A premium of $q 250$ is offered by the Scientifio American for the best essay on
the progress of invention during the past IFTY years.
This paper should not exceed in length 2,500 words. The above-mentioned prize of $\$ 250$ will be awarded for the best essay, and the prize paper will be published in the Special 50th Anniversary Number of the Scientific American of July 25. A selection of the fivenext best papers will be published in subsequent issues of the Scientific American Sopplement a our regular rates of compensation.
The papers will be submitted for adjudication to a select jury of three, consisting of-
Prof. R. H. Thurston, Cornell University
Judge A. P. Greeley, Washington, D. C.
Prof. R. S. Woodward, Columbia University.
Rejected MSS. will be returned when accompanied hy a stamped and addressed envelope.
Fach paper should be signed by a fictitious name, and a card bearing the true name and the fictitious uame of the author should accompany each paper, but in a separate sealed envelope.
All papers should be received at this office on or be fore June 20, 1896, addressed to

Editor of the Scientific American,
361 Broadway, New York.

## ©orrespondence.

## $x$ Ray Experiments.

To the Editor of the Scientific American
I have in my possession a Crookes tube, exactly identical in construction with the one described on page 342. Scientific American of May 30, excepting the glass bulb, which is pear-shaped.
Considering the fact that I am using this tube with an ordinary Wimshurst induction machine of my own construction, with 20 inch hard rubber plates, its work is simply marvelous.
For the benefit of your readers who desire to use this kind of apparatus, I would say that the condensers should be small, not over 16 or 18 square inches of foil surface on each side, and the outside coatings should be connected with each other; the anode of the Crookes tube should be connected to the positive pole of the machine and cathode to the negative pole, with a spark gap of not less than one-half inch. Gap should be made between ball terminals, as a good, clean
spark is absolutely necessars; if air is so damp as to break it into a brush discharge, no effect will be obtained in the tube.
The light is, of course, intermittent, but if the machine is in good order and runs fast enough, the sparks follow each other in such. rapid succession as to be practically continuous in lighting effect on a fluoroscope, which this tube illuminates brilliantly, bringing out the bones in the hand very distinctly. The tungstate calcium used in fluoroscope is sold by dealers as high as $\$ 5$ perounce: but an ounce of it-enough for high as $\$ 5$ perounce: but an ounce of it-enough for
two or three fluoroscopes-can be made for 30 or 40 two or three fluoroscopes-can be made for 30 or 40
cents, as follows: Mix about 1 ounce each of common salt, tungstate soda, and choride calcium; last two articles should be bought at retail for about 2 cents per ounce. Put the mixture in a common crucible, also obtainable for about 10 cents, fit a tin cover to it and bury to the lid in a good coal fire-the kitchen stove will do-so as to bring it to a full red heat; leave it for two or three hours, or until contents are fused to a clear liquid, then set it out to cool and crystallize. The resulting hard, glass-like mass should be broken The resulting hard, glass-like mass should be broken
out with an old chisel or by breaking the crucibleout with an old chisel or by breaking the crucible-
broken up and thrown into a jar of water, which will broken up and thrown into a jar of water, which will
gradually dissolve the chloride of sodium formed, and gradually dissolve the chloride of sodium formed, and
the fine crystals of tungstate calcium will settle to bottom. Wash by decantation till all taste of salt is gone, and pour out on filter or blotting paper and dry.
Make your screen of thin wood or cardboard, coat with coumon prepared glue, and sift on the tungstate, shaking off all that does not stick when dry. Fasten to botton of ordinary box of the fluoroscope form, and you will have as good a fluoros
can be bought for a few dollars.
I think I have demonstrated, and with rather poor apparatus, that the $X$ ray will prodnce a visible image on the sensitive plate in less than $1-1000$ of a second.
When I run my static machine very slow, the sparks can be made to junp the gap arranged as described
at about the rate of one or less per second. The fluoroscope then shows a distinct instantaneous flash of light as each spark passes, seeming to inflash of light as each spark passes, seeming to in-
dicate that the $\mathbf{X}$ ray is produced only at or during dicate that the X ray is produced only at or during
the instant of the passage of the spark, which, accordthe instant of the passage of the spark, which, accord-
ing to Wheatstone, occupies about $1-24000$ of a second ing to $W$
of time.
Desiring to test the effect of one spark and upward on a plate, I placed a common pocket comb in a metal edged case on a $4 \times 5$ plate holder, containing plate covering about three quarters of an inch of holder,
slowly run till one spark passed the gap, then plate of steel was moved up three-eighths of an inch, and one more spark passed, thus giving two sparks exposure to remainder of plate; the steel block was then pushed up another three-eighths of an inch, and two more sparks passed, giving four to remainder of plate, and sparks passed, giving four to remainder of plate, and
so on up through $8,16,32,64$, ete., to 512 on last threeso on up through 8, 16, 32, 64, ete., to 512 on last three-
eighths inch of plate. Plate was developed immediately, the print frow same plainly showing the metal rim of comb case down to the seventh space from top, corresponding to eigit sparks, equal to about 1-3000 of a second's exposure.
My machine works in the open air, which is very damp most of the time at this time of year, but, with a properly cased powerful machine and a spark gap of one inch or more, I think it could be shown that one spark would produce a visibis image on the plate.
H. C. Ogden.

Middletown, N. Y.
[We have received from Mr. Oyden some specimens of his $\mathbf{X}$ ray photographs, which are very Gine; also the photograph mentioned, which shows the inage
produced by exposures of different lengths.-Eds.]

## The Utiltity of colored skin.

Man, no matter what country he inhabits and what are the exterior conditions that he undergoes, has an internal temperature that varies within very narrow limits. If the exterior temperature is very cold, the circulation becomes more active and the chemical
changes that generate heat are more intense, while changes that generate heat are more intense, while
physical conditions, such as friction and perspiration, contribute also a large part toward maintaining this balance of temperature by modifying at the proper time the formation or emission of heat. Races and climate produce in these vital actions certain curions modifications which have hitherto received little atten tion. It would be, for instance, interesting to know whether the human temperature is the samein all lati tudes and for every race. Davy was one of the first to take up this question in two voyages to Barbados nd Ceylon. He concluded that the temperature varie with the race by several tenths of a degree as we
approach the tropics. The observations of Jousset acpord with those of Davy. While other authors hav held a different opinion, M. C. Richet, who has sum ned up the work on this problem, concludes that "the temperature of men of different races, under the ame conditions of environment, is sensibly the same." This racial influence is then no greater than that which sowe have attributed to sex ; that is, it is prac tically null.
Dr. Eijkmann, director of the Pathological Institute of Weltevreden, Batavia, Java, has attacked this ques tion anew. He has especially tried to find how a Malay and a European react under the influence of exterior temperature, and what, in particular, is the role played by the color of the skin in the physical regulation of temperature. He tas performed, for the solution of this problem, the folluwing experiments.

One means of regulating temperature is by the oss of heat by conduction and radiation. If we place a thermometer near the skin of the arm or the chest and surround it with a sort of guard, the thermometer will rise the faster as the heat given out by the body is greater. M. Eijkmann has made this experiment in both Europeans and Malays. The results differ slightly according to season. During the warm and dry season the advantage is with the natives; the temperature of the thermometer placed near the arm is $33 \cdot 55^{\circ}$ C. [92:39 F.] with Europeans and $34.05^{\circ}$ [93 $29^{\circ}$ F.] with natives. On the contrary, during the cool, wet season, Europeans give $32 \cdot 75^{\circ} \quad\left[90^{\circ} \cdot 5^{\circ} \mathrm{F}\right.$.], while oatives give $32 \cdot 55^{\circ}\left[90 \cdot 50^{\circ} \mathrm{F}\right.$.] The latter have thus radiated off less heat. Observations made at different hours of the day prove that, in general, the loss of heat by radiation is a little less with natives than with Europeans, and this difference is about $0 \cdot 4^{\circ}\left[07^{\circ} \mathrm{F}.\right]$
What causes this difference? We must in the firs place eliminate the color of the skin. To test this, the author used twoexactly similar metal cylinders, covered with skin carefully removed frow the shoulders of persons who bad recently died. The one was from a European, the other from a Malay. On one cylinder the European's skin was placed outside the Malay's on the other, the Malay's was outside the European's. This arrangement was to prevent all possible error due toa difference in the conductivity of the two skins. The two receptacles were then filled with water in such manner that the thermoneters plunged in each marked at the outset the same temperature. The results of that there is made under these con in radiating power between the brown and the white skin. The bnibs of two similar thermometers were covered with a double layer of skin [as before]. .-. Thus disposed they were exposed in a damp chamber to the sun's
rays. At the end of a certain time the temperatures were as follows: White skin on outside, $475^{\circ}\left[117.5^{\circ}\right.$ F.]; brown skin on outside, $50 \cdot 1^{\circ}\left[122 \cdot 18^{\circ} \mathrm{F}.\right]$ But we return to the radiation. The color of the skin has no influence, and cannot explainthe fact that the loss of
heat is a little less in Europeans than in Malass.

Other experiments give us the true reasons, which re ate to the evaporation that takes place at the surface of the skin, which is greater in Furopeans because they drink more.-Paris Cosmos.

## Study of a Swise Avalanche.

Natural Science gives a summary of the report made by Profs. Heim, Forell and Chodat on the great Gemmi Passavalanche of September 11, 1895. The detailed description of the results of the catastrophe made by men of good standing in the scientific world is of grea value. The avalanche was caused primarily by the splitting a way of the lower parts of the Altels glacier The Abstract says: "On reaching the foot of the Altels, the avalanche, which up to this point must have consisted of one vast moving block of ice, measur ing one and a quarter millions of cubic meters [4,000, 000 cubic feet], was reduced to fragments, at the saine time that the heat generated by the shock converted these into a semi-fluid condition. Among the dehris were to be seen some blocks of considerable size, bu only a few exceeded two meters [ $61 / \frac{1}{2}$ feet] in diameter With the velocity acquired in its descent, this river of ice rushed across the pasturage and up the western slope of the valley to a height of 1,300 feet along the rocky wall of the Weissfluhgrat. Not being completey able to surmount this barrier, the main mass came surging back-like a vast sea wave recoiling from the cliffs-with such force that some of it returned to a cinght of one hundred feet up the eastern side. Isoheight of one hundred feet up the eastern side. Iso-
lated blocks, however, were hurled clear over the ridge into the adjoining valley, the Uschinenthal.
"The avalanche was preceded by a terrific blast of wind which swept a way chalets, trees, men, and cattle as though they had been feathers. This is proved by the fact that, far above the limit reached $b y$ the avalanche, hundreds of trees have been uprooted, and lie in regular rows. indicating with mathematical exactitude the direction of the aerial current. These trees are for the most part of great size, several indeed having trunks one meter in diameter. Such as were protected by a large rock or a reverse dip on the hillside have been spared. Others, standing with only half their height above such hollows, have had the exposed part blown off, while the subsequent oncoming of the avalanche has not succeeded in tearing up what was left of them, even when it has enveloped their base. This wind produced a veritable bombardment of ice dust mixed with stones, which has stripped the roots and branches of the trees laid low by the wind itself, and which must have killed man and beast before ever the real avalanche overwhelmed them. Further away the trees have only been denuded of their upper portion, the brauches composing which were transported to a great distance, and now form a compact line of debris among the far-off scattered trees, like the bank of sea wreck left on open cuasts after a fierce storm. Ice bombs, too, round like cannon balls, out with an average diameter of one font, which lay all about in the neighborhood of the fallen nass, bore eloquent testimony to the extreme violence of the wind. On the way from the Hotel Schwarenbach, before coming to the Bernese frontier, the green pasture was strewn with these balls like a battle field n old muzzle-loading times.
"The true avalanche, in its recoil from the rock wall, has formed an iifimense rampart, separated from the rock by a deep trench. On the sides, under the stress of the enormous power of the wind, which, like the avalanche itseif, was deflected by the Weissfluhgrat, blocks of considerable size were driven around as in a whirlpool, so as, at least on the northern edge, to have been forced back up the slopes of the Altels toward the entrance of the gorge leading to Kandersteg. These different atmospheric motions were well marked, wing to the disposition of the materials which came under their influence. Near the Winteregg, the trees, shrubs, and grasses were all bent toward the north, forming an exterior zone, which was more and more thickly covered with the dust, etc., raised by the catastrophe as the central mass was approached. A second zone, within the first, was found to consist of the loose rocks, etc., thrust aside by the head of the ice mass as it dashed up the west slope; the inner edge of this zone was itself covered by a layer of ice and snow, representing the matter that kept pouring off from the sides of the central body in its upward progress, and also the results of the reflux which took place when its further advance was barred. Some of the ice and stones hurled against the Weissfluhgrat had adhered to it, being plastered, as it were, into the issures and gullies. These masses were being constantly detached from their precarious position, and kept descending in roaring avalanches."

Dr. Roentaen has published some new facts about his rays. He finds that all solid bodies can generate them; the only difference being in the intensity, the greatest intensity being produced by platinum. He finds that the insertion of a Tesla coil between the Ruhmkorff coil and the ray-produciny apparatus is very advantageous, and that the $\mathbf{X}$ rays and the air traversed by them can discharge electric bodies

Meat and milk from Sewage Farms.
If a cow is fed on turnips, within twenty-four hours her milk will taste of turnips, and if butter be churned from the cream, the butter will taste too. The intensity of the turnip flavor is the measure of the quantity of turnips taken. In like manner, if pigs be fed on horseflesh, as they often are, their bacon will taste of the horseflesh; it they be fed on fish, the bacon has a fishy taste. The same is true of bens and their eggs. Feed hens on decaying animal matter, which they will eat greedily, and both their eggs and flesh will be most unpleasant and unwholesome eating. In the case of ducks the facts are much more striking. Ducks are very unclean feeders. Give them abundance of garbage, and they will refuse corn and similar food. Their flesh is then most pungent to the taste, and in many people is so potently poisoning as to produce diarrhooa. Animals fed on sewage farms under certain conditions are liable to bave their flesh and secrutions changed in character by the sewage-produced herbs and grasses upon which they feed. If the sewage on a given farm be so managed that no wore of it be put into the soil than any given crop can adequately deal with, then the crop will be sweet and natural, and the cattle or other animals fed on it will be sweet and natural too But if the soil be gorged to repletion with sewage, then the crops will be surcharged with sewage elements, and unfit for food, and the meat and nilk of animats fed on such crops will be like the crops, and very unpleasant to the taste as well as dangerous to the health. It is in the last resort all حquéstion of the intelligence and conscience of the managers of sewage farms.-Hospital.

## ARCHIMEDEAN SCREW USED FOR DRAWING WATER

The principal contrivance in this machine consists of a sort of covered screw (or Archimedean screw) placed diagonally upon its axis, the lower end of which enters the water of the reservoir, $A$, and the upper one of which ends in the reservoir, $B$, which is the one to which it is desired to raise the water.
Around the long piece of wood, C , that we call an axle, it is necessary to wind tubes of lead or other metal (marked $D$ and $E$ in the Gigure), the mouth of which will be in the reservoir, A, and their outlet a little above the reservoir, $B$.
When this Archimedean screw revolves in the proper direction, the parts of the pipes that enter the reser voir, A, will become filled with water through the mouths of the tubes, and, through the revolution of the tubes, the liquid will be gradually carried from the lower to the upper part of the screw, where it will empty into the reservoir, $B$.
This screw is revolved through the intermedium of the large wheel, $F$, which is at the upper end of the axle, $C$, and which is actuated by manual power in
pulling the rope, $G$, just as one pulls a bell rope. Ou engraving is from an old print.

## ORANGE TREE JACRET.

A jacket for protecting orange trees against the ac tion of frost has been patented by Mr. Philip F. Brown, of Blue Ridge Springs, Va. By reference to the illus tration it will be seen to consist of a tubular, longitudnally split waterproof jacket, which is formed of an inner layer of woolen goods or other suitable non-conducting material, and an outer coating of rubber. Arranged between the two layers are several coil springs, whose ends are held in the longitudinal edges of the


## BROWN'S ORANGE TREE JACKET.

jackets, so that under their action said edges will be caused to overlap and the jacket given the form of roll or coil.
To place the jacket in position, the edges are sprung apart and it is then drawn around the trunk, the springs causing it to close upon the tree and snugly mbrace it. Br keeping a stock of varioussizes of thes jackets on hand the orangegrower can jacket his grove at very short notice and thus prevent the great loss due to freezing. The use of this device makes it possible to grow the semitropical trees in the parks of the North.

## The Ruins of Ang-Kor Wat.*

Around the ruin, and some three or four hundred yards away from it, there is a wall twelve or fifteen eet bigh, and in an excellent state of preservation. It is impossible to follow this wall all throughout, on ac
*These, the most inacceseible and most interesting ruins in Furthe cribed in Surgeon-Major MacGregor's book, "Through the Baffer Sta
count of the dense jungle growing about it here and there. But I followed the outside of it as well as I could from the southwest corner to the south gate, and counted seven hundred and fifty-three steps, represeuting half the length of the wall in a west-east direction. Making due allowance for the more or less tortuous way that I was compelled to take, this rough measurement would make the wall in this direction something like three-quarters of a mile long. Our Kumer guide said that the walls, as well as the buildings, were square, with equal length of sides; but whether he was right or wrong about the walls, which we were not able to measure thorou;hly, we found that he was quite wrong about the buildings themselves; for I measured them afterward, and found that, with the exception of the central platform, they were really oblong in figure, with the longer sides directed east and west and the shorter ones north and south. Inside the parklike wall is another wall, only a few feet bigh; and inside this again, only a short distance from it, is the magnificent ruin itself. I happened to have a measuring tape with me, twelve yards long, but by attaching a piece of twine to it we were enabled to get a length of twenty-seven yards. With this combination we measured the building, and the measurements may be relied on as correct enough for all practical purposes.
The bass reliefs are raised three or four feet above the ground, and are about four or four and a half feet wide. Speaking ronghly, they look to the naked eye about half as wide again as the frieze of the Greek Parthenon, to be seen in the Elgin rooms of the British Museum. The sculptures are somewhat less "relieved" from the genoral surface than the bass reliefs just mentioned, but they are apparently quite as finely chiseled, and in a much better state of preservation. chiseled, and in a much better state of preservation.
It was on this inner wall that the measurements of $\mathbf{7 0 5}$ It was on this inner wall that the measurements of 705
feet by 588 feet were taken, extending from the outer door post on the one side of the building to that on the opposite side. Bass reliefs abound on the walls almost everywhere throughout the ruin ; but it is on the outside of this inner wall of the corridor that they are particularly abundant and extensive. Taking the sum of the four sides, there is nearly half a mile of almost continual sculpture on these four walls alone, and representing various scenes, most of which are of a warlike character, while one side in particular is occupied by what appears to be a tug of war on a large and ancient scale. Scores of men on one side are doing their ntmost to pull over exactly the same number of men on the other side, while the umpire, or whoever be may be, represented by a larger figure than the rest, is seen in the middle between the two contending parties, and sitting on the back of a turtle, whatever allegorical meaning that fact may contain.-Public Opinion.


