with a probable error from nine measurements of it is surmounted, attwo minutes before one is raised 0.0074 or an error of one part in 14,630 . The angular to the top, and at one o'cloek precisely the ball drops. velocity ω can with proper instruments be obtained By means of an electric current from the observatory with great accuracy.
The principal ballistic result obtained from the experiments may be said to be thelocating of a maximum point in the velocity curve outside of the gun. This maximum point is, in the present experiment, at 6 or 7 feet from the muzzle of the gun-certainly wore than 5 feet and less than 10 -or about 25 calibers in front of the muzzle. The increase in velocity from the muzzle to the waximum point is large, more than 40 foot seconds. The muzzle velocity being about 1,600 feet, this increas is about 2.5 pe is about 2.5 pe cent of the whole velocity beyond the maximuu point is compara tively gradual obeying the true law of the resistance of the air, so that the projectile must travel about must travel abou a hundred fee before the veloc ty is reduced to that which it ac tually had at the muzzle.
This maximum point introduces an error in the present method of obtaining muzzl belong muzzl velocities, in which the veloci ty is measured at a distance of 100 to 200 feet and re duced back to the muzzle by formu las. The Frank-
lin Institute has awarded the John Scott Legacy medal and premium to Lieut. Squier and Prof Crehore for this apparatus. *

THE ROYAL OBSERVATORY AND HOW THEY TELL THE TIME AT GREENWICH
by dr. d. dunbar.
Greenwich, situate on the winding Thames, five miles east-southeast from London, in the County of Kent, possesses a large amount of bistorical interest. It is the birthplace of many ilustrious persons, among them Henry the Eighth, Edward the Sixth, Queen Mary, Queen Elizabeth, and several children of Jawes the First. But it is not of departed kings and queens we propose now to speak. nor of the social attractions of Greenwich. It is a place of great resort, specially on a bright bank holiday
The observatory building is familiar to every inhabitant of the town, and well known to scientific men all over the world. It stands on the spot once occupied by the tower built by Duke Humphrey. At one time the observatory was furnished with a deep well for the observation of stars in the daytime, but the great improvement in telescopes rendered this unnecessary, and it is now arched over. An apparatus has been erected on the eastern turret of the observatory for the purpose of enabling the captains of vessels leaving the river to ascertain by it the rate of their chronometers, thus obviating the necessity of applying at the observatory. It consists of a large ball of wood lined with leather, which, in order to give preliminary notice, is raised at five winutes before one P. M., half way up a pole, by which
*This apparatus is described at greater length and withadiitional illustrations in Suprlement, No. 1051.

THE GUIDER AND PHOTOGRAPHER AT WORK

ONE OF THE DOMES.

The fixing of the standard of time depends on astronomical observations. When the sun is exactly south-on the meridian, as it is called-the hour is twelve o'clock noon. As the movement of the sun apparently fluctuates, astronowers call this apparent noon. At Green wich Observatory to the study of the sun is added that of the stars for accurately recording the time.
The way of it is this. There are two finely made clocks-the solarclock, keeping the solar time, and the sidereal clock, regulated by observations of the stars The sidereal clock is kept as the standard, and every night or day the weather permits, any error is determined by comparison of the clocks. The error of the solar clock is then corrected
The standard ime, therefore, is kept for the na tion at Green wich by constant observation of cer tain stars, checked by observaions of the sun tions of the sun There are sow two hundred and fifty stars calen dared at Green wich, which are known as clock stars. The ob servationsare made with a fine instrument called the transit or meridian circle. Greenwich h a the honor of hav ing been the first observatory in the world where a large transit

THE ROYAL OBSERVATORY AT GREENWICH

The observatory is an oblong edifice, divided into circle was mounted, viz., in 1850 . Briefly, it is a four apartments. It is a quiet, retired spot well walled large and fine telescope, mounted between two up around, some 150 feet above the average height of the river. The roar of London sounds muffled and dis tant, and only seems to emphasize the sense of calm ness and silence in this abode of science. Here, above the trees of the old park, and on the rim of tise mighty city, the astronomers keep the time for half the world Greenwich time is the standard for the British nation for British ships at sea, and for the ships of most other countries as well.
We were received by Mr. W. H. M. Christie, Astronomer Royal, and placed in charse of the senior computor, Mr. H. Furnel, to be escorted over the apart ments. We soon find that his acquaintance with the interesting and delicate instruments that are explained in turn is much greater than our limited powers of cowprehension. But Mr. Furnel, who has become a student of the stars, is a patient gentlemari who goes to much trouble in his endeavors to initiate layman in the mysteries of the heavens.
The main question of this paper is how they tell the time at Greenwich, and we shall endeavor to explain this in popular rather than in scientific language.
rhts, and pointing exactly to the center line-th meridian-of the heavens, as seen at Greenwich A er the telescope is so hung that will sound in. omplete circle between the uprights, it can view an point in this center line of the heavens. The roof o the room in which the telescope is placed can be opened by a sliding or trap door above it, and thus can expose any point of the meridian.
This center line is supposed to be drawn across the heavens from pole to pole of the earth, through the Greenwich zenith ; and it is when on this center line in their journey from east to west that the sun and stars are said to be on the meridian. When the sun i on this line, the hour is midday at Greenwich.
In the eyepiece of the telescope are five wires, one of which is exactly on the middle. When, therefore, the star passes this line, it is at the highest, or crossing the meridian. This, however, is not exactly the sam as the actual time, because no transit telescope is pro bably exactly on the meridian line, and the error is corrected by various calculations.
Connected by electricity with the transit circle is a "chronograph," which at Green wich is on the other side of the courtyard.

The chronograph is a cylinder ou which paper is fixed, and on paper is registered the times of the stars

TAKING AN OBSERVATION.
transit across the fine lines of the telescope. It can ${ }^{1}$ the last few years, however, the sources of this numer also register the seconds of a sidereal clock. By this system of registering the transit of stars greater accuracy is gained and also greater time is permitted to the observer to gaze through the telescope.
But it may still be asked, Why are stars selected to tell the time? Because, for one very potent reason, there is but one sun, and there are so many stars; therefore, so many more chances of good observation. There are very few nights on which some of the 250 clock stars used at Greenwich are not observable. Further, the observations on the various stars may be used to check one a nother and correct errors, while but one observation of the sun on the meridian can be made.
But how can the passing of the star over the me ridian tell the time? In this way: The complete turning round of the earth on its own axis causes a day and night, that is, twenty-four hours, which, in astronomical language, form one day. If, then, a certain star be on the meridian at such a time, it should be on the meridian again, after a lapse of twenty-four hours, at precisely the same time; and the clock, to bs accurate, should agree. The earth has made one complete turn round, one complete rotation, and one complete day and night have passed. This is termed a sidereal day, and it is regarded by astronomers as always of the same space of time, because the turning of the earth is regarded as exactly uniform.
The solar day or solar time is measured by the pas sage of the sun day after day across the meridian, and is four minutes more than the sidereal day. Further, the solar day differs somewhat in length, through the movements of sun and earth; thus the earth moves more quickly in winter than in summer; and these ing time. The result is what is called "mean" time.
The reason of the difference of four minutes is that one revolation is added to the diurnal revolutions of the earth on its axis, in consequence of its revolution around the sun in its orbit, so that while there are in round numbers 365 days in the solar year, there are
366 sidereal days. The four minutes per day difference, therefore, makes in the year another whole day, that is, 24 hours 20 minutes. Four minutes saved or lost in a day, you see, make up a whole 24 hours at the end of the year.
But the keeping of the time is not the only work that is done at the observatory. There are ten great telescopes, the largest one being nearly 30 feet long with an object glass of 28 inches. Over this is a beautiful dome, made like the others of papier mache stretched over iron framework. This gives lightuess
and strength, enabling the dome to be easily worked on wheels. One portion, opened like a sliding shutter, reveals a strip of sky from the zenith to the horizon so that by turning the dome round, any part of the sky can be easily and speedily brought under observa tion.

The large telescope is devoted to the stupendous work of photographing the heavens. About a dozen observatories are engaged in this truly gigantic task each having a certain portion allotted to it.
All is remarkably quiet at the observatory, Green wich. Day after day and night after night the obser vations go forward and the calculations are made ducing by calculation the various observations tha have been made

For anything I have been able to say, I am in debted to the astronomer royal and his able assistants; also to those who like myself have visited the royal observatory at Greenwich and made notes, and by comparing notes have been assisted in reaching accuracy.

Bacteria in Milk.*

Bacteria are plants of almost inconcei vably minute size. So small are they that in some cases $50,000 \mathrm{might}$ stand side by side and the whole line only reach a length of an inch. They are extremely simple also. Some of them are simple balls, others are short cnes and others still are of a spiral shape. But although thus very small and simple in structure, their power of multiplication are so great as to make them factors of profound signiticance in the processes of nature. So rapidly can they multiply that in some cases a single individual in the course of twentr-four hours
may produce nearly twenty million offspring. This may produce nearly twenty million offspring. Thi power of multiplication is so enormous we mast
be surprised to find them capable of accomplishing by their growth many great changes in nature.

Pure wilk, as it is secreted from the udder of the ontains no bacteria. If the cow b diseased, this may not be true, but the milk from the healthy fow contains no bacteria when first secreted.
Nevertheless, by the time the milk reaches the milk pail it will contain from 30,000 to $5,000,000$ bacteria per cubic inch. It is hardly conceivable that the few moments of the milking should be sufticient to contaminate the wilk to this extent. We have learned in
ous host.
Part of them, a small part, come from the air; part of them are already in the milk picil. The dairyman never washes his milk pail free from bacteria. Even with the most thorough washing which the pails receive on the ordinary farm the bacteria are not killed, but remain alive, adhering to the cracks in the tin, or in the crevices in the wood. Part of them come from the milker, for he commonly goes to the milking with out any special toilet, with his hands not clean, and clothed in the ordinary farm clothes which have become filled with bacteria from numerous sources. But by far the greatest number come from the cow herself. These are not, however, from the interior of the cow, but from her exterior. First, her flanks are always covered with dirt. Frequently they are cover ed with layers of dried manure, and always the hair of the legs, sides, flanks and tail are covered with a large amount of dust and dirt. All of the dirt and manure is crowded with innumerable hosts of bacteria. Again, the milk ducts of the cow's teats form a prolific breeding place for the bacteria. After each milking some milk is left in the milk ducts, and in this the bacteria which may get to teat from the air or the dirt or hairs of the cow find abundant food. Here they multiply, and by the time of the next milking they are present in countless millions, ready to be wash ed out with the first milk that is drawn.

Frow such sources, then, the wilk receives its popu lation of bacteria, and these sources are sufficient to inoculate the milk to the great extent mentioned The great remedy for them is cleanliness. Remember ing that the bacteria grow rapidly after getting into the wilk and begin to multiply with great rapidity the value of the immediate application of cold to the milk is plain. The milk when drawn is in just the best possible condition for them to multiply. Immediate and rapid cooling so greatly checks the growth of bacteria as to greatly reduce the number present in
the course of twenty-four hours. This is the the course of twenty-four hours. This is the explan-
ation of the fact that the milk dealer not infrequently ation of the fact that the milk dealer not intrequently
has complaints from his patrons that his morning's milk sours, while no such complaints are received of the milk of the night before. The latter was cooled delivg the night, while the former was taken to delivery at once from the cow or with insufficient cool the milk of the reason it actually sours quicker than the milk of the night before, which needs
before the bacteria can grow in it rapidy.
If milk contained no bacteria, it would never under go any of the common changes which are common in
milk, for all of these are produced by the milk, for -all of these are produced by the growth of the bacteria. But these bacteria are of many kinds, and even those that commonly get into milk are of
many different species. Certainly over 100 different species of bacteria are common in our milk. But these different species do not all produce the same effects on the milk. Some of them sour it by changing the milk sugar to lactic acid. This, as well known, is the most common effect arising in milk upon standing, but others produce other results. Some of them make the milk bitter; some curdle it, but render it alkaline or sweet to taste; others give it an unpleasant, tainted taste; others, again, render it slimy or ropy; some turn it blue or yellow or red.
We are accustomed to think of bacteria as unwitigated nuisances. We think of them as the causes of disease, and if, perchance, we think of them as conoded with dairy matters, it is always as the cause dairyman really benefits from them more but the fers. Their beneficial effects are shown than he suf fers. Their beneficial effects are shown upon at
two important dairy products, butter and cheese.
Every one knows that cream is seldom churned whe fresh. It is allowed to stand in a vessel or vat for a time and undergoes a process which we call ripening, or which is in some parts of the world simply called souring. During this ripening the cream acquires a pleasantly sour taste and a peculiar pleasant odor. This ripening is nothing more than a fermentation due to the growth of the bacteria which are in the cream. During this twenty-four to forty-eight hours he bacteria which were in the cream multiply rapidly, until at the close of the ripening there may be as many as $2,400,000,000$ per cubic inch. This growth produce fermentation, just as the growth of yeast in the brewery malt produces its fermentation.
The object of this ripening is at least threefold. First, it makes the cream charn more readily, and, second, it gives a larger amonnt of butter from a given lot of creann. The third object is to give flavor to the butter. The explanation of the flavor is simple enough. producing, as they are froeding in the cream it, certain chemical changes in it. As the result of these chemical changes decomposition products are developed, and these products have various flavors and odors. If the ripening is allowed to continue long enough, the whole mass becomes decayed and the flavors and tastes are decidedly unpleasant. But the first products of deapreeable, and it is of being innpleasant, are decidedly
cream and to the subsequent butter. After they have developed in the cream, the churning simply separate the butter already flavored with these products Thus the flavor and aroma oi a tirst class butter are the gifts to the butter maker from the bacteria of the ripening period.
To make good butter, the butter maker needs not only the freedom from the species of bacteria which produce unpleasant flavors, but he needs also the presence of the species which produce the desired flavors. Butter made from cream that comes from the cleanly kept dairy may be depended upon not to de velop the unpleasant flavors which arise in butter of cream from the filthy dairy and barn.
But to insure the proper number of proper flavor producing species simple cleanliness is not so much to be depended upon. In many such cases it is true the proper flavor-producing species will be present, but not always. But why is it not possible to directly in oculate the cream with the proper flavor-producing species, just as the brewer inoculates h is malt with yeast? This does, indeed, a ppear not only to be pos sible but perfectly feasible, and it involves the use of what are now known as starters. The starter is simply a lot of cream or milk containing a large number of bacteria, which is poured into the cream to be ripened to start the proper kind of fermentation. The starters are of two kinds. Natural starters, which are easily made by any butter maker, and artificial start ers, which are made upon a different plan. Our bac teriologists, both of this country and Europe, have been searching for proper flavor-producing species, and having found them, they propose to furnish them in quantity to the butter maker for use in his cream ripening. In the use of these starters the species of bacteria furnished by the bacteriologist is allowed to grow in a small lot of cream until its species is very abundant and then the cream is added to the large at as a starter. The result is that the butter make an always depend upon having present a quantity of the proper flavor producing species, and can, there fore, depend with more certainty upon the product. This method of using artificial starters is not new. It has been adopted in Denmark and some other coun tries of Europe to a wide extent. In this country it has been used only for about a year, and is only just coming to be recognized as a proper method of butter making. The bacteria favorable for this purpose ar now upon our markets, two or three different ones be ing now used in this country. They are generally known as pure cultures, a term which simply means arge quantity of one species of bacteria unmixed with others.
The bacteria are even more needed in cheese mak ing than in butter making. A fresh, flat, curdy tast seen in fresh cheese. The cheese to be marketable uust be set aside for a few weeks to ripen, and during the ripening the flavors develop. This ripening again is simply a feriuentation. It is a fermentation of a different character from that of cream ripening. It takes place more slowly and the products are of a dif erent nature, but it is none the less due to the growth of bacteria, and the different flavors of different cheese are due to the growth of different kinds of bacteria i the cheese. But the problem has proved a diffical ne to handle, and while the general facts are easily made out and are demonstrated beyond question, very ittle in the way of practical results has as ye been reached. A future in this line can hardly be questioned.

The World's wine Production
The Moniteur Vinicole has recently published a statement showing the wine production of the various countries of the world. From this statement it appear the yield in France amounted in the years 1895 and 1894 to $587,127,000$ gallons and $859,162,000$ gallons re pectively; in Algeria to $83,549,000$ and $80,124,000$ gal ons; Tunis, 3,956,000 and 3,936.000; Italy, 469,555,000 and $539,000,000$; Spain, 379,500,000 and 528,000,000; Portugal, 43,890,000 and 33,000,000; Azores, Canaries, and Madeira, 4, 620,000 and 2,640.000; Austria, 66,000 000 and $88,000,000$; Hungary, 63.030.000 and 46,103.000; and Germany, $80,190,000$ and $110,000,000$ gallons. In Turkey and Cyprus the production last year amounted to $52,800,000$ gallons, and this compares with an average vield of $40,000,000$ gallons. In Bulgaria the yield was $26,400.000$ gallons; Servia. 17,600,000; Greece, 35,200,000 ; Roumania, 68.640000 ; Switzerland, 27,500,000; the United States, 89,700.000 ; Mexico, 1,980,000 ; Argentine Republic, 29,700 000 ; Chile, 33,000,000; Brazil, 7,700,000; Cape of Good Hope, 2,420,000; Persia, 594,000 ; and Australia, 3,300,000 gallons.

Many of our readers will be glad to know that the long expected distribution of Columbian World's Fair diplomas and medals has begun. On April 20 a consideranumber of diplomas and medals were given to Baron Thielmann, the German ambassador, for distribution in Germany. Those awarded to American exhibitors will be ready for delivery in a short time. The excessively long delay is to be deeply regretted.

Largest and Smallest Books.

Prof. Max Muller, of Oxford, in a recent lecture, has called attention to the largest book in the world, the wonderful "Kuth Daw." It consists of 729 parts in the shape of white marble plates, covered with inscriptions, each plate built over with a temple of brick. It is found near the old priest city of Mandalay, in Burma, and this temple city of more than seven hundred pagodas virtually makes up this monster book, the religious codex of the Buddhists. In accordance with the three parts of which it is composed, generally called in a figurative sense "baskets" (pitaka), the whole is often termed "the three baskets" (tripitaka), and constitutes a library larger than the Bible and the Koran together. As the Jews figured out that the Old Testament contained 59,493 words and 2,728,100 letters, so the Buddhist priests have computed that letters, so the Buddhist priests have computed that
the "Tripitaka" contains 275,250 stanzas aud $8,808,000$ syllables. This monster book is written in Pali. Rather strange to say, it is not an ancient production, but its preparation was prompted by the Buddhistic piety of this century. It was erected in 1857 by the command of Mindowin, the second of the last kings of Burma. As the influence of the tropical climate has already marred the inscriptions, a British official, Mr. Ferrars, proposes to have these 729 plates carefully photographed, and asked that the government, or some friend of science able to do so, make provisions for this. Prof. Muller urges that this be done in order to preserve at least the pictures of this unique templecity book.
A noteworthy contrast is furnished by a recent German literary journal deseribing what is probably the smallest book in the world. This is a "Konversationslexikon," published in Berlin, and prepared by Daniel Sanders. The volume occupies the space of only six cubic centimeters (0.366 cubic inch), although it is claimed to contain 175,000 words. The book must be read through a microscope especially prepared for it. Mining and Scientific Press.

ENGLAND AND THE SOUDAN.

For the accompanying pictures of Soudanese women and warriors, reproduced from photographs by Dr. Jousseaume, we are indebted to Le Monde Illustre. The Soudan includes, in a general way. all the territory south of Nubia and the present British possessions in Egypt to the equatorial lakes, and from the Red Sea on the east to the desert on the west. It is estimated to have a population of from five to seven millions, and is ruled over by the Mahdi, whose seat of government is at Omdurman, and whose lieutenant, Osman Digna, has uade frequent raids into the English territories in upper Egypt. To strengthen and possibly ad vance their frontier, a British expedition of some 9,000 native Egyptian troops, and a contingent of British soldiers, is now advancing up the Nile, although it is not expected that the most serious part of the campaign will begin until September or October, when the rise of the Nile will permit the carrying of supplies for the troops up the river in boats. It is said the dervishes all the time have some fifty thousand men under arms-a force which they could vastly increase without trouble, did mere numbers seem desirable. Famine, disease, the slave trade, and war among the tribes of the Soudan are reported to be thinning out the population.
H. Moissan describes two new metallic borides, say the Comptes Rendus, obtained at a temperature of temperature of $1,200^{\circ} \mathrm{C}$., nicke boride, NiBo and cobal boride, CoBo. Both occur in brilliant prisms several millimeters in length and are magnetic Their densities at 18° are about the samenickel boride 739: cobal boride, 7×25 The properties of the borides are analogous to those of iron boride, and the compounds

SOUDANESE WARRIORS.

serve for the introduction of boron into a metal such	through the frame near the handle bar. The turn
as iron when at a high temperature. It has been	table that supports the apparatus is mounted upon

THE CARRIAGE OF BICYCLES BY RAILWAY. Among the numerous systems of carrying bicycles by railway, now proposed or put into practice, one of the wost ingenious is certainly that devised by Mr. J. Oller, and which is at present on exhibition at the third Salon du Cycle at the Palace of Industry, Paris. The apparatus, which is represented herewith, con-

APPARATUS FOR THE CARRIAGE OF BICYCLES ON RAILWAYS-ELEVATION AND PLAN.
sists essentially of a turn table capable of receiving en bicycles arranged vertically around a central pivot rom which they radiate and are held in place by two series of forks, which embrace, respectively, the fore wheel above and the hind wheel below. One of the branches of the fork is stationary, while the other, monnted upon springs, is capable of receding from the first through the pressure of the pneumatic tire, which the springs hold in place in such a way as to prevent any tossing about. As a further measure of precauor the bicycle that is to be removed from the support. The bicycles thus stowed away are perfectly inde pendent, and well arranged for easy approach when pendent, and well arranged for easy approach when the time comes for putting them off the car. An ordi-
nary baggage car is capable of receiving two of these novable apparatus, say twenty bicycles, and yet leave a free space between them for two bicycles or two tandems. These apparatus may also be placed upon trucks or open cars during fine weather, when a crowd of bicyclists is anticipated upon a line on a holiday.
The same arrangewent, mounted upon an ordinary truck, will furnish the ideal vehicle for a system of bicycle transportation aralogous to that used in large cities for the carriage of pianos. A special truckman with this apparatus will be able to deliver unpacked bicycles either to rrivate parties, on the account of railway companies or of cycle manufacturers, or to railway stations.

We do not dare to assert that the apparatus under consideration affords a complete solution of the problem of stowing away bicycles upon cars, says La Nature, but, with the present form of machines and their handle bars, we know of none more simple and practical.

Intoxicated Wasps.

Concerning his observations of wasps which are addicted to the use of intoxicating liquors, Lawson Tait relates the following :
"I have been watching the wasps with great interest and have noticed the avidity with which they attack certain fruit when fully ripe, rotting in fact, and have also noticed some of the peculiar results of their doing so. The sugar in some fruits which are most attacked by wasps has a tendency to pass into a kind or kinds of alcohol in the ordinary process of rotting a fact which is easily ascertained by the use of a still not large enough to attract the attention of the excise authorities. On such fruits, particularly grapes and certain plums, you will see wasps pushing and fight ing in numbers much larger than can be accommodated, and you will see them get very drunk, craw away in a semi-somnolent condition, and repose in the grass for some time, till they get over the 'bout,' and then they will go at it again. It is while they ar thus affected that they do their worst stinging, both in the virulent nature of the stroke and the utterly unprovoked assaults of which they are guilty. I wa stung last year by a drunken wasp, and suffered severely from symptoms of nerve poison for severa days. In such drunken peculiarities they resemble their human contemporaries."-Registered Pharma cist.

Niagara's Power Transmitted to New York.
A model of Niagara River, thepower house, the town and the discharge tunnel will be exhibited at the National Electrical Exposition to be held in New York in May. The model is 12 feet by 4. The turbines will be run for a time each evening with electricity gener ated at Niagara Falls and transmitted to New York ed with instru-
ments at Ni agara, so that the roar of the falls may be heard. It is also said that some steps are being taken to deliver some of the current to condensers connected with an Atlantic cable, so that the power of Niagara way be transmitted to Europe.

Dr. Holden, of the Lick Observatory, has received thedecoration of the Order of BoliOrder of Boliar (of Venezula) for his disservices to sci-
ence. He has ence. He has previously received the decoration of commander of the Ernestine Order of Saxony.

