Šrientifir smmeritan.

ESTABLISHED 1845.
MUNN \& CO.. Editors and Proprietors. published weekly at
No. 361 EROADWAY, NEW YORK.
TERMS FOR THE SCIENTIFIC AMERICAN. Established 1845.)

he Scientific American sum

Hilding Edition of Scientific American (Established 188.5.)

Export Edition of the Scientific

The safest way to remit is by postal order, express money orde Readers are specially requested to notify the
failure delay. or irregularity in receipt of papers.

NEW YORK, SATURDAY, MAY $23,1896$.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 1064
For the week Ending May 23, 1896.

 paring blocks and a mach
thiekness. -2 illustrations
IV. WLECTRICAL ENGINEERING-Note: On the Baltimore \&

vir.

x. PHYsics.-Optcal Effects of Parallel Lines.-. Some very excel-
XI. TECHNOLOGY-Acetylene for Domestic Lifhting.-Mllustra-

the decadence of the apprenticeship system We, who are privileged to live in the closing years of the nineteenth century, are for ever telling our selves what a magnificent age it is; and we neve weary of hearing and repeating the count of our numbers, our wealth, and our wisdom. More often than not, this self-satisfied recital is rounded off with a contrast between what our forefathers were and what we have grown to be. In the main, the comparison is a just one, for as a matter of fact man, individually and collectively, is to-day better clothed, better fed, has more money in his pocket, and is cleaner in morals and person than he was fifty or one hundred years ago. In the midst of this general ad vance, and in some measure as the result of it, the student of social economics can detect bere and there the signs of a decided retrogression. Happily such cases are few but they exist, and no amount of material prosperity should be allowed to blind us to the fact. Among the many customs of our forefathers that have fallen into disuse, there are some whose lapse can only be regarded as a misfortune, and whose revival would prove to us that these customs were the outcome of experience, and that they were prompted by solid wisdon. There was a time in this country when the entrance door into every trade was strictly guarded, and the boy who aspired to the dignity of being ranked as a journeyman carpenter, machinist, or builder could only hope to do so br becoming bound in an apprenticeship of greater or less duration. His instruction, which was carried out with the characteristic thoroughness of former days, coumenced with the very alphabet of his trade; and each department was fully mastered before he was passed to the next. He attained at once manual dexterity and a knowledge of detail; and incidentally he acquired also a thorough respect for his trade, efficiency in which could only be gained after so many long years of training. At the close of his apprenticeship he was entitled to be called a skilled workman, and could command a journeyBut wages.
But to-day as the French would say, "we have changed all that." Apprenticeship is no longer the invariable rule-it is the rare exception. The careful, detailed instruction of the apprentice by the master mechanic has given place to a "hit-or-miss," "getthere" system, or, rather, lack of system, in which the boy's instruction is dependent upon the caprice of the journeymen whom he is told off toassist. In plac of the regular day-by day instruction of the apprentice, who, by virtue of his articles of agreement, wa entitled to continuous employment. the boys of to-day have to take their chance of picking up knowledge
and acquiring manual skill at the odd times when and acquiring manual skill at the odd times whe they may be so fortunate as to secure employment
Under the old arrangement, the boy was sure of re
him; and, woreover, he would be at times intruste with a joh which was a little beyond his powers. It was taken for granted that he would spoil some of his work; and to a certain extent he in this way offset the profit accruing to the master from his unremunerated labor
Under the present system there is no obligation, and certainly no disposition, to give the boy helpers any
work which they are likely to spoil. They are en gaged to do menial labor, and it is only in rare case of emergency that they get an opportunity to try their hand at a more important class of work. A green " hand in a machine shop is never regarded a a pupil. He is judged from the stand point of profit
making, and the tendency is to keep hin at work in making, and the tendency is to keep hin at work in
definitely at the machine with which he is familiar. The apprentice was moved from drilling machine to shaper; from shaper to lathe; from lathe to vise ; and by this varied experience he acquired an all round
knowledge and efficiency. But the specialization of work in these days has limited the range of a boy's op portunities to such an extent that he can never hope to gain much knowledge or execution outside the par ticular class of work to which he is assigned
It must be admitted, however, that excellent as were results under the old apprenticeship system, it would be impossible to carry it out under the present industrial conditions. The apprentice was "bound " to his master, lived under his roof, and ate at his board. Modern social conditions and the modern temperament would not lend themselves to a compact in which the position of the boy was one of very pronounced servitude; and the keen competition in the various industries, the close margin upon which the master mechanic has to figure in competing for a share of the trade, the speed and thorough system which are necessary in a modern workshop, all rende the careful raining of green hands in the shops a practical im ossibility. Neither the master mechanic nor the jnurneymen can spare the time for such personaloversight ; and work which has been contracted for upon
the smallest margin of profit cannot be trusted to the

But if the old system, good as it was, is impractica what, it will be asked, is to be the remedy? W e think
wh解 nown as the trade school
The idea of oversight was an excellent one ; and, so far as it can be exercised without interference with shop routine, it should be encouraged-at the same time the term of service should be very much re duced, and the relation of the boys to the master me hanic rendered more elastic.
The National Association of Builders has recommended that a lad who wished to enter a trade should go first to a trade school, and discover in which direc tion his tastes and aptitude lay. After passing an ex amination by a committee of master mechanics at the close of his course, he should enter the workshop as a junior. Here he would acquire speed and execution, and by the time he was capable of doing a "full day' work" he would be subjected to a second examina tion, the passing of which entitled him to be ranked as a journeyman. "Proof of ability, not length o service, is the test of what constitutes a mechanic in this system."
These suggestions are excellent, and they are thor ughly practical. The hope for the future of the American workman lies in the hearty co-operation of he master mechanics and the journeymen with the rade school system. If the American boy is to have ny chance of holding his own against the incoming tide of skilled foreign labor, some radical change mus e made in existing conditions. As we have shown, it s now well nigh impossible for him to attain the al ound efficiency which marks the foreign journeyman, and enables hin to secure work almost at the first ap plication. If the master mechanics would follow som ach scheme as was outlined by the national associa ion, the inefficient, or, as he is expressively known, the "botch" workman, would cease to exist.

THE SPEED TRIALS OF THE BROOKLYN AND

 THE OREGONDuring the past week two notable ships of the new navy have had their speed trials, and in each case the ontract requirements have been exceeded by ove knot an hour. On May 11. the Brooklyn, an im proved and enlarged New York, during a builders trial of three hours duration, using forced draught maintained an avera se speed of $21^{\circ} 07$ knots an hour which is 1.07 knots above the contract speed. Th verage revolutions of the screws were 132 and the team pressure averaged 155 pounds. It is gratifyin to learn that there were no signs of distress either in engines or boilers. As compared with the New York the Brooklyn is of 670 tons greater displacement measuring 9,150 tons against the New York's 8,480 ton: She is 400 ft , has 64 ft 8 in beam, and 24 ft mean draught. She is armed with eight 8 in . guns-t wo more han carried by the New York-ten 5 in. guns, and sisteen 6 pounder rapid-fire and machine guns. She is protected by a complete steel deck, 3 in. thick on the flat, and 6 in . on the slope, and by a water-lin belt of 3 in . steel plate backed by a double thickness of hull plating over the whole length of the "vitals." Moreover, the 8 in . guns are protected by 10 in . and the 5 in . guns by 4 in . of steel.
The performance of the Brooklyn on the Atlantic was excelled, relatively speaking, by that of the first class battle ship Oregon, in Pacific waters, a few days later. The Oregon is a sister ship to the Massachu setts, which we illustrated in a recent number. Th latter ship, it will be remembered, broke the record for her class by steaming 16.15 knots for four hours; bu on Thursday, May 14. the Oregon exceeded this speed y $\frac{68}{180}$ of a knot, maintaining the high rate of 16% knots on a four hours' continuous trial. This is mor than $13 / 4$ knots above the contract requirements, and unless there are tidal deductions to be made from her speed, she will earn a bonus of $\$ 175,000$ for her builders the Union Iron Works, of San Francisco.

latino-cyanids.

Arnulf Schertel describes, in the last Berichte, a new method of preparing platinocyanids. Platinum chlorid is precipitated by hydrogen sulfid at 60° to 70° and the well washed platinum sulfid is dissolved in a warm solution of potassium cyanid. On evapora tion the potassium platino-cyanid, $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4} .3 \mathrm{H}_{2} \mathrm{O}$ crystallizes out, and equal parts of potassium sulfid and potassium thiocyanate remain in the mother liquor. If a solution of barium cyanid is used, the barium platino-cyanid is obtained. With commercial potassium cyanid containing large quantities of sodium cyanid, Schertel obtained the beautiful double salt $\mathrm{KNaPt}(\mathrm{CN})_{4}, 3 \mathrm{H}_{2} \mathrm{O}$, described by Martius. In view of the fluorescence of the barium and other salts of the platino cyanids under the Roentgen rays, this simple method of preparation is of considerable inter-est.-Science.

At a recent meeting of the Paris Academy of Sciences M. Balland presented a memoir describing an analysis of a sample of rice over a century old. He found the rice only slightly deficient in fat.

