THE NEW DOUBLE-DECK-TURRET BATTLESHIP

(Continued from first page.)
This is evident from a comparison of deck plans of the two types, when it will be seen that the Indiana is incapable of dead ahead or dead astern fire with her 8 inch guns, and that her maximum concentration of fire from the whole eight of them is four on either broadside. The Kearsarge, on the other hand, can not only concentrate an equal number of 8 inch guns on each broadside, but can swing each pair through an unbroken are of 270 degrees ahead or astern. Experiments recently carried out at Indian Head on an improvised platform showed that there would be no inconvenience experienced in the 13 inch turrets from the blast of the superposed 8 inch guns.
Moreover the turning gear and ammunition hoists of the 8 inch guns on the Kearsarge have an unparalleled protection afforded to them by the 15 inch armor of the turrets and barbettes upon which they stand, whereas the funnel-shaped base of the Indiana's 8 inch turrets is plated with very light armor; and should a shell penetrate and burst within them, it would probably disable the guns altogether. From these considerations we think it is evident that the sacrifice of power in removing four of the 8 inch guns is more apparent than real ; and that the disposition of eight guns in two turrets as against twelve guns in six turrets gives the Kearsarge slightly more power for attack and far greater endurance for defense than the earlier type of ship. As originally designed, it was intended that the 8 inch should be rigidly imposed upon the 13 inch turrets. This would necessitate their simultaneous training; but there are no structural reasons why they should not be given an independent motion, and we helieve Mr. Irving Scott, of the Union Iron Works, San Francisco, has already put in a bid on a design of this nature.
Not only is nothing lost by the removal of these guus and turrets, but the equivalent weight has been put into a broadside battery of fourteen 5 inch rapidfiring guns, which is protected by a continuous wall of 6 inch Harveyized steel, with 2 inch steel splinter bulkheads worked in bet ween each gun. This battery alone would render the Kearsarge a terrible engine of destruction. Each of the fourteen guns throws eight 50 pound shots per minute, each having a penetration of 13 inches of iron and an energy of 1834 foot tons. In one minute of a sea-fight one side of this battery alone could pour into the enemy fifty-six shots, or nearly 3,000 pounds of steel, a ta velocity of 2,300 feet a second, and with a battering or crushing effect of 102,704 foot tons-a force sufficient to lift the ship itself bodily 9 feet in the air. The subjoined table gives a detailed analysis of the total broadside :

box of thick armor, with its cellulose and coal lining, will be located the " vitals," i. e., the engines and boilers. The main dimensions will be: Length, 368 feet beam, 72 feet $21 / 2$ inches; draught, $231 / 2$ feet; displacement, 11,500 tons; horse power, 10,000 ; speed, 16 knots; normal coal supply, 410 tons ; complement, 520 officers and men; cruising radius at 10 knots with 1,210 tons of coal at 25 feet draught, 6,000 knots. The total ost not to exceed $\$ 4,000,000$
The unusual height of the smokestacks is in agree ment with the latest practice, which tends to make al possible use of natural draught.

AN ADJUSTABLE SAW GUIDE.
The accompanying engraving shows a device for easily and safely adjusting the guides for a circular

saw, for which a patent has heen granted to Mr.

 Alphonso Marks, of McComb, Ohio. It consists of a stout pocket or holder, which is flat on its under surface, and is provided with slotted holes whereby it may be bolted down upon the frame of the circular saw. It is provided with two transverse circular openings, in which the shank portions of the guide jaws are adjustably held. These shanks are hollow and receive two adjusting screws, which are threaded in the ends of the shanks, and are held by means of fixed and loose collars and nuts in a suitable crosshead. This crosshead is provided with a hollow circu lar portion which is adjustably held in a transverse opening located in the pocket or holder and between the shanks of the guide jaws. The crosshead is ad justed relatively to the pocket by means of a screw. By this arrangement either of the jaws may be ad justed by means of its own screw, to suit the thick ness of the saw, or both jaws may be simultaneously adjusted by means of the center screw actuating the crosshead. The two jaws are prevented from rotation bv means of projecting arms or lugs, which bear upon the flat base of the holder or pocket. The outer jaw is L shaped, and it is provided at its outer end with a square opening which receives a wooden plug, a similar plug being provided in the opposite jaw, the endIn addition to this, there would be a continuous hail of said plugs being brought up to the saw and servof smaller pro jectiles from the 6 pound and machine guns located on the upper deck and in tbe fighting tops.
The armor belt, 73/2 feet wide, will be $161 / 2$ inches thick amidships, tapering toward the bow, bow, and it. will be associated with athwartship bulkheads 10 and 12 inches thick. Over this will be placed a 23 placed a $23 / 4$ inchsteel deck, and in the wake of the engines and boilers will be a cellulose water - excluding belt backed by many feet of coal. Within coal. Within the shelter of this inverted
ing to guide the same. By this arrangement the plugs can be easily replaced when necessary. The adjust ment screws are operated by a suitable key or wrench which may be laid away when the saw is running.
n the combined Action of Light and water in i lif of the Perfumes of Plants. It is light, and not oxygen, as it has been assumed which is the principal cause of the transformation and destruction of odorous substances, but in many case these two agents seem to act in concert. The action of light makes itself felt in two different manners on the one hand, it acts as a chemical power, capable of furnishing energy to all the transformations through which the odorous products \underline{r} ass from their elaboration to their total resinification; on the othe hand, it exerts a mechanical action which plays an important part in the general life history of plants and this property explains the mode of the periodical liberation of the perfumes of flowers. The intensity of the perfume of a flower depends on the equilibrium which is established at every hour of the day between the pressure of water in their cellules, which tends to drive outward the perfumes already elaborated con tained in the epidermis, and the action of light which combats this turgescence. The whole physiology of perfumed plants flows from this simple notion. It is thus explained why in the countries of the East the flowers are less odoriferous than with us, why the trees, the fruits, even the vegetables, are sometime filled with odoriferous products more or less resinified It is also explained why in those countries the vege tation is thorny : the vegetation in those countries has too much light and too little water.-Eugene Mes nard, in Comptes Rendus.

A DESTROYING VACUUM.

by John c. barrows, m.a., of st. Louis, mo.
A storm, unprecedented in its destructive and feadly results, which swept through the cities of St Louis and East St. Lonis between 5 and 6 P. M. on May 27, furnished abundant material for th news gatherers who hastened there to thenumberof severa hundred. Both the amateur and professional pho tographer have been busy about the scenes of great est havoc. Few, if any, however, have yet begun to study the devastated districts to ascertain and analyze the meteorological phenomena of what most of them have heralded to the world as " a regular Western yclone," and others, including the local signal service fficer, as "a straight blow of wind."
Does the storm's work fit either theory? The re ults are in many respects unusual, and I believe without recorded precedent. There are abundant indications that over an area half a mile wide and two miles long the destruction was not primarily and chiefly due to the force of a gale or hurricane. No does the fact that during the space of a few moment the direction of the wind changed to several and almost opposite points, as is testified to both by numerous eyewitnesses and by many unmistakable results thereof, appear to explain the most serious class of damage wrought to buildings.

I shall not attempt to give a new and scientific ex planation of the metfrological phenomenon which appears to have visited the area from a block west of Jeffer son Avenue east to Main Street, and about a mile wide, but for lack of an existing term and for the purpose of this brief paper, will call it a vacuum storm. To indicate that the con dusion $t h a t$ this in some this in some
features was features wa nary cyclone and that i was not "a straight blow" that was reached by the orthodox Baconian method, and tha the observa tions were no made to fit a previously con ceived theory it may be wel to state tha the first ob ject to attract

