying the case before being able to take the first action. The entire specification was twice rewritten, each time by a different attorney. How much this cost the inventor is not known, butit is safe to say that the Patent Office lost heavily. It is estimated that it consumed about $\$ 1,000$ worth of the time of the various Patent Office officials before maturing into a patent, and when issued the usual rulehad to be followed of preparing copies for sale at the regulation price.
The large number of sheets of drawings had to be photo-lithographed and the entire body of the specifi cations and claims set up in type, costing for the first edition, as estimated by the ordinary rules, a few cents over $\$ 6$ a copy. Tiese copies were sold to the public at the usual price until the firstedition was exhausted when the Patent Office stopped the issue. A grea wany people ordered copies of this patent out of curi osity.

a transported callfornia "Great raee.

The accompanying illustration shows the great tree General Noble (named after General Noble, late Secretary of the Interior) as it now stands in the mal at Washington, D. C., between the Agricultural Departwent building and the Swithsonian Institution which is shown in the distance. Among the mult tudinous marvels of nature, none surpass in majesty and grandeur the great trees of California; no such trees are found in any other part of the world; they were first discovered in 1852 by a hunter, Mr. A. T. Boyd, and at once attracted general attention, a nd attained the widest celebrity. The genus, a species of redwood (Sequoia gigantea), was named in honor of Sequoia (pronounced Sequoyal), a Cherokee Indian of mixed blood. This specimen was 26 feet in diameter at base, 81 feet 6 inches in circumference and 300 feet in height, the section being taken about 20 feet from the ground ; although considerably smaller than some others, it was found to be comparatively well preserved and symmetrical. It had to be hauled by teams of sixteen mules each, on heavs trucks built for the puryose, a distance of sixty miles on a rough mountaiu road; price paid for cutting, hauling and delivering on cars was $\$ 7,500$; section was divided into forty-six smaller sections, some of these pieces weighing over four tons; it took eleven cars to transport it to Chicago, where it was exhibitell at the Exposition ; total cost of haulng and installing at the Exposition was $\$ 10.475 .87$; the additional expense of placing it in its present position would probably make a grand total of over $\$ 12,000$. As will be seen by plan, the interior diameer is about 13 feet, and average thickness about 20 inches; a circular iron staircase leads to platform about 18 feet above; it has been roofed over and shingled with round butt shingles painted red; four dormer windows light the interior. Our engraving was made frow a photograph taken specially for the Scientific American.

a California "Great tree" in washington.
the other, aseries of boards, of the same size as the box, resting upon ledges and covered with cloth. In the center of each of these there is a wide square aperture. Other and smaller boards, likewise covered with cloth, but supported by cords attached to the sides of the box, are interposed between the first. This obstructive arrangement gives the air a wide circula tion, and, as proved by experience, completely anuuls vibrations. In order to assure himself of this latte condition, Mr. Menier installed one of these appara tus over an aperture formed in a wall separating two rooms, and found that two persons standing at the distance of three feet on each side could not converse even in a loud voice.
This arrangement therefore completely solves, at slight expense, the double problem of ventilation and the smothering of sound.
We are indebted to La Nature for the illustration and article.

Discoveries in Sonth Rnssia

Our Odessa correspondent tells us that the curator of the St. Petersburg Imperial Archæological Comwittee, Mr. Goshkevitch, has made sotne archmological discoveries along the banks of the Dnieper (Borysthenes) and the Bug (Hypanis). Opposite the village of Kisliakovka are the ruins of the ancient town of Olbia, described by Herodotus as surrounded by a wall with many towers, and distinguished for its extensive trade and its civilization. The ramparts and inner parts are well preserved, and terra cotta figures with subjects from domestic life, pottery, and small vessels are continually being discovered by the villagers. The number of ancient sites discovered by Mr. Goshkevitch is 15. Each is situated on the steep bank of the river, which forms a natural defense against surprise attacks, and the other three sides are surrounded by ramparts in a good state of preservation, with the ruins of d welling places within the walls. At Propastwoe, on the edge of the ravine of the same name, many ancient Greek vessels were found, and both here and on the banks of the Bug were found pieces of moner of the time of Emperor Theodosius the Great, who reigned near the end of the fourth century. In the village of Kisliakovka evident traces were discovered of an ancient Greek settlement, and the curator discovered a head of a statue. The peasants a short time ago unearthed a splendid Greek statue, but, being ignorant of its value, they destroyed it, although they sell to the first buyer the coins they find at the ancient site of Olbia. and many private persons in those parts have splendid numisuatic collections of the Scythian and other periods.
In a tumulus near the well-known Borysthenian burying yround was found a vault-like chamber, faced with oak blocks, and a floor made white with cement or lime. A skeleton was lying on a stone slab with estended arm bones and on the wrist a bracelet of pure gold. Around the neck were four finely worked gold and amber necklaces, and at the hip bone was a kind of knife or sword. Thirty bone arrows in a quiver, as well as a cory tos or bow case, were near the skull, but the quiver crumbled away on exposure to the air. The skeleton crumbled to dust ou being tonched. Mr. Goshkevitch thinks it belongs to the Scythian period. In a ravine ofening up into the valley of the Borysthenes (Dnieper) a considerable number of matumoth bones ere discovered
The curator has brought a way to the Kherson Museum a massive piece of statuary having on its two sides crosses and cypress leaves, as well as a bunch of "prisob." This work is believed to belong to the period when the Genoese colonies were flourishing on the shores of the Black Sea.-London 'Times.

Etvind Aetrup.

Elvind Astrup, who was Lieut. Peary's companion on his first trip across the inland ice, and who was with Mr. Peary on his second and third expeditions. started a few days before Christmas for the purpose of making a ski excursion in the mountains of Norway. Three weeks having elapsed, his friends became alarmed and sent a party o search for him. Astrup was found frozen to death in the Lille Elvedal Valley, in the Dovrefjeld Mountains. He did excellent work when with Mr. Peary and gave reat promise of being an independent Arctic explorer of note.

Experiments on the Poisonous Action of

Thanks to the extreme kindness of M. Moissan, who has given me a sufficient amount of calcium carbide to prepare several hundred liters of acetylene, I have been able to make a series of comparative experiments, which I have the honor of presenting to the academy.
I raused to be introduced into a mercury test glass, well dried, 400 grammes of carbide of calcium. A rub ber cork pierced with two holes received a glass funnel with a cock in it and the other end a conducting tube, which carried the gas obtained by the flowing of water, through the glass retort, which allowed the regulation of the outflow ; when all the air had been forced out, and when the gas obtained burned without explosion, the acetylene was received in a gasometer (model of Dr. Saint-Martin).

I successively titrated mixtures of acetylene, of air, and of oxygen, adding always 20.8 of oxygen as in the atmospheric air.
Mixture of 20 to 100 .-I caused a dog to breathe a mixture composed of 20 to 100 of acetylene; the anima remained quiet ; the respiratory movements became larger in extent. At the end of 35 minutes, 44 c . c. of arterial blood was injected into the empty receiver of the mercury pump, and I extracted the gas which had been collected over the mercury, in a little bell with a glass cock; after the absorption of the carbonic acid by potash, the gaseous residue was introduced into the fire damp indicator, whose receptacle had been filled with three quarts of air, and the gaseous mixture was contained in the receptacle and in the entire length of the graduated tube. At the first passage of the cur rent, we saw a very clear blue flame and a detonation was produced with a sharp sound; the reduction was equal to 82.4 divisions and indicated a considerable volume of acetylene, which had been absorbed by the blood; 1 c. c. of acetylene giving a reduction three times as large as that of carbonic oxide gives; that is to say, $3 \times 6.6=19.8$ degrees in my fire damp indi cator; $100 \mathrm{c} . \mathrm{c}$. of blood contained $10 \mathrm{c} . \mathrm{c}$. of acety lene.

Mixture of 40 to $\mathbf{1 0 0}$. -The oxygen of Passy contain 90 to 100 of the pure oxygen. In order to obtain mixture of acetylene of 40 to 100 , the calculation indicated that it was necessary to add 55 liters of this gas, 66 liters of air, and 16.5 liters of oxygen, in order to prepare a mixture containing 79 of acetylene and 20.8 of oxygen. A dog who breathed this mixture, afte having presented a long period of agitation, circulated in its lungs 112 liters of the mixture. Suddenly, 51 minutes after the commencement of the experiment the animal extended its paws and died ; the heart had stopped; we drew off the blood into the lower vena cava; it revealed in the fire damp indicator the pres ence of 20 c . c . of acetylene in 100 c . c. of blood
Mixture of 79 to 100 .-I made a mixture of acetylen and oxygen in which combinstible gas replaced the nitrogen of the air. At the end, a dog caused to breathe this mixture presented a continual agitation and very ample respiratory movements. Eleven min utes afterward, we observed general convulsions; 27 winutes after the commencement, he extended hi paws, and there were some painful respiratory move ments, which preceded death.

This mixture of 79 to 100 was conducted into a bel formed glass jar in which there was a guinea pig. In 6 minutes the animal fell upon its flank; had convul sions. fluttering movements of the limbs and of the head. At the end of 39 minutes, we drew out the ani mal, which rested flat on its flank. Some winute later the guinea pig raised itself and revived, but it died during the night.

I concluded from my experiments that the acetylen is poisonuus when one employs a strong dose, if ad ministered in large doses between 40 to 100 and 79 to 100. The employment of the fire damp indicator easil allowed the discovers of this gas in the blood.
I endeavored also to compare the poisonous quality of acetylene with that of illuminating gas. Starting from the fact often proved by analysis that coal gas (illuminating gas) contains 7 to 100 of carbonic oxide I made a mixture of 150 liters of air, 5.3 of oxygen, and 20 liters of coal gas, which should contain 1 to 100 of carbonic oxide and 20.8 of oxygen. A dog forced to breathe this mixture presented at the end of 3 winutes a lively agitation, and at the end of 6 minutes very violent movements of agitation. We took, 10 minute after the commencementof the experiment, blood from the carotid artery, and from 100 c. c. we could with draw 27 c. c. of carbonic oxide. The dog when released remained lying on the floor-was very sick; and if the experiment had lasted some minutes more, it would have died. Illuminating gas is, therefore, much more poisoncus than acetylene.

Exposition at Nontreal.
The British Empire Exposition and International Display of All Nations will be held in Montreal, Can ada. from May 24 to October 12, 1896. The plans of the exposition include an electrical display, and the suc cessful exhibitors will receive handsone awards.
*By M. N. Grehant, in Comptcis Rendas.

Sorrespondence.

electric igniters for gas engines

o the Editor of the Scientific American
Allow me to call your attention to the fact that the rotary spark arrangement, Figs. 3 and 4, in an article on "Electric Igniters for Gas Engines," by George M Hopkins, in your issue of January 11, is covered by my patent No. 546,238, of September 10, 1895, which par ticularly describes and claims the eccentrically bored spindle.

Frank S. Mead.
Montreal, Canada.
[The several devices illustrated in the article referred to are based on the principle of the ordinary electric igniter used in connection with burners for illuminat ing gas. These illustrations were given merely as sug gestions, leaving it to the reader to make the practi cal application. When this article was published the writer did not know that there was in existence patent for a device similar to one shown in the article As Mr. Mead has called our attention to the simi arity existing between his device and that of one of the illustrations, we reproduce some of the figures shown in his patent. This igniter is arranged to give a strong spark from a current derived from a battery, which insures the ignition of the explosive mixture at the proper time, and although no spark coil is shown in the circuit of the battery, we presume it was the intention to use a coil.
As shown in Fig. 1, the cylinder of a gas or oil engine is provided with the usual jacket, the end of the cylinder being closed by a cylinder head. In the cylinder wall is mounted a rock shaft connected at its outer end with a crank arm, as shown, or the shaft may be provided with a wheel receiving rotary motion from some revolving part of the engine. In the shaft is mounted eccentrically an electrode provided at its outer end with a cross bar on which presses the head

mead's electric IGNITER fOR gas engines.

n the end of the spring-pressed rod carried by the crank arm. On the end of the electrode within the cylinder is secured a pointed arm, as indicated in Fig. 3, adapted to engage the pointed end of a fixed elec rode inserted in a sleeve held in the insulating bush ings in the cylinder head. On the upper end of the electrode is secured a hand wheel to facilitate setting the point in proper position relative to the point of the arm of the movable electrode. A wire. from an elec tric generator is connected with the adjustable elec rode, and another wire from the generator is attach ed to some part of the cylinder.
It will be seen that when a rocking motion is given to the shaft by the crank arm, the spring-pressed head engages the cross bar, causing the movable electrode to moveinline with the crank arm, and the oscillating elec trode is moved into contact with the point of the fixed electrode, and by turning in its bearings in the shaf it finally passes the fixed electrode and produces the spark which ignites the explosive mixture in the cylinder. A similar result is obtained
rotary motion is given to the shaft.
In the article to which reference has been made it was suggested that a small dynamo bad been used successfully for producing the ignition. A correspondent has inquired as to the method of using a dynamo or igniting the explosive mixture. The dynamo is diven by the engine, and its terminals are connected with the movable and fixed contact points. When the points are separated, a spark is produced by the extr or self-induced current of the dynamo. No coil is needed.-Ed.]

Call for a Motor Driven Sleigh.
To the Editor of the Scientific American
We hear a good deal said about the horseless car riage. Why not take the sleigh in hand and move tha with a similar motor? Such a sleigh would require the addition of a driving wheel back of the seat and midway between the two runners. This wheel would have a semi-free vertical movement and would be kept close to the road's surface either by weighting or by a spring or springs above it. It would need to be light,
should have a polished surface, and should be rimless at edge, thus offering little, if any, chance for snow to adhere to it. At points around the margin of the wheel, two or three inches apart, little project ing spurs would give it the required hold upon the road to insure a forward movement to the vehicle This wheel would get its motion from a crank or band connected with the oil or other motor, under the seat s in the horseless carriage
To guide our sleigh, a rudder-like fixture would be attached to the rear end of each runner, and the two would be moved, in concert, by the sleigh's occu pant.
A long brake, following the side of each runner, would have a roughened or lower surface, which would be brought to bear lengthwise upon the snow coating f the road by a bar, in the usual place, at the side of the carriage seat.
It seems to me the successful horseless sleigh is an easier problem to solve than that of the horseless carriage.
As to its rapidity of movement, it might easily out trip the ordinary railroad train, if the road traveled would admit of it, or the occupant could bearthe lively tirring up.
B. F. Leeds.

San Diego, Cal., December 6, 1895.

Care of Books.

Even to those who are most careful and particular with their loved and treasured libraries accidents will happen, and the human bookworm is at his or her wits' end to remove the difficulty, which threaten perhaps to ruin forever one or more of the choices volumes.
An English magazine lately published the following items, which will probably be found useful by any librarian :
To remove ink stains from books-A small quantity of oxalic acid, diluted with water, applied with a camel's hair pencil and blotted with blotting paper, will, with two applications, remove all traces of the ink.
To remove grease spots-Lay powdered pipeclay each side of the spot and press with an iron as hot as the paper will bear without scorching.
To remove iron mould-Apply first a solution of sulphuret of potash and afterward one of oxalic acid The sulph uret acts on the iron.
To kill and prevent bookworms-Take one-half ounce of camphor, powdered like salt, one-half ounce bit ter apple, mix well, and spread on the book shelves. bit ter apple, mix well, an
Renew every six months.
Renew every six months.
To polish old bindings-Thoroughly clean the leath er by rubbing with a piece of flannel; if the leather is broken, fill up the holes with a little paste; beat up the yelk of an egg and rubit well over the covers with a piece of sponge; polish it by passing a hot iron over.
Do not allow books to he very long in too warm a place; gas affects them very much, Russia leather in particular.
Do not let books get damp or thes will soon mildew, and it is almost impossible to remove it.
Books with clasps or raised sides damage those near them on the shelves. -Inland Printer.

Calcic Carbide as Motor Fuel.

The Gas World quotes some interesting figures given by Dr. Adolph Frank, of Charlottenburg, in a paper communicated by him to a foreign contemporary, and recommending the direct use of calcium carbide in motors, the gas being liberated as required by means of water, and not carried about in a compressed state in cylinders. According to the authority quoted, both the Bitterfeld and the Neuhausen works have improved their products up to 90 per cent vields, and, it is added, a price of 90s. a ton does not now look at all unlikely. The theoretical yield of acetylene is 26 poundsiper 64 pounds of carbide, and the extra weight, that of the calcium, is a small matter in comparison with the expense and risk of firty-atmosphere cylinders. Curiously enough, the liquefied acetylene obtainable from a given quantity of carbide occupies, as nearly as possible, t wice the volume of the carbide itself.
The data arrived at are, for a 1,000 horse power marine encine, worked for 600 hours : Coal, at 1.54 pound per horse power per hour, 420 tons, occupying a space of 420 to 430 cubic meters; liquid acetylene, at 0.396 pound per horse power per hour, 108 tons, filling cylinders of an aggregate capacity of from 270 to 300 cubic meters. and of sufficient strength to withstand a pressure of 50 atmospheres; carbide of calcium, 90 per cent or 36.56 per cent of acetylene by weight, total required, 300 tons, occupying 131 cubic meters only. In the last case the whole, which required protection from damp. etc., would not bring the space occupied up to 150 cu bic meters. This (our contemporary remarks) is a very remarkable comparison in view of cases where storave capacity is all important, for the whole of the steam boilers would at the same time disappear; but, of course, in the meantime the price of carbide stands in the way of the practical adoption of acetylene for motor purposes.

