A bicycle chain riveting machine. Builders of bicycles have adopted, for the manufacture of their chains, machines for hammering the heads of rivets over instead of spinning them. By spinning, the friction of the spinners against the rivets causes the metal to adhere to the spinner, thus narring and tearing the heads of the rivets. Also, with the spinaing machine, it is a very difficult matter to spin over the hardened rivets which most of the bicycle dealers require to be ased in thei chains. The riv ets are hammere by means of a reciprocating rotat ing hammer, also by a rotating anvil held against endwise move ment, in an anvil carrier bolted to the table or sup port between which the chain passes. The illustration represents an improvement in that class of riveting machines desimned to sim ultaneously head the opposite ends of the rivet, the object being to produce a simple convenient, an effective machine containing few parts, having a large capacity for accurate work and not liable to derangement, at a small cost. The machine shown in the illustration made by John Adt \& Son, New Haven, Conn., is the JOHN adt elastic rotary arranged for heading the rivets of bicycle chains of bicycle chains. By removing the lower revolv ing fixture it is adaptable for the riveting of arti cles which require riveting. The distance between the revolving hammer and the table is sufficient to allow the placing of fixtures thereon for the parpose of holding the work, thus expediting its manufacture. The largest chain manufacturers in this and foreign countries are now using this machine, which has had several years' prior use as a plain riveting machine, i. e., without lower revolving fixture. It is alsolargely used by skate manufacturers to rivet the runners of skates to the foot pieces. During the last six months John Adt \& Son's factory, F. B. Shuster, proprietor, the manufacturer of these machines, has been worked to its full canacity to keep pace with the orders for riveting machines and patent automatic wire straightening and cutting machines, a large one of which has just been completed and shipped to the Washburn \& Moen Manufacturing Company, of Worcester, Mass., weighing nearly six tons and being about 32 feet in leng'th. It is capable of cutting and straightening wire from $7 / 8$ inch diameter and under and 21 foo lengths down to 1 inch in length.

WAGON END GATE FASTENER

A simple and durable device for securely holding the end gate of a wagon in place, and permitting of quickly

BELL'S WAGON END GATE FASTENER
loosening it for convenient removal, is shown in the accompanying illustration, and has been patented by Samuel W. Bell, of Waynesborough, Va. The end gate slides loosely in cleats, extending through one of
which is a short screw rod with a nut on its outer end and an ese on its inner end, and the eye is connected by a rod with a link adapted to engage a projection from the fulcrum end of a lever pivoted in a bracket attached to the other side of the wagon body. The link is readily engaged with a recess in the outer end of the lever, when the latter is swung outward, after which the lever is swung inward close to the wagon body, as shown in the illustration, thus drawing the two sides of the wagon body toward each other to bind the end gate in place. As the screw eye may be drawn in by means of the nut, any slack in the link and transverse rod may be readily taken up, permitting of always closely binding the sides upon the end gate, and, as the clamping lever is entirely on the outside of the wagon body, it does not obstruct the loading or unloading of the wagon.

ercury oxycyanide as an Antiseptic

According to Drs. Monod and Macaigne, laboratory experiments have shown that the antiseptic power of a 1:200 solution of mercury oxycyanide is equal to, if not greater than, that of a $1: 1,000$ solution of corrosive sublimate. From the results obtained in upward of four years of hospital and private practice, the authors have come to the conclusion that mercury oxycyanide may be advantageously substituted for mercuric chloride in sursical practice. In accord with Tarnier and Vignal, they have found that a 1.200 solution of mercury oxycyanide, fully as well as, if not lution of mercury oxycyanide, fully as well as, if not better than, a $1: 1,000$ solution of mercuric chloride,
prevents cultures from developing, kills the microoes already developed by cultures, and sterilizes an infected body. To strengthen the evidence, they have been careful not to employ in their experiments pure cultures of streptococci or staphylococci devoid of spores, and consequently presenting but a feeble resistance, but dust from hospital wards, containing various microbes, such as the bacillus pyocyaneous, streptococcus, bacillus coli communis, and particu larly a microbe resembling the bacillus anthracis and provided with spores, which resists a temperature of 212* Fah. The authors clain to have never met with symptoms of serious intoxication from the solution referred to. It should, however, not be employed for irrigation when there is reason to fear that the injected liquid may be retained. The fact that mercury oxycyanide does not attack steel instruments is also of great practical importance, seeing that it thus becomes possible to employ a single antiseptic agent for all purposes in the course of an operation.-La Semaine Médicale.

Horseless Carriages and Sanitation

So novel as yet is the mere idea of street traffic with out the aid of horse power that the minds of most per sons can hardly have touched the practical questions involved in such an arrangement. We are not, however, wholly without evidence bearing upon this subject. The London Lancet says it is needless to discuss the many economic, æsthetic, and social effects which would follow even the partial disuse of the horse as a draught animal. Another question, that of sanitation, calls for more attention from us. Our stables without the horse would be as pure as our homes if we were ourselves visible only as figures of still life, waxen, o ivory models. The stable pit filled with the defiled bedding of our obedient and faithful four legged ser vant would be known no more to our senses. The contagia bred in its midst and scattered in the dry α ust of summer air, to find their way within our sleep ing and sit ing rooms, would be only the remembere signs of a past and primitive civilization. The germs of glanders would not harbor and be hatched, as they still occasionally are, in the stalls of overcrowded mews. Thus far the margin of profit is on the side of him who charges his vehicle with steam or electric energy. Much remains to be done, and much can b done, in this direction in order to insure not only the health of stabled animals, but of the human popula tion in or near mews. The frequent and regular re nloval of refuse is one important means to this end and by means of the methods, at once effectual and simple, employed for this purpose in well kept stable the work of cleansing can be carried out with ease and completeness.

A BOILER FIRE BOX FORMED OF WATER TUBES The illustration represents a fire box constructed en tirely of tubes, with their ends reduced to allow them to be brought tight together, forming a flame-tigh tubular hox, there being sufficient material in the tubes where they enter the water legs or drums to ad mit of proper fastening by expanding in the ordinar way. The improvement has been patented by Edward Ingleton, of Pottstown, Pa, Fig. 1 represent the application of the improvement, parts being brok en away to show the construction, while Figs. 2 and are plan and end views, showing the water legs or drums and their connection with the tubes and the boiler. At the bottom of the boiler, and separated
from its interior by a grate, is a water pocket, branch pipes from which are connected with two lower wa
ter drums, in each of which is a screw adapted to be turned by a crank to facilitate the removal of sedi ment.
The lower water drums are connected on each side by a series of circulating tubes, with a central upper water drum, which has an upward and rearward inclination, and a nozzle surrounds the opening leading from the upper water leg into the boiler, the nozzle being curved downward to such an extent that its lower end will be below the water line, as indicated by the dotted lines. A throat sheet is carried beneath the boiler forward of the water pocket, and short non-circulating tubes, suitably capped, here form the rear side por tions of the fire box. The fire box is jacketed, there be ing a packing of asbestos, or other fire proof material, between the jacket and upper drum, and between the circulating tubes and the vertical walls of the fire box jacket. It is designed that this fire box may be readily removed from the boiler for cleaning or for repairs by breaking three joints only, removing the bolts from

ingleton's fire box for boilers.
the flanges of the water legs where they connect with the head of the boiler and with the branches from the water pocket.

AN INEXPENSIVE, EFFICIENT CHIMNEY

The chimney shown in the illustration is designed to be built up of sections after the manner of drain pipes, of clay or other suitable material, each section having an inner wall forming the smoke flue, and con nected to the outer wall by ribs. The improvement hes been pater by Charles Engert Humbold Street and Van Pelt Avenue, Brooklyn, N. Y. Fig. shows the chimney in its relation to the floors and roo of a building, Fig. 2 representing a plain section and Fig. 3 the top section, which has an outside flange to receive the turned-up edge of the tin or other roo sheathing, and thus make a tight weather joint. The ower section is preferably long enough to reach from the basement floor to the floor above, and has bottom holes extending entirely tbrough it, through which the soot may be removed, while other perforations, ex tending only through the outer wall of the section in the side flues of the chimney, afford mearis of vent ation, there being similar openings in the top section above the roof. The several sections are connected by a suitable cement, and on each floor are suitable projections to facilitate making connection with the unnel of a stove or heater, each connection communi cating with an inner, upwardly bent auxiliary flue de vering into the main inner flue, and not interferin ith the draught of the auxiliary flues below. This

engert's chimney.

chimney provides for efficient ventilation, may be quickly built, and the sections break joint in such manner that there is little likelihood of an imperfect joint through which fire and smoke may pass.

