Srientific gmerican．

ESTABLISHED 1845

MUNN \＆CO．，Editors and Proprietors． PUBLISHED WEEKLY AT
 No． 361 BROADWAY，NEW YORE

TERMS FOR THE SCIENTIFIC AMERICAN

 （Established 1845.One copy，one year．for the U．S．，Canada or Mexico．．．
Onecopy，six months，fortbe U．S．，Canada or Mexico

Onecopy．oneyear．to any foreigncountry bel onglngto Postal Union 4
Remit by postal or express

MUNN \＆Co．， 361 Broadway，corner of Franklin Street，New York．

The Scientific American \mathbf{S}
Established 1876

Building Edition of Sclentific American． Established 1885

Export Edition of the Scientific 1 merican

 r bank check．Mase all remittances payable to order of MUNN Gت．Readers are specially requested to notify the
any fallure delay，or irregularity in receipt of papers．

NEW YORK，SATURDAY，APRIL 4， 1896.

TABLE OF CONTENTS OF SCIENTIFIC AMERICAN SUPPLEMENT No． 1057.

For the week Endiug April 4， 1896 Price 10 cents For sale by all newsdealera

 1．AUTOCARS．－Mechanical Road Carriaeses． B W．Worg BEAD

\qquad

\qquad

，has his hopes easily raised．His probably rather exalted idea of the merits of his invention is still further increased，and he is induced to put him self in the hands of the firm．He is then exploited to the best of the practiced ability of the＂firm．＂He is advised to engage them as patent agents for for eign patents，and perhaps he is told that they have a take out a certain number of fill exhorted to invest capital if he has it，if not，to get money from his friends and to organize a company Perhaps an alleged sale of his patent or of partia rights in it will be made and a check conveniently
dated a month or more in advance will be shown him －－a check which，of course，is never collected．These are no fancy sketches－precisely such lines of action are followed by numerous concerns．It has even gone so far that a sictilarity of name has been used to dis honestly impress the inventor with
dealing with a firm of reputation．
The conservative patent agent who will give honest advice as to the patentability of an invention，but who will long hesitate before either approving or condemn－
ing its practical utility，and the probability of its suc－ cess，is the one who can be trusted to conduct the busi－ ness properly．The agent who has no conscience will urge the in ventor to apply for a patent，even though lie is aware that the device is not patentable．
The public is the final judge of the merit of inven－ tions－directly or indirectly their value is settled at
predicted with certainty．Every patent has to stand on its own merits ；its exploiting must depend on the ground it covers，for a different clientele is to be reached by each in vention．
The remedy for this state of things is simplicity itself ：it is to be careful with whom you deal．The issuing of circulars tending to inflate the hopes of patentees is in itself a bad sign，as far as the standing of the tirm issuing such circulars is concerned．
Deal only with attorners of known integrity whose long record of service makes them well known and who have been tried and have not been found wanting．

the lick observatory expedition to observe

 THE TOTAL SOLAR ECLIPSE OF AUGUST，1896，IN Japan．It is proposed to send an expedition from the Lick Observatory to observe the total solar eclipse of Au－ gust next in Japan．The necessary expenses of the expedition will be met from a fund provided by Col． C．F．Crocker，one of the Regents of the University of California and a member of the standing committee on the Lick Observatory．
The expedition will be under the charge of Prof． Schaeberle．
Its prognamme will be wholly photographic in char－ acter．Prof．Schaeberle will make large scale photo－ graphs of the corona with a lens of 40 feet focus（giv－ ing an image of the sun about $4 \frac{4}{10}$ inches in dianeter on a plate 18×20 inches）on the plan so success fully carried out by him at the Chile eclipse of April， 1893.

All difflculties in the mounting of so long－focused a lens are avoided by keeping the lens stationary and making the carriage for the sensitive plates movable． The lens is placed in the proper position for seeing the sun during totality．A large canvas tube（ 40 feet long） is stretched over a frame of gas pipe tubing．At the further end of this frame is an inclined railway carry ing a holder for the negative plates（ 18×20 ）．A clock－ work drives the frame at the proper speed．The ob server is stationed inside of his telescope，and makes the exposures according to a programme fixed before－ hand．Some of the exposures will be very short，in order to obtain the finer details（only）close to the sun＇s order to obtain the finer details（only）close to the sun＇s
edge．Others will be longer to obtain details further edge．Others will be longer to obtain details further
out，and these plates will sacrifice some of the details out，and these plates will sacrifice some of the details
close to the edge，for these ！regions will be overexposed． A study of all the plates obtained in this fashion will give a complete account of the whole corona，though no single plate will do so．
Mr．Charles Burckhalter，director of the Chabot Ob servatory，in Oakland，some time ago imagined a plan for giving the correct exposure for each part of every plate at an eclipse．He will accompany the Lick Ob plate at an expipse．He Japan and will make a trial of servatory expedition to Japan and will make a trial of
this plan，using a telescope of 4 inches in aperture and this plan，using a telescope of 4 inches in aperture and
of 15 feet focus，specially made for the eclipse at the of 15 feet focus，specially made for the eclipse at the
cost of Hon．W．M．Pierson，of San Francisco．（The image of the moon is about $1 \frac{7}{10}$ inches in diameter．）
This telescope will be mounted equatorially and will follow the sun．The image of the eclipsed sun will fal on the negative plate，in front of which is a rapidly rotating diaphragm．（The plate has a hole in its cen－ ter through which passes an axis driven by clockwork On the end of the axis in front of the plate，and close to it，is a rotating fan or diaphragm．）The diaphragm is cut into the shape of a double cam，one cam beine inverted，so that it is perfectly in balance，and it makes about five revolutions per second．

One of the double cams has such an outline that if the corona at the moon＇s edge has an exposure of one second，the exposures elsewhere will be ：

Other differently shaped cams are provided，each解 older．When the plate holder is lifted，the clock tarts automatically and runs for about 15 minutes Five or six such plates will be exposed during totalits Each plate will be exposed much longer at the outer imits of the corona（where the light is weakest）than at the inner limit（where the light is strongest）．It is herefore hoped to secure，in this way，a photograph of the corona on a single plate，every part of which has received the proper exposure．This single plat will then exhibit all the defails of the corona，and it will no longer be necessary to build up，as it were，the real corona from a series of plates（each one of which underexposed for one region，overexposed for an other，and correctly timed for another）．
Mr．Burckhalter＇s ingenious plan deserves a trial The only difficulties in the way are mechanical ones， and these are now supposed to be conquered．
Besides the 40 foot lens Prof．Schaeberle will tak with him a 5 inch photographic refractor（presented to the Lick Observatory by Miss Floyd）and a Dall meyer portrait lens of 6 inches aperture（lent by Hon． W．M．Pierson）．
The former instrument will be used to make small
scale photographs (on 5×7 plates) of the corona and surrounding stars (and possibly comets) ; and at least two of these plates will be impressed with squares of $1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s}, 8 \mathrm{~s}, 16 \mathrm{~s}$, exposure from a standard lamp before they are exposed to the light of the corona When they are developed, the squares of standard intensity will appear at the same time with the image of the corona, and a photometric measure of the brightness of the latter is thus possible, in terms of the brightness of the standard lamp. This plan (first carried out by the Harvard College Observatory) has been followed at all the eclipses observed by Lick Observatory parties, viz., January, 1889 ; December 1889 ; and A pril, 1893.
The portrait lens will serve to register the extension of the corona and a wide field of stars (and any pos sible new planet).

Messrs. G. E. Shuey and Louis C. Masten will go with the party as volunteer assistants and will be in charge of the smaller instruments. Prof. H. Terao, director of the Imperial Observatory of Tokyo, has kindly offered to select a member of the staff of his observatory to accompany the Lick Observatory expedition, as one of its members.
The Hon. Secretary of State, the United States Minister and Consul-General in Japan will do all in their power to forward our plans. It is to be hoped that the expedition may meet with good weather and re turn with results which will reward its labors.

THE MANOFACTURE OF PAPER.

Prominent among the greater industries of the United States, which have grown to large proportions during the past twenty-five years, is that which is devoted to the manufacture of paper. At a recent meeting of the American Paper Manufacturers' Association the president stated that the association was formed about eighteen years ago, and that the pape business had since taken on a rapid growth. At that time the manufacture of paper in the Uuited States had grown to such an extent after the war that the
capacity of the mills in 1878 in the production of pacapacity of the mills in 1878 in the production of pa-
per amounted to nearly 3,000 tons of product ner day. To-day the capacity of the mill product in this coun try is about 12,000 tons per day.
The general public has little idea of the size and cost of an average paper mill. The finished product, as we see it in our books and our daily newspaper, is so supposed to be made are so cheap, and for most other purposes worthless, that to many it will be a surprise to learn that an average paper mill costs from $\$ 1,000,000$ to $\$ 3,000,000$ to build and equip. It is capa ble of turning out some 40 tons of paper per day, and to run the machinery requires boilers and engines of not less than 3,000 horse power. For wash ing the pulp, etc., there will be required $4,000,000$ gallons of water per day, or enough to supply a city of be filtered by the most approved modern processes
The manufacture of the paper may be broadly The manufacture of the paper mav be broadly
separated into two processes, consisting, first, in the preparation of the pulp, and secondly, in the formation of the paper from the pulp.
I. The Preparation of the Pulp.-The popular idea that paper is made from rags is true only of fine writing paper, which is made entirely from this material; but newspapers and most book papers are made entirely from wood. The better class of book paper is made from wood and a small percentage of rag. There are two kinds of wood pulp.

1. Ground or Mechanical Wood Pulp.-This is made by grinding the ends of spruce wood logs against revolving emery wheels. This is done under water, and the result is a finely divided wet sawdust. The wood retains all its natural gums and acids and has no fiber. It must be used with some more fibrous material, such as chemical wood pulp. This is the cheapest form of pulp, and it is therefore only used for newspapers and so-called manila wrappings.
2. Chemical Wood Pulp is made from spruce or poplar. The timber comes to the mill in barked logs, which are four feet long, and have had all the knots carefully bored out. The logs are fed into a "chipper," carefully bored out. The logs are fed into a "chipper," in which the knives are arranged at an angle of 45 de-
grees to the center line of the machine. These knives grees to the center line of the machine. These knives which are half an inch long. The chips are conveyed to "digesters," which are upright cylinders 7 or 8 feet in diameter and 30 feet long. If sfruce wood chips are being used, they are treated by the acid process, the digesters being lined with acidproof brick. The acid liquor is obtained by mechanically combining sulphurous acid gas with milk of lime, and forming a bisulphite of lime. The digesters are filled with chips
and liquor in proper proportions, and are then herand liquor in proper proportions, and ara then her-
metically sealed. Live steam is introduced, and the chips are boiled for eight hours under a pressure of 110 pounds to the square inch.
If the chips are made from poplar, the process is the ash and water.

After the boiling is completed, the contents of the digesters are blown out into a receiver, where it pre sents the appearance of a mass of soft pulp. The liquor is then washed out; and after the pulp has been bleached, it so closely resembles the rag pulp, which is used in the manufacture of fine book paper and writing paper, that only an expert can tell the difference, both being a pure vegetable cellulose. The pulp is now subjected to a process of beating and macerating to reduce it to the proper consistency; and at this stage coloring may be added to give any desired shade. A certain amount of sizing is also introduced-the sizing being made from resin "cut" with soda ash-fo the purpose of giving impermeability to moisture and
a firm surface; otherwise the product would be a a firm surface; otherwise the product would be a simple blotting paper.
The pulp is now ready to go to the paper machine It should be noted here that newspaper pulp is formed of 80 per cent ground pulp and 20 per cent chemical pulp. Book paper is formed entirely of chemical II.

The Paper Machine.-If he bear in mind the frail nature of the article which it is designed to handle, the visitor to a paper mill will be astonished at the great size and weight and the massive strength of a paper mill.
At first sight, the massive cast iron and steel frame, from eight to ten feet wide, and from one hundred and fifty to one hundred and seventy-five feet long, ap pears to be better fitted to manufacture iron and steel than to handle the thin, milky fluid which stands ready for manipulation at the upper end of the machine. The wet pulp, of which 95 per cent is water, first passes through a screen, where it is cleaned. It then flows into a vat, at the further edge of which is provided an outflow, which consists of a true, level, edge or lip which forms a kind of weir, over which a broad, thin stream of pulp flows onto the paper machine proper. This stream is the full width of the machine, and its depth has to be kept perfectly true and even throughout. The pulp falls onto what is known as the Fourdrinier wire. This is an endless wire cloth, seventy meshes to the inch, which is the full width of the machine, and travels continuously over a set of parallel rolls, passing around an end "couch roll," and returning again under the machine In addition to its forward motion, this wire cloth or screen has a lateral rocking motion across the machine. As the pulp flows onto this wire a large portion of the water, assisted by the shaking, strains through and passes away, leaving a thin film of pulp, which is the future sheet of paper. This film is picked up off the "conch roll" by an endless woolen felt, which carries
the wet sheet between several gun metal "squeeze the wet sheet between several gun metal "squeeze
rolls" or "press rods," which force out a suffcient amount of water for the sheet to be able to sustain its own weight.
At this point the sheet is transferred to an endless cotton felt, which supports it while they both pass over and around a dozen or more driers, which are hol low cylinders 3 feet in diameter and extending the full width of the machine, through which a constant flow of live steam is maintained. These thoroughly dry ut the paper
At this stage of the process the sheet is rough and uneven, presenting very much the appearance of a shect of paper that has been wetted and allowed to dry out again. It now has to be ironed out, as it were, and the desired finish imparted to its surface. For this purpose it is passed through the calenders, which consist of two vertical standards which carry usually 11 superimposed chilled steel rolls of the very highest possible polish. The paper is inserted between the upper two and passes down through the whole set, the desired pressure being obtained by means of powerful screws. This process is repeated in a second stack of rolls, after which the finished paper is wound into a large roll. It is then passed through the cutters and cut to the required width and length.
If a highly finished surface is desired, the paper is passed through what are known as super-calenders, which consist of 7 rolls, 4 of chilled steel and 4 of pressed paper, arranged alternately, the combination of the two materials in the rolls giving a high finish. The whole machine is run at a very high speed, 300 to 350 feet per'minute being common. There are some machines that run the paper out at the rate of 400 feet per minute, or between 4 and 5 miles per hour, and such a machine will frequently run an entire day without a break in the paper.
These speeds are only possible in the manufacture of common news paper. In making the finer grade of paper, with high finish, such for instance as is used for the Scientific American, the mill can only be run about one-half the above speed.
The whole wachine has to be adjusted with the reatest care and nicety. It runs at so high a speed, and the material upon which it operates is so frail, that any unevenness in the rolls, or an irregularity in would break the sheet, and throw the work into con-

The following material is consumed every month in
a paper mill of 40 tons per day, or 1,000 tons per month capacity :

Coal	15 tons.	
Wood	,432	cord
Bleaching powder (chloride of lime)	142	tons.
Sulphur.	77	${ }^{6}$
Lime (milk of lime).	57	"
Resin (sizing).	171/2	/
Soda amh.	124	"
	200	"

Many a paper will is run continuously from 12 P . M. Sunday night until 12 P. M. on the next Saturday, two sets of operatives being employed. From the time the log of wood is put into the chipper to the time the paper is cut up into sheets, the material is never handled, but passes through a continuous mechanical process.

obituary.

DEATH OF GENERAL CASEY.
Brigadier-General Thomas Lincoln Casey (retired), late Chief of Engineers, United States Army, died at his residence in Washington, on March 25. General Casey General Silas Casey grandson of soldiers. His father was Madison Barracks, Sackett's Harbor N. Y in 1831 In 1848 he received an appointment to the United States Military Academy. Four years later he graduated at the head of his class. He entered the engineer corps as second lieutenant in 1852. He was assigned o duty in connection with works of improvement on the Delaware River and Bay. When the civil war broke out he was sent to New England, as superin ending engineer of the permanent defenses and field fortifications on the coast of Maine. In March, $\mathbf{1 8 6 5}$ he was breveted lieutenant-colonel for faithful and meritorious services during the war. He was then appointed superintending engineer of public buildings and grounds for the District of Columbia. He had charge of the Potomac Aqueduct, and to him also was charge of the Potomac Aqueduct, and to him also was Department building, in Washington, the Washington Monumentand the construction of the Medical Museum and Library. He was president of the Board of Engineers for fortifications and other public works at New York from 1886 to 1888 , when he was appointed brigadier reneral and chief of engineers by President Cleveland In 1889 he was charged by an act of Congress with the onstruction of the new Congressional Library buildng, and inrecognition of his integrity and ability, Con ress continued him in charge of the work after he wa retired in 1895. The death of General Casey remove one of the best known and active government officers. He took great pride in the progress and economy of the work on the new library building, and was to have completed it within the time limit and for less than the original estimates, which speaks well for his ability He always directed in person the contract work for which he was responsible

The Strength of Ice

The army rules are that 2 inch ice will sustain a man or properly spaced infantry; 4 inch ice will carry a man on horseback, or cavalry, or light guns; 6 inch ice, heavy field guns, such as 80 pounders; 8 inch ice, a battery of artillery, with carriages and horses, but not over 1,000 pounds per square foot on sledges; and 10 inch ice sustains an army or an innumerable multi ude. On 15 inch ice railroad tracks are of ten laid and operated for months, and 2 foot thick ice withstood the impact of a loaded passenger car, after a 60 foot all (or, perhaps, 1,500 foot tons), but broke under that of the locomotive and tender (or, perhaps, 3000 foot tons). Trautwine gives the crushing strength of firm ice as 167 to 250 pounds per square inch. Col. Ludlow, in his experiments in 1881, on 6 to 12 inch cubes, found 292 to 889 pounds for pure hard ice, and 222 to 820 pounds for inferior grades, and on the Delaware River 700 pounds for clear ice and 400 pounds or less for the ice near the mouth, where it is more or less disinte grated by the action of salt water, etc. Experiments of Gzowski gave 208 pounds; those of others, 310 to 320 pounds. The tensile strength was found by German experiments to be 142 to 223 pounds per square inch. The shearing strength has been given as 75 to 119 pounds per square inch. The average specific gravity of ice is 0.92 . In freezing, water increases in volume from 1-9 to 1-18, or an average of $1-11$; when floating, $11-12$ is immersed. - Engineering Mechanics.

Earthquake in Maine

Reports from Machias and Calais, Me.,statethat a vio lent shock of earthquake was felt on the evening of March 22 at 8 o'clock. The direction of disturbance was from the sonth toward the north at Machias and from west to east at Calais. At Machias houses trembled, dishes and windows rattled, and clocks were stopped. People rushed from their houses in alarm. At Calais the shock lasted from four to five seconds. No damage was recorded.

DeEP and rapid breathing is recommended as a means of stopping hiccough.

