Srientific smmaina.

ESTABLISHED 1845.

MUNN \& CO.. Editors and Proprietors. poblished weekly at

No. 361 BROADWAY, NEW YORK.

TERMS FOR THE SCIENTIFIC AMERICAN. (Established 1845.)
One copy, one year.for the U. S. Canada or Mexico....
One copy, six months, fortbe U. S., Canada or Mexico.

Export Edition of the Scientific American
 MUNN \& CO.. Publishers, 341 Broadway. New York.
Trist safest way to remit is byostal order. express money order

NEW YORK, SATURDAY, JUNE 27, 1896.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 1069.
For the Week Ending June 27, 1896. Price 10 cents. For sale by all newsdealers.
I. ARCHEOLOG X. - Tbe British Museum. -Tbe Department of

tions.................. .. Curious phase of edincational history of - The old time che
with text protected by a sheet of born.- - illustrations..

GEOLOGY.-Wbat is Bitumen ?-By S. F. PECKHAM.-The chem-
istry of petroleum.-The genlogy of tydrocarbons and their prob-
able genesis.
I. MECHANICAL ENGINEERING.-Notes on Steam Superbeat

 IIL. MISCELLANEOUS

I. ORDNA NCE - Modifleations in the Des...............................

 XI. PSYCHOLOGY.-Merory and its Lnsenomen.-A curious phase of
ment
study of the mind. study of the mind.

THE ELEVATOR PROBLEM IN TALL OFFICE BUILDINGS
Few manifestations of the capabilities of the modern engineer in this the age of steel are more impressive than the tall office building of our great cities. These structures from their size appeal to the public. Groups of people may often be observed standing on the sidewalks in the vicinity of especially striking examples, looking up at them as at one of the wonders of the day. The same class of building interests the engineer In them he finds embodied some of the boldest conceptions of his science. The carpenter in erecting a fully framed wooden building first makes a self-sustaining skeleton of heams, and then incloses it by boards. The modern tall office building $1 s$ of analogous con struction. A frame of steel is set up which is self sustaining, or rather independent, for it is made streng enough to carry hundreds of tons more than its own
weight. This frame is open. Its interstices are filled in with brick and stone, material which here departs in with brick and stone, material which here departs
from its ordinary principal function of sustaining great loads, and whose new office is to act as a screen or a sheathing. The enormous mass of a building of this type may be entirely supported by a few steel columns; the brick and stone could be completely removed from any story without disturbing the floors above it. The entire upper stories, fifteen or twenty in number, could be left standing on a few comparatively slender steel pillars.
The new construction, in its use of cantilevers for distributing weight evenly, and in its rapid methods of construction, has gone far to create the tendency of the day toward great height in buildings. A steel frame is raised with great rapidity. Steel derricks lift an entire truckload of steel beams at a very high speed, and so much of the work has been done and is in process of execution that a new trade, that of Many new methods or new developments concur toincrease rapidity of construction. There is even discern ible a sort of rivalry among cities as to which shall have the most impressive tall office building.
The justification of the construction of a tall office building, twenty to twenty-five stories in height, is sought for in the high price of land. It seems a truism that a building twenty stories high gets twice as much out of the land occupied in the way of office area as a building does which is only ten stories high. But such truism does not exist, owing to the necessity for increasing the number of elevators as floors are added, the area of ten floors.

There is one element in the problem of the maintenance of high buildings, one we have just all uded to, of which but little has been said, and which is in very definite need of solution, were such solution possible. lt is the elevator problem. One of these great buildings is a concentrated city, and has to be provided with rapid transit for its tenants and for their clients and visitors. Due regard for the comfort of those using the elevat.
speed.
peed.
Al re
Already many elevators run so fast as to be very ncomfortable. The high speed is adopted to make each elevator do a better day's work. But in spite of high speed, the elevator service in some cases is proving inadequate. Twenty or more floors, each full of offices, are to be served, and even high speed elevawork to be done. If insufficient in number, they go up crowded with passengers, and the discomfort is very great.
It is the last few stories that tell the most. A ten story building is easily served; the problem becomes serious in one of twenty stories. So many passengers have to be carried to so great an a verage height that elevators have to be greatly increased in number
It is here that the trouble begins. It would be very
simple to put in a large number of elevators, and the simple to put in a large number of elevators, and the room which they occupy is a more serious matter. In
block might be specially utilized for the elevator system.

Carving Before or After Placed.

It would be interesting to learn just why so many stone carvers prefer to work on the material after it has been built into a structure rather than on the block before placing. When interrogated as to this preference the usual answer is that it is thus easier to match the cutting on adjoining blocks, or that one gets a better idea of the effect in this way. Or perhaps it may be argued that there is danger of damage to delicate reliefs in handling the blocks and getting them into position. Yet neither or all of these appear to be sufficient reasons-sufficient, that is, to offset the disadvantage of working in awkward positions, of not having spare tools hand y and of the danger of mutila tion of a placed stone by a slip. As to the latter which would apparently be a very serious and expen sive matter usually, one carver, whose specialty is croll and leaf cutting, medallions, pilaster and column apitals, etc., says that he can generally get over or conceal small breaks by slightly altering the design. But after all the practice does not seem reasonable, and none of the explanations are quite satisf ying. O course there are cases where there is no choice, but for the most part the ornamental work could, it would seem, be done to better advantage in the yard or under over than when the workman is slung up on a stag ng. All the delicate reliefs, even in limestone and andstone, or soft material in general, could be crated and otherwise protected for handling in setting up.
Both systems seem to have been followed by the ancient Egyptian and Greek cutters, though it is not always easy to determine the method. From what is known of the skill of the old constructors in getting heavy material into place, making close joints and perfect matching, it may be concluded that a large part of the carving was done before erection. We degenerate moderns, too, have some tricks of our own going se far now in good practice as to have pressed and ornamental brick snugly packed in crates at the brick yards, transported in these crates, and finally wung up in them to the level where the brick are to be set, and not for convenience in handling merely but to avoid chipping of corners and edges, thus ef ecting quite a little saving. Finished stone also can be protected against rough usage in transportation, as is being done daily everywhere.
It was suggested to an expert carver who favored the plan of working on the building rather than on he unassembled parts of it, that his preference was per haps only the outcome of convention and habit, and it was delicately intimated that possibly he had not ver considered the matter seriously. But he would not have it that way at all, though he could not make the meddlesome outsider understand why he liked to work lying down or doubled up rather than in the normal posture of other artisans.-Stone.

Ghildren's Inverted Drawings.

The crystalline lens in the eye, like the lens of a amera, causes the image of an object to be inverted upon the retina. Psychologists have yet to explain in detail, however, why we see things right side up, instead of in the inverted position corresponding to the retinal image; though it is believed that the reinversion is effected mentally, and is determined and controlled by sensations of touch. There is no difficulty in accepting this explanation, for every photographer gets so familiar with the inverted positions of things, as seen upon the screen of his camera, that he never thinks there is anything strange about the topsy-turvy picture which he focuses. In connection with this question it has lately been pointed out that many young children draw things upside down. Whether this hakit depends upon the inversion of the retinal image is, however, difficult to say. Mrs. D. H. Scott states in Nature that if a child who draws things upside down, when drawing on a horizontal table, is asked to draw on a blackboard placed vertically, he will draw everything the right way up. Thus the explanation of inverted drawings seems to be that some children have a difficulty in drawing be that some children have a difficulty in drawing
upon a horizontal surface things they always see vertically.

Substitute for Diamond for Cutting Glass.

The time honored glazier's diamond seems in danger of being displaced by a cheaper substitute, even more efficient than the original instrument. It is reported that M. Moissan has discovered a means of forming a compound of boron and carbon by heating boracic acid and carbon in an electric furnace, the intense at wish has already been the means introduc heat or whe ng into ever. either unattainable or too costly. The new substance
in appearance is black, something like zoophite; and in appearance is black, something like zoophite; and
its hardness is so great as to enable it to cut diamonds with ease. Unlike the results of previous experiments in artificial diamond making, which were in minute particles, the new cutting material can be produced in pieces of any size required.

"Barisal Guns" and "Mist Pouffers,"

Travelers in passing through the delta of the Ganges, India, have occasionally heard dull, subdued sounds, not unlike the reverberation of distant artillery. As these sounds have been heard when it was positively known that no artillery practice was being carried out, this mysterious phenomenon, which is known as the "Barisal guns," has given rise to much curiosity and speculation. A similar phenomenon occurs in two different countries in Europe, regarding which, in a letter upon the subject to Prof. G. H. Darwin, M. Van der Broeck, conservator of the Museum of Natural History of Belgium, writes:
"I have constantly noticed these sounds in the plain of Limburg since 1880, and my colleague of the geological survey, M. Rutot, has heard them very frequently along the Belgian coast, where our sailors call them 'mist pouffers' or fog dissipators.
"The keeper of the lighthouse at Ostend has heard these noises for several years past; they are known near Boulogne, and the late M. Houzeau spoke of them to wy friend M. Lancaster. More than ten of my personal acquaintances have observed the fact.
"The detonations are dull and distant, and are repeated a dozen times or more at irregular intervals. They are usually heard in the daytime when the sky is clear, and especially toward evening after a very hot day. The noise does not at all resemble artillery, blasting in mines, or the growling of distant thunder.'
M. Van der Broeck attributes these noises to "some peculiar discharge of atmospheric electricity." \mathbf{M}. Rutot thinks they are "internal to the earth," and might be caused by "the shock which the internal fluid mass might give to the earth's crust.'
Similar unexplained noises have been heard among the Dartmoor Hills, England, and in Scotland. Since the publication of Prof. Darwin's letter in Nature last October, there has been a considerable amount of correspondence relative to this unexplained phenomenon, one of the later letters drawing attention to a reference by the late Dean Stanley in his "Sinai and Palestine" to "the mysterious noises which have from time to time been heard on the summit of Jebel Musa, in the neighborhood of Um Shaumer, and in the mountain of Nakus or the Bell, so called from the legend that the sounds proceed from the bells of a convent inclosed within the mountain. In this last instance the sound is supposed to originate in the rush of sound down the mountain side.

In the case of Jebel Musa, where it is said that the monks had originally settled on the highest peak, but were by these strange noises driven down to their present seat in the valley and in the case of Um Shaumer, whereit was described to Burckhardt as like the sound of artillery, the precise cause has never been ascertained." The same correspondent, Mr. Edw. Fry, mentions that Burck hardt ("Travels in Syria and the Holy Land," 1822, p. 591) refers to these noises and says "the wind and weather are not believed to have any effect upon the sound."

In the courseof a series of "Notes upon the Natural History of New Brunswick," Prof. W. F. Ganong, writing of certain "gun reports" heard upon the southern coasts, says :
"Everybody who has been much upon our Charlotte County coast must remember that upon the still summer days, when the heat hovers upon the ocean, what seem to be gun or even cannon reports are heard at in tervals coming from seaward. The residents alway say in answer to one's question: 'Indians shooting porpoise off Grand Manan.' This explanation I never far, and, besides, the noise is of too deep and booming a character."

Mr. Samuel W. Kain, secretary of the Natural His tory Society, of St. John, N. B., has written us that these local noises, and the "Barisal guns" and "mist pouffers," were discussed at a meeting of the society, when "some additional information of interest was elicited. A letter was read from Edward Jack, C. E., stating that he had heard these peculiar sounds on Passamaquoddy Bay years ago. It was also announced that a similar phenomenon occurs in the warm days of summer on the Kennebecasis, a lake-like affluent of the St. John River, of great depth and about seven miles from the city of St. John. This has been ob served by several competent observers."
The secretary also read a letter from Captain Bishop, of the schooner Susie Prescott, stating that similar sounds were heard on warm summer days between Grand Manan and Mount Desert Rock.
Referring to the theory that these sounds may be due to geological disturbances, Mr. Kain adds: "It is worthy of note that the land in this region is subsiding at a slow rate, and that two slight earthquake hocks have occurred here lately. These were felt on March 22 and May 16, and were probably due to sub dence."
The attention of the rcaders of the Scientific American is drawn to this unexplained phenomenon
with the request that if they know, either personally r by report, of the occurrence of any similar sound in their localities, they will communicate the facts to us
for publication. Such information will be rendered specially interesting, if details as to the frequency of the occurrence of these noises can be given, with any
accompanying cireumstances which might serve to account for their origin.

Aerial Irrigation,

The tract of country extending from central Ohio in a northerly and westerly direction into Michigan and Indiana is perhaps more thoroughly supplied with artificial drainage than any other tract of similar ex-
tent in the United States. In tent in the United States. In topography this region is mostly prairie land, often with no discernible slope, and in its original condition was largely covered with timber. The surface water from rain and snow flowed off with difficulty, and much of it remained on the ground until dried up by the sun. The soil is of a clayey character, but slightly permeable to water, and there are comparatively few permanent springs. Around the sources of many of the larger streams there were formerly extensive marshes, covering thousands of acres, which in their natural state seemed to forbid the possibility of reclamation for industrial uses.
In the course of the settlement of the country the necessity of doing something to ameliorate this untoward condition led to the introduction of an extensive system of drainage. The rich clays of the State furnished a cheap and convenient tile material which became the basis of the system. The tiles were connected with large open ditches, and in some cases, as in the great Scioto swamp, with extensive canals con structed at the expense of the State. Of this entire
section of country, it is probable that tile drainage and open ditching overspread forty per cent.
It is not intended here to describe the methods or results of this drainage so far as its original purpose is concerned. Suffice it to say that it has reclaimed many thousands of acres of marshes entirely outside the pale of agricultural use, and has vastly improved the condition of extensive semi-6 wampy tracts. The purpose of this brief notice is simply to call attention
to a secondary though vers important result of tile drainage, little enough foreseen by the projectors of the system, since it is of a character quite the reverse of any consideration of drainage. This feature may be described as aerial irrigation, by which it result drained areas is largely mitigated.
To quote from a recent government report,* ex perience in tile drainage early showed that the tiles produced other beneficial effects than those resulting from the drainage of the land. It was found that
tiled land resisted drought better than untiled, and it was constantly noted that along the lines of the tiles there was a freshness of growth that indicated the presence of more moisture than the adjacent ground enjoyed. Tile drainage gradually found its way into areas where no real necessity for drainage existed, and always with advantage to the crops, until now the function of the tiles is by no means exclusively to drain the land, but to secure this beneficial influence, the nature of which is not yet fully under stood.
There are several minor contributing causes which produce this result, but the real explanation is to be
found in the circulation of the air through the tile and the aeration of the soil in its vicinity. Given a tile drain of known length, size, and gradient, and estab lished data in regard to the specific gravity of air, the deposition of moisture with a fall of temperature, and the difference between surface and subsurface temperatures, it becomes a simple matter to determine the amount of moisture which would be deposited in such a tile under assumed conditions of temperature and humidity. At times. it is undoubtedly large, and inon hot days has found them dripping with water.
The system of tile drainage which is now being so extensively adopted is thus seen to subserve two dis tinct, contrary, and important purposes-that of re ooving promptly the surplus water of spring and that f irrigating the soil during the season of drought. It is not improbable that this method of subirrigation y means of circulating currents of air may furnish a satisfactory solution of the problem involved in recen experiments for the artificial production of rain.
It may be stated that this secondary function of tile drains is now so fully recognized that tracts have been alone, underiain with tiles for irrigation puriment have fully justified expectations

A dispatch from Berlin dated Mar 28 saps that the General Electrical Society announce that an improve ment has been made in the Roentgen process, and enables the interior of the head, the larynx and the action of the lungs and heart to be observed on luorescent screen. The statement has not, howeve been well authenticated.

Berlin's Sewage Problem Solved.

Berlin has dealt successfully with the drainage quesion, says the London Health News. Until about a quarter of a century ago the disposal of sewage was effected in primitive fashion, open drain courses, badly built and with inadequate fall, ran through many of the streets, discharging finally into the river Spree, for whose condition contamination would be Spree, for whose condition contamination would be
far too mild a word. A commission was appointed, which, after visiting various countries, especially Engwhich, atter visiting various countries, especially Eng-
land, with the view of practically studying different systems, reported in favor of sewage irrigation on land at a distance from the city. The flatness of the plain on which Berlin is built would not allow of any gravitation scheme, and, consequently, it was found necessary to adopt steam pumping. For the same reason the sewage could not all be collected at one spot, and it was, therefore, decided to divide the city into twelve drainage areas. The ground at the seven sewage farms was well suited for the purpose, consisting only of sandy wastes, then growing only stunted firs and birches, but now converted into fertile fields. The total area of the land which could be devoted to sewage irrigation is 22,500 acres; only about 11,000 acres are at present needed. The following extract is from Dr. Legge's account of these Berlin farms:
"No deleterious effect has been noticed on the health of those living on the sewage farms, and, indeed, at sowe of them, as at Blankenburg and Malchow, the city has built various hospitals for convalescents, for consumptives, and for women recovering after childbed, and the patients seem to thrive in them as well as they would any where else."
The question whether the germs of typhoid fever and cholera pass through the soil into the drainage water has naturally formed a subject of inquiry, but many bacteriological examinations conducted specially with the view of clearing up this point have 'answered the question in the negative. Until 1892 the laborers working on the sewage farms were remarkably free from typhoid fever, although in 1889 Berlin itself was visited by a severe epidemic ; in 1892 a few cases occurred among some farm workers who were alleged to have drunk largely of the effluen from the farm, but in these instances other possible sources of infection could not be excluded. It is satis factory to note that, notwithstanding the neressarily enormous cost of working these Berlin sewage farms, the expenses have, in most years, been covered by the sale of the produce, and in one year (1889) the surplus amounted to $£ 11,511$.

Balloons in Scientific observation.
The last number of the Proceedings of the German Geographical Society, says Ciel et Terre, contains a paper by Dr. A. Berson on the use of balloons in geographical explorations. As Dr. Berson has made sumerous scientific ascensions, both in free and in captive balloons, his observations are extremely interesting. He notes the importance of captive balloons in Arctic exploration, and regrets that Dr. Nansen abandoned this method of investigation, which he had at first intended to employ. Dr. Berson condemn energetically the project of M. Andree, of trying to reach the pole in a free balloon. He is convinced that this aerial trip, if it should be carried out, will lead to disaster. In his many ascensions, M. Berson has met with every kind of meteorologic condition, and in all seasons he has found that the temperature at high altitudes decreases more rapidly, or at least quite as rapidly, as at low altitudes, and that at heights exceeding 5,000 meters [16,400 feet] there exist tempera tures lower than those deduced from the ascensions of Glaisher. Likewise the increase in the speed of the currents, as one gets higher and higher, is greate than has been supposed. In one ascension, when the velocity of the air was only 11 kilometers [7 miles] an hour between the height of 1,000 meters [3,280 feet and 3,000 meters [9,840 feet], this velocity attained, be ween 4.000 and 6,000 meters, to nearly 60 kilometer $[37$ miles] an hour. A marked preponderance of winds with a westerly component was also proved at great altitudes-a fact which confirms the observations of clouds made from the surface of the earth.

The Beginning of a New Volume

The present number closes the volume for the first half of the year, and we would urge upon those who are readers but not subscribers of the paper that this is the time to have their names entered on our sub. scription book and thus make sure of procuring the paper without interruption every week. Those who subscribe now will be entitled to our special number which will be issued on July 25 and will be an histori cal review of the progress of inventions during the past fifty years. This number will practically be a olume in itself, and if published in book form would probably cost as much as the subscription price of the paper for a whole year. When remitting for the ScIEN tific American it would be well not to forget the Supplement, published concurrently therewith, and which in conjunction with the parent paper provides a weekly compendium of science of surpassing interest.

